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ABSTRACT

Irreversible destruction of bronchi and alveoli can lead
to multiple incurable lung diseases. Identifying lung
stem/progenitor cells with regenerative capacity and
utilizing them to reconstruct functional tissue is one of
the biggest hopes to reverse the damage and cure such
diseases. Here we showed that a rare population of
SOX9+ basal cells (BCs) located at airway epithelium
rugae can regenerate adult human lung. Human SOX9+

BCs can be readily isolated by bronchoscopic brushing
and indefinitely expanded in feeder-free condition.
Expanded human SOX9+ BCs can give rise to alveolar
and bronchiolar epithelium after being transplanted into
injured mouse lung, with air-blood exchange system
reconstructed and recipient’s lung function improved.
Manipulation of lung microenvironment with Pirfenidone
to suppress TGF-β signaling could further boost the
transplantation efficiency. Moreover, we conducted the
first autologous SOX9+ BCs transplantation clinical trial
in two bronchiectasis patients. Lung tissue repair and
pulmonary function enhancement was observed in
patients 3–12 months after cell transplantation. Alto-
gether our current work indicated that functional adult

human lung structure can be reconstituted by orthotopic
transplantation of tissue-specific stem/progenitor cells,
which could be translated into a mature regenerative
therapeutic strategy in near future.
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INTRODUCTION

Regeneration of human skin (Gallico et al., 1984), corneal
epithelium (Rama et al., 2001; Rama et al., 2010) and
hematopoietic system (Copelan, 2006) by autologous
transplantation of tissue-specific stem/progenitor cell has
been achieved decades ago and now has become a routine
therapeutic approach. However, regeneration of large inner
organs, such as lung, remains one of the biggest challenges
to modern medicine. Lung-related diseases are the third-
leading cause of human death globally. Most of the lethal
lung diseases such as chronic obstructive pulmonary dis-
ease (COPD) (Mannino, 2002), idiopathic pulmonary fibrosis
(Selman et al., 2004) and bronchiectasis (Moulton and Bar-
ker, 2012) are characterized by irreversible, progressive
damage of lung tissues (alveoli and/or bronchi). Besides the
mitigating treatments available, lung transplant surgery is the
only solution for the exacerbated patients but its application
is largely limited due to the extreme lack of donor lung as
well as severe side effects resulted from immune-rejection.
As a potential substitute, the transplantable artificial lung
technique is promising but still in its infancy (Ott et al., 2010).
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Therefore, millions of patients are in urgent need of a new
strategy to cure such diseases and stem/progenitor cell-
based regenerative therapy is likely to be the biggest hope
for them. Among all cells with clinical potential, mesenchy-
mal stem cells (MSCs) or other stroma-derived cells are
easy to obtain and handle. However, it is widely recognized
that transplanted MSCs function mainly through paracrine or
immunomodulatory mechanism (Meirelles Lda et al., 2009),
with no evidence showing that they can reconstitute lung
structure for regeneration purpose. Induced pluripotent stem
cells (iPSCs) could be another source of “self” stem cells for
autologous transplantation and indeed, iPSCs have been
successfully coaxed to alveolar and airway lineage in vitro
(Huang et al., 2014). However the capability of iPSC-derived
cells to generate real lung structure and their tumorigenic
risk remains to be evaluated in vivo (Kotton and Morrisey,
2014). To this end, tissue-resident progenitor cells from an
adult’s own lung—if can be identified, isolated and expanded
—can be a new option for transplantation therapy.

In adult rodent, different populations of lung stem/pro-
genitor cells have been identified in last decade with capa-
bility to reconstruct lung epithelium. Most of the mouse lung
stem/progenitor cells are facultative and can be induced to
proliferate in response to injury as well as differentiate into
one or more lung cell types (Kotton and Morrisey, 2014; Kim
et al., 2005; Barkauskas et al., 2013; Hogan et al., 2014;
Desai et al., 2014). More recently, we and others found a
rare population of p63+/Krt5+ distal airway stem cells
(DASCs), which play essential role in murine lung repair after
influenza-induced acute injury (Zuo et al., 2015; Vaughan
et al., 2015). However in adult human, whether there are
lung cells with regenerative capacity in vivo need to be
explored. Given the huge differences between human vs.
mouse of their respiratory systems in terms of develop-
mental process, lung lobulation, branching pattern and cell
composition, the identity of human lung progenitor cells need
to be rigorously evaluated.

In the current work, we discovered the putative adult
human lung progenitor cells located at the bottom of “rugaes”
in airway epithelium, with a SOX9 marker to distinguish them
from other SOX9−/P63+/KRT5+ airway basal cells (BCs).
From a trace amount of bronchoscopic brush-off lung tis-
sues, we isolated SOX9+ BCs and expanded them in vitro
indefinitely. SOX9+ BCs transplanted into injured immune-
deficient mouse lung can regenerate functional lung
epithelium with both human bronchiolar and alveolar
epithelium reconstituted. Most importantly, for the first time
we explored the clinical feasibility of autologous SOX9+ BC
transplantation to treat two patients with chronic lung dis-
eases. The clinical trial result is highly consistent with our
observation on mouse model, and making it a solid basis for
future large-scale clinical study.

RESULTS

Bronchoscopic isolation of clonogenic airway basal
cells

In current study, we worked on the P63+/KRT5+ BCs in the
airway epithelium of human lung which could possibly be the
counterpart of mouse DASC. The workflow of BC isolation
and expansion is summarized in Fig. 1A. Approximately
20,000–30,000 cells were brushed off from the luminal sur-
face of donor’s 3rd–4th order bronchus using a 2-mm
bronchoscopic brush (Wimberley et al., 1982) (Fig. 1B). The
brushed-off cells were seeded onto embryo-derived feeder
cells with the culture medium favoring BC growth (Zuo et al.,
2015; Wang et al., 2015). After seeding 5,000 live cells onto
6-well plate, 9 (±2) cells grew up into visible tight colonies 3–
5 days later with expression of human nucleus specific
antigens, lung progenitor marker NKX2.1 and proliferation
marker KI67 (Figs. 1C and S1A). All of the P0 colonies were
confirmed epithelium origin (E-cadherin+, Fig. S1A) and
stained double positive for airway basal cell markers KRT5
and P63 (Fig. 1C and 1D). We did not observe any P63
single positive colonies (Vaughan et al., 2015). Considering
that BCs take for about 20% of total cell number in brushed
samples of 3rd–4th order bronchus, it appeared that
approximately 1% of the BCs in human airway could be
clonogenic lung epithelium progenitors.

We seeded one single BC onto feeder cells and grew them
into one single colony which was then picked up by cloning
cylinders and passaged continually. The latest passage of
BC clones had gone through 50 doublings (=1015 fold
expansion) in our lab. The single cell-derived BC clones and
their original brush-off tissue samples were analyzed by high-
throughput RNA sequencing (RNA-Seq). On average, we
detected 16,230 genes and 25,223 transcripts. Thus, more
than 60% of known human genes and transcripts were
expressed in clonogenic BCs. Gene expression value cor-
relation analysis showed that the clone transcriptome profiles
are distinct from their original brush-off tissues, but the two
clones from two independent persons share very similar
transcriptome (Fig. 1E, Pearson correlation coefficient =
0.95). Single nucleotide polymorphism (SNP) analysis
showed that BC clones have around 70% less polymorphism
comparing to the brush-off tissues, which is in consistency
with their single cell origination. High expression of BC
markers (KRT5, P63, NGFR and S100A) and another puta-
tive mouse stem cell marker integrin α6β4 (Chapman et al.,
2011) were observed in clones. In contrast, clonogenic BCs
do not express other bronchial or alveolar lineage markers as
shown by RNA-Seq and confirmed by immunostaining
(Figs. 1F and S1B). Protein-protein interaction analysis of
overexpressed genes indicated three major signal molecule
networks including Notch1/2/3, FGF10/7 and Wnt7 ligand
and their downstream components. All three signaling
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networks are previously known to play essential roles in
embryonic lung development (Bellusci et al., 1997; Rajagopal
et al., 2008; Tsao et al., 2008) (Fig. 1G). Gene ontology (GO)
term analysis demonstrated critical biological processes
enriched in BCs (Fig. 1H).

Clonal analysis of SOX9+ BCs

Importantly, RNA-Seq data also showed that clonogenic BCs
highly express SOX9 (Sex Determing Region Y- Box 9), a
transcriptional factor known to be enriched in branching tips
of developmental lung. In embryonic development, SOX9
activity is required to maintain the undifferentiated status of
distal lung progenitor and disruption of SOX9 function pre-
vents adult alveoli formation (Perl et al., 2005; Rockich et al.,

2013). Here we confirmed SOX9 expression in P63+/KRT5+

BC clones by immunostaining (Fig. 2A). Accordingly, by
histological examination of human 2nd order (Fig. S2) and
3rd–4th order airway (Fig. 2B), we observed 1.3% ± 0.3%
and 1.7% ± 0.5% SOX9-expressing P63+ BCs, respectively.
The proportion of SOX9+ cells in total BCs is very close to
our estimation in clonogenic assay as mentioned above
(∼1%), suggesting SOX9 as a marker to distinguish clono-
genic BCs vs. other non-clonogenic BCs. Interestingly, we
noticed that there are a few invaginations (rugaes) in 2–4
order human airway epithelium and the SOX9+ BCs are
exclusively located near the base of the rugaes. There are
averagely 3 (±1) SOX9+ BCs in each individual rugae. Fur-
ther immunofluorescent examination showed a very small
portion of them (<1%) are proliferative (KI67+) (Fig. 2C). Of
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Figure 1. Isolation and characterization of BCs from SOX9+ human airway. (A) Diagram showing the process of clonogenic BCs

isolation and expansion. (B) Bronchoscopic image showing brushing of cells from human airway. (C) Left, BC colonies grown on

feeder cells; right, anti-KRT5 and anti-P63 immunostaining of BC colonies with nuclei counterstain. Human sample number n = 10.

Scale bar, 100 μm. (D) Left, BCs in human airway by anti-KRT5 and anti-P63 immunostaining. Inset, high magnification with club cell

(CC10+, cyan color) costaining; right, hematoxylin & eosin staining of the same section. Br, bronchus. Scale bar, 100 μm.

(E) Heatmap showing transcriptome profile correlation value of BC clones and brush-off tissues. (F) Expression heatmap of selected,

differentially expressed genes (P < 0.05) comparing BC clones and brush-off tissues. (G) Protein-protein interaction network of

selected genes with high expression level in BC clones. (H) Enriched gene ontology classes of BC clones versus brush-off tissues.
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note, SOX9+ BCs can also be isolated and expanded from
those small airway (∼1 mm diameter) samples, which is
accessible by open-chest surgery or autopsy but not by
bronchoscopy (data not shown).

The whole brushing sampling and SOX9+ BCs cloning
procedure was carried out on 15 individuals with a recovery
rate of 100%. Donors are from 4 different disease categories
including 5 normal healthy volunteers, 2 bronchiectasis
patients, 3 chronic COPD patients, and 5 interstitial lung
disease (ILD) patients with pulmonary fibrosis. The SOX9+

BCs from different categories of diseases showed no
apparent difference in colony morphology (Fig. S3A) or
marker expression (Fig. S3B). Their clonogenic efficiency
seemed similar—but still need future investigation in much
larger cohort to get statistically meaningful conclusion.

We further analyzed SOX9+ BCs at single cell resolution.
5 single cells from one person in normal group were selected
at Passage 0 and expanded to Passage 1 and Passage 2.
Great variation of their clonogenic capacity was observed at
Passage 1 (coefficient variation = 59.9%) and Passage 2
(coefficient variation = 75.7%). Similar clonogenicity varia-
tion was observed in individuals from other disease cate-
gories and the average coefficient variation of all clones is
52.2% (Fig. S3C).

SOX9+ BCs grown on feeder cells can be transferred onto
petri dish pre-coated with collagen fibers for feeder-free
culture. The feeder-free cultured SOX9+ BC can also form
colonies though their cell-cell contact within one colony is
less tight comparing to those on feeders (Fig. 2D). The
feeder-free cultured BCs are able to be passaged for at least
30 doublings with no obvious morphology change.
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Figure 2. Feeder-free expansion of SOX9+ BCs. (A) Immunostaining of SOX9+ BCs with anti-P63, anti-KRT5 and anti-SOX9

antibodies. (B) SOX9+ BCs in rugae of 3rd order human airway by anti-SOX9, anti-P63 and anti-CC10 immunostaining. Scale bar,

100 μm. (C) SOX9+ BCs in rugae of 3rd order human airway by anti-KI67 immunostaining. (D) BC colony cultured on feeder-free

condition. (E) Karyotyping of cultured BCs. (F) qPCR showing alveolar and bronchial epithelium marker gene expression of human

lung sample and SOX9+ BCs in early (P2) and late (P8) passages. n = 3, biological replicates. Error bars, S.E.M. (G) qPCR showing

progenitor cell marker (Krt5, P63 and SOX9) gene expression of human lung sample and SOX9+ BCs in early (P2) and late (P8)

passages. n = 3, biological replicates. Error bars, S.E.M. (H) Western blotting showing marker gene expression of human lung sample

and SOX9+ BCs in early (P2) and late (P8) passages.
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Karyotyping indicated their stable genetic characteristics
along with passaging (Fig. 2E). Quantitative analysis of
progenitor markers (KRT5, P63 and SOX9) and lung
epithelium lineage markers at both RNA and protein level
indicated that there is no spontaneous differentiation of BCs
in the culture process (Fig. 2F–H).

Xeno-transplanted SOX9+ BCs give rise to human lung
in vivo

Next we examined whether the SOX9+ BC could differentiate
and regenerate lung tissue by transplanting such cells into
mouse lung parenchyma. Firstly, immunodeficient NOD-
SCID mice were subjected to bleomycin intratracheal instil-
lation, which lead to rapid onset (8 days after bleomycin)
damage of centrilobular and surrounding regions as shown
by microCT-scan and immunostaining. Masson trichrome
staining for collagen and α-SMA immunostaining indicated
severe tissue fibrosis of mouse lung at later time points
(Zhang et al., 1996) (Fig. S5A–C). Scarce endogenous
mouse p63+/Krt5+ distal airway stem cell expansion was
observed in damaged lung parenchyma as reported previ-
ously (Vaughan et al., 2015) (Fig. S5D). Then we intratra-
cheally delivered (Zuo et al., 2015) 1 × 106 GFP-labeled
SOX9+ BCs into the injured mouse lung and analyzed the
lung 3 weeks after transplantation. As shown in Fig. 3A, we
observed large-scale incorporation of GFP+ human SOX9+

progenitors and their progeny into mouse lung. Direct fluo-
rescence after tissue sectioning showed distribution of GFP+

human cells in mouse distal lung, some of them are mor-
phologically indistinguishable from neighboring GFP− mouse
lung structures (Fig. 3A). The chimerism of human-mouse
lung was further confirmed by human-specific nucleus anti-
gen Lamin A+C co-staining with GFP (Fig. 3B) and qPCR
with human specific GAPDH primers (Fig. S6A). A few fully
differentiated human cells have lost SOX9 marker expres-
sion and form air-sacs of similar size to mouse alveoli with
AEC1 marker (AQP5 and HOPX) expression (Fig. 3C–E).
Some transplanted GFP+ human cells could also incorporate
into bronchiolar region of lung, where some of them gave
rise to Club cell with CC10 marker expression while a few
others became ciliated cells (acetylated-tubulin+, FOXJ1+),
respectively (Fig. S6B–D). However, we hardly observed
human SPC+ AEC2 in transplanted mouse lung. The differ-
entiation potential of SOX9+ BCs was further confirmed by
qPCR analysis of multiple marker genes with human specific
primers. Both AEC1 and bronchiolar cell marker genes were
strongly expressed in the chimera. For AEC2 marker genes,
though SPB and LAMP3 were highly expressed, we did not
detect SPC expression in the chimera, which was consistent
with the immunostaining result (Fig. 3F).

In control experiment, we found that the transplanted
SOX9+ progenitors cannot incorporate into non-injured
healthy mouse lung or porcine pancreatic elastase-injured
mouse lung (data not shown). Also, human lung-derived

fibroblast cells (data not shown) or human cervix-derived
P63+/KRT5+/SOX9+ progenitor cells (Figs. 3G and S6E) can
barely incorporate into injured mouse lung either. This data
indicated the tissue specificity of different adult stem/pro-
genitor cells.

Regenerated lung by SOX9+ BC transplantation
contributed to mouse pulmonary function

Functional alveolar unit requires close epithelium-capillary
interaction for exchange of gas, energy and other sub-
stances. In the optically cleared mouse lung, we observed
branching major blood vessels in transplanted mouse lung
(Fig. S7A). We also found that the thin, long-shape human
AEC1 aligned together with microvascular vessels which are
positive for capillary endothelial markers CD34 and PECAM/
CD31, with approximately 1 μm-thick integrinβ-1+ basement
membrane between epithelium and capillary endothelium
(Fig. 4A–C). And engrafted GFP+ human cells form adhe-
rens junctions and tight junctions with neighboring alveolar
epithelial cells as shown by E-cadherin and ZO-1 staining on
the border (Fig. 4D and 4E), which makes a closed space to
maintain air pressure. In order to examine whether such
blood-gas exchanging units are functionally connected with
circulation, we developed a gold nanoparticle (AuNP)
(Cheng et al., 2008)-based approach to mimic gas exchange
and transport in vivo. The nanoparticles can be transported
in blood and diffuse across cells (like O2 and CO2) due to its
small size (∼5 nm), water solubility and lipophilicity, and
meanwhile can be detected by histology. One hour after
injection of AuNPs into mouse tail vein, we detected signif-
icant gold signal in healthy mouse alveoli (Fig. S7B) as well
as in GFP+ human alveoli (Fig. 4F), indicating the regener-
ated human tissues are functionally linked with circulation
system. On the other side, after intratracheally aspiration of
AuNPs, some GFP+ part of mouse lung showed significant
gold signal, indicating the regenerated human tissues are
anatomically linked with atmospheric air (Figs. 4G and S7C).
As control, no or very little AuNPs signal was observed in
damaged alveolar area by either way of particle delivery
(Fig. S7B and S7C). These evidences implicated that the
regenerated lung tissue has vascularized gas-exchange
capacity, probably through recruitment of self-organizing
capillary endothelial cells by SOX9+ BCs.

We also found that SOX9+ BC transplantation effectively
blocked the progression of mouse pulmonary fibrosis mani-
fested as fibronectin accumulation and α-SMA positive
myofibroblast expansion (Phan, 2012) in the human cell-
enriched area (Fig. 5A and 5B), suggesting that regenerated
human lung can replace damaged tissue in mouse model.
Accordingly, alveoli regeneration by SOX9+ BC transplan-
tation also improved the recipient mouse pulmonary function
as shown by the decrease of CO2 partial pressure, increase
of O2 partial pressure and O2 saturation in artery blood
(Fig. 5C–E).
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TGF-β signaling modulates SOX9+ BC proliferation

To further improve the transplantation efficiency of SOX9+

BCs, we screened multiple drugs and found Pirfenidone, an
FDA approved anti-pulmonary fibrosis drug (King et al.,
2014) could facilitate the SOX9+ BC transplantation effi-
ciency significantly. Interestingly, transforming growth factor-
β (TGF-β) had the opposite effect (Figs. 6A and S8A). This
discovery prompted us to study the underlying molecular and
cellular mechanism. We found that Pirfenidone treatment
can abolish TGF-β-induced phosphorylation of SMAD2/
SMAD3 (Fig. 6B). In turn, TGF-β treatment significantly
suppressed the clonogenicity and cell viability of SOX9+

BCs, which can be rescued by the SMAD2/SMAD3 inhibitor
SB-431542 (Fig. 6C–E). Simutaneously, the expression of
p15(INK4B), a G1 cell cycle inhibitor, was strongly induced

by TGF-β treatment together with mild change of some other
cell cycle-related genes (Fig. 6F). TGF-β had little effect on
the apoptosis of SOX9+ BCs (Fig. S8B). Collectively these
experiments showed that the TGF-β/SMAD/P15 signaling
axis could effectively modulate SOX9+ BC proliferation.
Similar proliferation inhibitory effect of TGF-β/SMAD was
recently reported on TBC as well (Mou et al., 2016).

Autologous SOX9+ BCs transplantation clinical trial
in bronchiectasis patients

Bronchiectasis is a chronic lung disease radiographically
characterized by permanent pathologic dilation of the small
and medium-sized bronchi, which may lead to respiratory
failure and eventually to death. Patients with bronchiectasis,
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if left untreated, will have a continual decrease of their pul-
monary function. Current pharmacological strategies to treat
bronchiectasis such as antibiotics, mucolytics and anti-in-
flammatory agents could only control the disease exacer-
bation but not improve the pulmonary function nor repair the
damaged lung tissue (ten Hacken et al., 2007). To explore
the clinical feasibility of autologous SOX9+ BC transplanta-
tion, we conducted a pilot trial aiming to treat bronchiectasis
by regenerating functional human lung. The general trial
protocol and the cell manufacturer (Regend Therapeutics
Co.Ltd) were archived by China Food and Drug Adminis-
tration (CFDA) and National Health and Family Planning
Commission of China, and the trial was performed in national
approved stem cell clinical research institute (Southwest
Hospital) after strict ethic commission review of preclinical
data (A part of but not all preclinical data was released in the
current manuscript).

Two patients diagnosed as non-CF bronchiectasis were
firstly enrolled for autologous SOX9+ BC transplantation on
April, 2016. Both patients are men in 50s, non-smokers.
Patient 1 was diagnosed as bronchiectasis 8 years ago with
productive cough and dyspnea on exertion symptom, which
worsens continually under regular pharmacological treat-
ment. CT scan shows multiple bronchial cylinder dilation and
patchy consolidation in his lung. Patient 2 was diagnosed as
bronchiectasis and COPD decades ago, with productive
cough and dyspnea on exertion symptom, which worsens
continually under regular pharmacological treatment. CT
scan shows multiple bronchial cystic dilation, thicken bron-
chial wall and patchy consolidation in his lung.

For both patients, tissues were bronchoscopically col-
lected from random region of left upper lobe and right upper
lobe and transported to GMP (Good Manufacture Practices)
level tissue culture facility for SOX9+ BC isolation and

A GFP CD34

F GFP Au NP G GFP Au NP

C
GFP CD31 ITGB1

AIv

AIv

Bv

AIv

Bv

AIv
AIv AIv

Bv

B GFP CD34

D E
GFP   CD31   E-Cad GFP  ZO-1

Figure 4. Regenerated alveoli with functional epithelium-capillary system. (A) Transplanted SOX9+ BCs (anti-GFP) and

capillary endothelium marker (anti-CD34). Scale bar, 100 μm. (B) Confocal image of SOX9+ BCs regenerated alveoli (Alv) and the

neighboring capillary blood vessel (Bv). Left, immunofluorescence; right, bright field. Scale bar, 20 μm. (C) Confocal image showing

the basement membrane (ITGB1+, white color, arrowhead indicated) between regenerated alveoli epithelium and capillary

endothelium (CD31+). Scale bar, 10 μm. (D) Confocal image showing the cell adherens junction (E-cadherin+, white color) between

regenerated alveoli epithelial cells. Scale bar, 20 μm. (E) Confocal image showing the cell tight junction (ZO-1+) between regenerated

alveoli epithelial cells. Scale bar, 20 μm. (F) Direct fluorescence image of the transplanted GFP-labeled SOX9+ BCs (green) and

bright-field image of tail vein delivered gold nanoparticles (AuNPs) of the same region (brown). Scale bar, 100 μm. (G) Direct

fluorescence image of the transplanted GFP-labeled SOX9+ BCs (green) and bright-field image of intratracheally delivered gold

nanoparticles (AuNPs) of the same region (brown). Scale bar, 100 μm.
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expansion (Fig. 7A). Isolated SOX9+ BCs were cultured on
clinical-level feeder cells and then shifted to feeder-free
culture condition. Totally 1 × 106/kg body weight of SOX9+

BCs were infused into distinct lobes of patients through
bronchoscopy (Tzouvelekis et al., 2013) (Fig. 7B). Clinical
status of patients was evaluated 1 day before and 1, 3 and
12 months after cell transplantation. Although it is almost
impossible to directly track unlabelled transplanted cells in
human, we did observe regional repair of cystic dilation after
cell transplantation by high-resolution computed tomography
(HRCT) scan for Patient 2 (Fig. 7C). The thickened bronchial
wall also became thinner after cell therapy for Patient 2.
Spirometry results indicated remarkable recovery of pul-
monary function in both patients after transplantation as
measured by FEV1, FVC and DLCO/VA (Fig. 7D). Impor-
tantly, no aberrant cell growth or other related adverse
events were observed during the whole follow-up time. In the
last follow-up (20 months after transplantation), Patient 1
described improvement of dyspnea, improvement of exer-
cise capacity, less productive cough and less times of
exacerbation after cell therapy; Patient 2 described less
productive cough and less times of exacerbation after cell
therapy. As it is well documented that bronchiectasis is a
permanent, irreversible disease that cannot resolve

spontaneously or with regular medicine, the recovery of
patients suggested high probability that transplanted SOX9+

BCs were able to regenerate functional lung in human, which
is consistent with our observation in animal models. And we
will continue life-long observation on the two patients.

DISCUSSION

In the current study, we revealed that a small population of
SOX9+ BCs in adult airway can regenerate human lung
epithelium. A few SOX9+ BCs brushed off from human air-
ways can be expanded to sufficient number in feeder-free
condition and transplanted into injured mouse lung to
regenerate human air exchanging units. In unperturbed lung,
the SOX9+ BCs are located in the base of airway epithelium
invagination, which is reminiscent of intestinal stem cells
residing in gut crypt compartments. However unlike the
intestinal stem cells which are constantly in active cell cycle
to replenish gut epithelium in a fast turn-over mode (Clevers,
2013), the SOX9+ BCs in airway are quiescent most of the
time, and could only be activated once a particular injury
signal from more distal lung was received. Like its counter-
part p63+/Krt5+ BCs in mouse, endogenous SOX9+ BCs
might migrate towards inflamed parenchymal region and
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Figure 5. BC transplantation rescued mouse pulmonary function. (A) Injured mouse lung without or with GFP-labeled SOX9+

BCs transplantation by anti-GFP and anti-Fibronectin co-staining. Scale bar, 200 μm. (B) Left, immunofluorescence image of injured

mouse lung transplanted with GFP-labeled SOX9+ BCs; right, immunostaining on the same section showing exclusion of α-SMA+

myofibroblasts from GFP+ area. Scale bar, 200 μm. (C) CO2 partial pressure of mouse arterial blood before and 1 month after

bleomycin-induced injury with or without SOX9+ BCs transplantation. Each dot indicates an individual mouse. (D) O2 partial pressure

of mouse arterial blood 1 month after bleomycin-induced injury with or without SOX9+ BCs transplantation. Each dot indicates an

individual mouse. (E) O2 saturation of mouse arterial blood before and 1 month after bleomycin-induced injury with or without SOX9+

BCs transplantation. Each dot indicates an individual mouse.
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rebuild the respiratory tree by proliferation and differentiation.
We and previous studies found that there are P63+ and/or
KRT5+ cells enriched in the damaged alveolar region of
many lung disease patients (including those with COPD,
pulmonary fibrosis and bronchiectasis) (Chilosi et al., 2002;
Asano et al., 2011; Smirnova et al., 2016), which could be
the progeny of endogenous SOX9+ BCs in the middle of
differentiation process. Interestingly there was almost no
SPC+ AEC2 generated in our xeno-transplantation model,
which suggested the limitation of the SOX9+ progenitor
potency and also the possibility that the traditional concept of
human AEC2 as the progenitor of AEC1 may not be correct
in this circumstance.

The pattern that SOX9+ BCs adopt to regenerate the
respiratory tree resembles the natural development process
of lung in gestation, which raises an open question as

whether SOX9+ BCs are the remains of previously docu-
mented SOX9+ progenitors in embryonic lung. In embryonic
lung, SOX9+ embryonic progenitors are enriched in distal
bud tips of respiratory tree at canalicular stage (Perl et al.,
2005). Interestingly, previous report demonstrated that
intravenous transplantation of human canalicular-stage
embryonic lung cell mixture into NOD-SCID mice can give
rise to chimeric lung (Rosen et al., 2015). Similarly, a more
recent report showed mouse SOX9+ progenitors in embry-
onic lung can be grown in vitro as organoid and transplanted
to generate mouse alveoli (Nichane et al., 2017). Altogether
these work supported the concept that SOX9+ cells are lung
progenitors in both embryonic and adult lung.

One important technical advance we bring out in this work
is the system to selectively expand SOX9+ BCs in a feeder-
free condition. Previously through bronchoscopic brushing
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Figure 6. TGF-β signaling modulates SOX9+ BC proliferation. (A) Direct fluorescence image of mouse lung transplanted with

1 × 106 GFP-labeled SOX9+ BCs under dissection microscope. Each lung was from mouse with indicated treatment and harvested 7

days after transplantation. The left lobes were analyzed and the GFP+ cell numbers (×106) were counted by flow cytometry analysis.

Biological replicates, n = 3. PFD, Pirfenidone. (B) SOX9+ BCs were stimulated with 10 ng/mL TGF-β for 2 h, with or without 1 mg/mL

Pirfenidone treatment overnight. Western blotting of cell lysates with anti-phosphated-Smad2/3 and anti-total Smad2/3 antibodies

was performed to examine the activation of TGF-β pathway. (C) Direct fluorescence imaging of GFP-labeled SOX9+ BCs cultured in a

6-well plate in the absence or presence of 10 ng/mL TGF-β. Scale bar, 200 μm. (D) Quantification of clonogenicity of SOX9+ BCs in

the presence of 10 ng/mL TGF-β or 10 mmol SB. SB, TGF-β type I receptor inhibitor SB-431542. Technical replicates n = 3. (E) WST

viability assay of SOX9+ BCs treated by 10 ng/mL TGF-β or 5 mmol TGF-β inhibitor SB-431542, or their combination. Technical

replicates n = 3. (F) qPCR showing cell cycle-related gene expression level of SOX9+ BCs with 10 ng/mL TGF-β treatment for

indicated h. Biological replicates, n = 3.
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followed by routine basal cell culture, Crystal et al., obtained
P63+/KRT5+/SOX7/15/4+ basal cells but not the rare SOX9+

subpopulation (Hackett et al., 2011) . Here from as few as
one single SOX9+ BC, we can expand it to 5 × 107 purely
undifferentiated cells within 3–4 weeks. Therefore we can
acquire a homogeneous population of regenerative cells with
uniform characteristics, which is crucial for cell quality control
in further clinical application.

Most importantly, we showed that SOX9+ BCs cultured
under GMP guidelines can be applied clinically in order to
reconstitute human lung for devastating chronic lung disease
treatment. To the best of our knowledge, this is the first
successful attempt to regenerate human large inner organ
based on cell replacement strategy. As demonstrated in
hematopoietic, skin and corneal regeneration field, autolo-
gous stem/progenitor cell transplantation strategy has been
successfully applied to treat multiple devastating diseases.
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Figure 7. Autologous SOX9+ BC transplantation: a pilot clinical study. (A) Cultured SOX9+ BCs from two patients of
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normal.
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We show here that supplement of expandable SOX9+ BCs
by autologous transplantation could repair the damaged lung
in two bronchiectasis patients in both pulmonary structure
and function. Generally the bronchiectasis patients without
medical intervention will deteriorate over time, thus the
recovery of lung function and structure after cell therapy
suggested the efficacy of this strategy, and established a
basis for future trials. As the SOX9+ BCs are derived from
patients’ own airway, it is a recapitulation and augmentation
of naturally occurring lung repair process. However after all,
our pilot clinical trial is a very preliminary exploratory study
so the safety and efficacy of the current strategy still need
additional verification in a much larger cohort. Although we
have never observed aberrant growth of SOX9+ BCs in
NOD-SCID mouse model, longer time follow-up on the
patients is still necessary to fully eliminate the tumorigeneic
possibility. We have demonstrated the differentiation poten-
tial of SOX9+ BCs in mouse model, but the exact fate of
transplanted SOX9+ BCs in human lung remains to be pro-
ven with future development of non-invasive cell tracking
techniques. Furthermore, we have demonstrated that SOX9+

BCs derived from normal or diseased people can both give
rise to multiple lineages of lung epithelial cells, but detailed
quantitative comparisons of the regenerative capacity
between normal and diseased persons would require a lar-
ger sample size investigation in future.

In conclusion, our study clearly shows the capability of
SOX9+ BCs to regenerate human lung, proves the concept
of chronic lung disease treatment by SOX9+ BC transplan-
tation and provides exciting translational opportunities in
near future.

METHODS

Human tissue collection

Patients without or with chronic lung diseases (COPD, bronchiec-

tasis and ILD) were diagnosed by ATS/ERS criteria. All individuals

went through thorough medical examination before sampling. The

bronchoscopic procedure for sampling was performed by board-

certified respiratory physicians using a flexible fiber-optic broncho-

scope (Olympus, Japan). Before the bronchoscopy, oropharyngeal

and laryngeal anesthesia was obtained by administration of 2 mL of

nebulized 4% lidocaine, followed by 1 mL of 2% topical lidocaine

sprayed into the patient’s oral and nasal cavities. After the bron-

choscope was advanced through the vocal cords, 2 mL of 2%

lidocaine solution was instilled into the trachea and both main

bronchi through the working channel of the bronchoscope. Then a

disposable 2-mm brush was advanced through the working channel

of the fiberoptic bronchoscope and used to collect airway epithelial

cells by gently gliding the brush back and forth 1 or 2 time in random

regions of trachea or 3–4 order bronchi in the right or left lobe. No

obvious differences were observed between the BC clones isolated

from 3rd vs. 4th order bronchi, or from different lung lobes. For bulk

lung sampling, normal human lung bulk samples were collected from

unaffected lung area of lung cancer patients with open chest sur-

gery. All the human tissues were obtained following clinical SOP

under patient’s consent and approved by Southwest Hospital Ethics

Committee (Chongqing, China) and Shanghai East Hospital Ethics

Committee (Shanghai, China).

Isolation and culture of human SOX9+ BCs

To isolate the SOX9+ BCs, 2 mm brush with samples were cut with

scissors into 1 cm pieces. After removing sputum, the brush pieces

were directly digested with dissociation buffer including DMEM/F12

(Gibco, USA), 2 mg/mL protease XIV (Sigma, USA), 0.01% trypsin

(Gibco, USA) and 10 ng/mL DNase I (Sigma, USA). Specimens

were incubated at 37°C for an hour with gentle rocking. Alternatively,

human small airway were dissected from a bulk of lung tissue and

digested in the same dissociation buffer at 37°C overnight. Disso-

ciated cells were passed through 70-μm Nylon mesh (Falcon, USA)

to remove aggregates and then washed twice with cold F12 medium.

Cell viability was assessed by exclusion of trypan blue dye. Cell

pellets were collected by centrifuge of 200 ×g and plated onto mit-

omycin-inactivated 3T3 feeder cells in BC culture medium for lung

(BCM-L) including DMEM/F12 (Gibco, USA), 10% FBS (Hyclone,

Australia), antibiotics, amphotericin and growth factor cocktail as

previously described (Zuo et al., 2015). Under 7.5% CO2 culture

condition, the SOX9+ BC colonies emerged 3–5 days after plating,

and were digested by 0.25% trypsin-EDTA (Gibco, USA) for 3–5 min

for passaging. Typically, SOX9+ BCs are passaged every 5 to 7 days

and split at 1:7 ratio. To obtain single cell-derived clone, cells are

digested into single cells, loaded through 40-μm Nylon mesh and

seeded with extremely low density, then a single colony grown up

from a single cell was picked up by clone cylinder (Sigma, USA) and

high vacuum grease after its neighboring colonies were cleared by

scraper to ensure the pedigree purity. For feeder-free culture of

SOX9+ BCs, feeder cells were removed by differential trypsinization

with 0.05% trypsin (Gibco, USA) and SOX9+ BCs were plated with

high density onto dishes pre-coated with 15% cold collagen type I

(Corning, USA) and 20% Matrigel (Corning, USA) for further

expansion.

For labeling of cells by GFP, pLenti-CMV-EGFP plasmid was

transfected into 293Tcells together with lentivral packaging mix (Life

Technologies, USA). Lentivirus supernatant produced by 293T was

collected, filtered and cryo-preserved before use. To infect SOX9+

BCs, 0.5 mL lentivirus containing medium was directly added to

2 mL cell culture medium with 10 μg/mL polybrene and incubated for

12 h. The overall labeling efficiency of cells is above 95%. To confirm

that GFP containing virus will not spread between cells after label-

ing, we co-cultured GFP-labeled SOX9+ BCs with mCherry-labeled

(pLenti-CMV-mCherry) SOX9+ BCs for 5 days and did not observe

any yellow color cells.

Immunofluorescence staining

For immunofluorescence staining, cells were fixed by 3.7%

formaldehyde, and then incubated with 0.3% Triton X-100 to

improving the cell permeability for 10 min. Paraffin- or cryo-embed-

ded tissues were sectioned and subjected to antigen retrieval in

citrate buffer (pH 6.0, Sigma, USA) in microwave oven for 20 min

before staining. 10% normal donkey serum (Jackson ImmunoRe-

search) was used to block the non-specific antigen. Primary anti-

bodies used in this work include BC markers:KRT5 (1:200,
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EP1601Y, Thermo), P63 (deltaN, 1:200, 4A4, Abcam), E-cadherin

(1:200, H-108, Santa cruz), SOX9 (1:200, ERP14335-78, Abcam),

SOX9 (1:200, AF3075, R&D); AEC markers: AQP5 (1:1000,

EPR3747, Abcam), HOPX (1:500, E-1, Santa Cruz), PDPN (1:500,

FL-162, Santa Cruz), SPC (1:200, M-20, Santa Cruz), SPC (1:200,

FL-197, Santa Cruz), LAMP3 (1:200, 12632-1-AP, Proteintech);

bronchiolar cell markers: CC10 (1:200, T-18, Santa Cruz), acety-

lated-α-Tubulin (1:1000, 6-11B-1, Abcam), MUC5AC (1:500, 45M1,

Thermo), FOXJ1 (1:200, 2A5, eBioscience); vasculature markers:

CD31 (1:100, M-20, Santa Cruz), CD34 (1:1000, EP373Y, Abcam);

myofibroblast marker: α-SMA (1:500, 1A4, DAKO), Fibronectin

(1:500, F14, Abcam), others: KI67 (1:200, RM-9106, Thermo), GFP

(1:200, B-2, Santa Cruz), GFP (1:200, FL, Santa Cruz), GFP (1:200,

T-19, Santa Cruz), ITGB1 (1:500, ERP16895, Abcam), Human

specific Lamin A+C (1:200, EPR4100, Abcam). Alexa Fluor-conju-

gated Donkey 488/594/647 (1:200, Life Technologies, USA) were

used as secondary antibodies. For antibodies of low reactivity, Bio-

tin-Streptavidin signal amplification system (Life Technologies, USA)

was used. After counterstaining with DAPI (Roche, USA), samples

were treated with 0.1% Sudan Black (Sigma, USA) for 1 min to

remove autofluorescence and then mounted with VECTASHIELD®

Mounting medium (Vector labs, USA). Images were visualized under

fluorescence microscope (Nikon 80i and Eclipse Ti, Nikon, Japan) or

fluorescence stereomicroscope (MVX10, Olympus, Japan). Confo-

cal images were taken under Nikon A1R microscope (Nikon, Japan).

RNA-sequencing and bioinformatics

SOX9+ BCs isolated from two donors and their corresponding brush-

off specimens were subjected to RNA-Seq analysis. The total RNA

concentration and RIN were measured by Agilent 2100 Bioanalyzer

(Agilent). For human SOX9+ BCs, 200 ng total RNA sample was

purified, and the first-strand cDNA was synthesized using first strand

master mix and super script II (Life Technologies). Second strand

master mix (Life Technologies) was then used to synthesize the

second-strand cDNA. After cDNA purification and adapter ligation,

PCR amplification was performed to enrich the cDNA fragments. For

brush-off samples, after RNA extraction and quality control, cDNA

was prepared using the SMARTer Ultra Low RNA Kit (Clontech) for

Illumina sequencing. Low Input Library Prep Kit (Clontech) was then

used for library construction. The library quantity and quality was

verified by Agilent 2100 Bioanalyzer and real-time quantitative PCR.

Then the library is sequenced using Illumina HiSeq 4000. Clean data

were acquired from raw data (fastq format) using the NGSQC Toolkit

by removing low-quality reads. Clean RNA-seq reads were mapped

to the reference genome (Ensembl, GRCh37) using Tophat v2.0.049

using default settings.

With genome mapping result, gene expression level was calcu-

lated with RSEM software (v1.2.12). Transcript levels were quanti-

fied as fragments per kilobase of transcript per million mapped reads

(FPKM). Pearson correlation coefficient between samples was cal-

culated by R scripts (3.2.3). Heatmap was generated using R scripts.

The protein-protein interactions were retrieved from Human Protein

Reference Database (HPRD, release 9) and visualized with Cytos-

cape (v3.3.0). SNPs were called by GATK (v3.4-0).

Karyotyping

To arrest SOX9+ BCs in mitosis metaphase, cells of 75% confluence

were treated with 1 μg/mL colchicines for 7 h and digested into

single cells by 0.25% trypsin. Then the cells were incubated by 0.4%

KCl at 37°C for 40 min and fixed by 10 mL fixation solution including

methanol and glacial acetic acid (3:1) at room temperature for

30 min. Suspension with chromosomes was dropped and spread on

slides. Samples on slides were treated by 0.0005% trypsin for 5 min

and stained with 15% Giemsa (Sigma-Aldrich, USA). Banding pat-

terns on chromosome spreads were checked for more than 15

mitotic phases and all of them are normal human cells. All cells used

for clinical purpose were subjected to karyotyping in prior to

transplantation.

Quantitative reverse transcription PCR

Total RNA from tissues or cells were isolated using the RNeasy mini

kit with DNase digestion according to the manufacturer’s instructions

(Qiagen). RNA quality was determined by SimpliNano (GE Health-

care). 1 μg total RNA was reverse-transcribed into cDNA with Pri-

meScript™1st Strand cDNA synthesis Kit (TaKaRa). The real-time

PCR assays were performed on an ABI 7500 real-time PCR system

(Applied Biosystems) according to the instructions of SYBR® Premix

Ex Taq™II (Tli RNaseH Plus, Takara). qPCR reactions were set as

following: 95°C for 2 min, then 40 cycles of 95°C for 10 s, and 60°C

for 40 s. Melt curve stage was added after PCR amplification stage.

The threshold crossing value (Ct) of each transcript was normalized

to reference genes (β-Actin or GAPDH). The relative expression

level of each genes was calculated using the 2−ΔΔCt method.

Sequence of primer pairs for qPCR was listed in Supplementary

Table.

Animal tissue histology

All animal experiments were conducted according to guidelines

approved by University Association for Laboratory Animal Science.

NOD-SCID mice (female or male, 6–10 weeks, The Jackson Lab-

oratory, USA) were euthanized at proper time points and the dia-

phragm was carefully cut open without touching the lung. In situ

fixation by injecting 3.7% formaldehyde (Sigma, USA) through tra-

chea was performed using 29 G needle. Then the lung was dis-

sected and fixed in 3.7% formaldehyde at 4°C overnight. For

cryosection, the fixed lung was settled by 30% sucrose before

embedding into the Tissue-Tek O.C.T compound (Sakura, Japan),

the 5–10 μm sections were cut using a cryotome (Leica microsys-

tem, Germany). For paraffin section, the lung was dehydrated by

gradient ethanol and processed in an automatic tissue processor,

then embedded into the paraffin blocks. All the samples were sliced

into 5–7 μm thickness using microtome (Leica microsystem, Ger-

many). Haematoxylin and eosin (H&E) staining was performed fol-

lowing standard protocol. Masson trichrome staining was performed

following the manual of Trichrome Staining Kit manual.

Small animal micro-CT

Micro-CT was used to monitor mouse lung damage before trans-

plantation. Mice were anesthetized through intraperitoneal injection
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with chloral hydrate and fixed with tap. Lung image was obtained

using a volumetric micro-CT scanner without respiratory gating

(TriumphTM, Gamma medica-ideas, Northridge, USA). Scanning

was performed at 70 kV, 350 μA. The number of projections were

512 slices and total acquire time was around 4.27 min. All data were

converted into digital imaging by TRIUMPH ‘X-O’ CT system

software.

SOX9+ BC transplantation in mouse

Adult NOD-SCID mice (female or male, 6–10 weeks, The Jackson

Laboratory, USA) maintained in SPF animal facilities were used for

xeno-transplantation experiments. Mouse lung was injured by

intratracheally instilling with 3 U/kg body weight bleomycin (Sel-

leckchem, USA) eight days prior to transplantation. Mouse lung was

monitored by small animal micro-CT before transplantation to verify

lung damage. Then mice were anesthetized by I.P injection of 3%

chloral hydrate and rested on a stand gesture. One million GFP-

labeled cells were suspended in 50 μL PBS and used for trans-

plantation of each mouse. Intratracheal aspiration was performed by

injecting the cells into trachea via mouth. Three weeks after trans-

plantation, the lung samples were collected for analysis.

Fluorescence compatible optical clearing of lung sample

Optical clearing of SOX9+ BC transplanted lung was performed

following the SeeDB protocol of Meng-Tsen Ke et al., (2013) with

minor modification. Briefly, a whole lobe of lung was fixed by 3.7%

formaldehyde, and then transferred into 20%, 40%, 60%, 80% and

100% (w/v) fructose solution containing 0.5% α-thioglycerol. In each

gradient solution lung was incubated for 12 h at RT. In the end, lung

was transferred into SeeDB solution (80.2% w/w fructose) for 48 h to

72 h. The GFP fluorescence and blood vessels were directly visu-

alized by fluorescence stereomicroscope.

Tracing intravascular transport by nanoparticles

Water soluble 5 nm gold nanoparticles (AuNPs) were synthesized as

described previously (Cheng et al., 2008) with minor modifications:

0.25 mmol tetra-n-octylammonium bromide (TOAB) and 0.6 mmol

dodecylamine (DDA) dissolving in 5 mL of toluene was mixed with

0.53 mmol HAuCl4 solution (30% in HCl solution). A 2 mmol cold

NaBH4 aqueous solution was added into the organic phase and

stirred vigorously for 2 h. The DDA-AuNPs were collected by pre-

cipitation in 40 mL of ethanol and then redispersed in 3 mL of

chloroform. Next, MeO-PEG-SH (MW = 5000) and the DDA-stabi-

lized Au nanoparticles were mixed in chloroform and stirred over-

night. The organic phase was washed twice by water and then

evaporated under vacuum. The residues were washed three times

by water and purified by centrifugation.

To trace the intravascular transport route into lung, 10 mmol/L

AuNPs were dissolved in 50 μL PBS and injected intravenously into

mouse tail. To trace the aspiration route into lung, 10 mmol/L AuNPs

were dissolved in 50 μL PBS and instilled intratracheally into mouse

lung. One hour later, the lung was collected and then briefly fixed in

3.7% formaldehyde for 30 min on ice, and then embedded into the

Tissue-Tek O.C.T compound followed by cryosections. GFP signal

on tissue slide was captured by direct immunofluorescence and then

the same slide was stained with LI Silver Enhancement Kit following

manufacturer’s instruction (Thermo, USA). Brown color indicates the

precipitation of AuNPs after reaction with silver

Western Blotting

Cells were washed in cold PBS and harvested by plastic scraper.

Collected lung tissues were washed in cold PBS, ground and lysed

by electric tissue grinder in RIPA buffer (150 mmol/L sodium chlo-

ride, 0.5% Triton-X100, 0.5% sodium deoxycholate, 5 mmol/L EDTA,

0.1% SDS, 50 mmol/L Tris-HCl, pH 7.5) with protease inhibitors

cocktail (Roche, USA). Approximately 30 μg total protein from each

sample was loaded. Samples were separated on a 10% SDS poly-

acrylamide gel and transferred to PVDF membranes (Roche, USA)

with electrophoresis blotting transfer apparatus. The membranes

were blocked with 5% dehydrated milk for 1.5 h and then incubated

with primary antibodies overnight. The next day, the membranes

were incubated with horseradish peroxidase-conjugated secondary

antibody. The specific signals were detected by ECL plus western

blotting detection reagents and X-ray film system.

Flow cytometry analysis

For immunostaining, cells were fixed by 3.7% formaldehyde for

30 min and permealized by 0.2% Triton X-100 for 5 min. 0.5%

donkey serum was used to block the non-specific signals at room

temperature for 30 min. Then the samples were incubated

sequentially with primary antibody and FITC/APC-Cy7-conjugated

secondary antibody (1:400, Life technologies, USA) at room tem-

perature for 1–2 h. BD FACS Verse (BD, USA) equipped with

488 and 647 lasers was used to detect the fluorescence signals for

samples. Single cell suspensions went through 40 μm strainer

before test. FSC-A and SSC-A parameters were used to exclude the

debris and FSC-H, FSC-W, SSC-W parameters were used to

exclude the clusters in the cell suspension. IgG control sample was

used to set the bottom-line of the positive signals.

SOX9+ BC transplantation clinical trial

A prospective, single-center, non-randomized clinical study was

conducted to evaluate the feasibility, safety and efficacy of SOX9+

BC transplantation in patients with bronchiectasis. The trial was

approved by Southwest Hospital Ethics Committee (Chongqing,

China, 2016-Research-#19,ClinicalTrials.gov: NCT02722642), con-

ducted in compliance with Good Clinical Practice (GCP) standard

and the most recent version of the Declaration of Helsinki. Two

patients who had signed informed consent form were admitted to

hospital twice for SOX9+ BC isolation and transplantation, respec-

tively. Diagnosis was established based on ATS/ERS guidelines.

Patient medical history, vital signs, routine laboratory tests (regular

blood counts, biochemical measurements, coagulation test, liver/

renal function tests, myocardiozymogram measurements), electro-

cardiogram, arterial blood gas, pulmonary function tests and HRCT

scan were conducted based on standardized clinical SOP of hospital

1 day before and different times after SOX9+ BC transplantation.

More detailed information for the clinical trial was described in

Supplementary Materials.
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Statistics

Block randomization was used to randomize samples/mice into

groups of similar sample size. No samples, animals or patients were

excluded from all analysis. Statistical analysis was performed by

Student’s t-tests (two-tail comparisons) or Wilcox test and significant

difference was defined as P < 0.05. Values in text were presented as

means with S.E.M. Microsoft Excel 2011 (Microsoft, USA) or R

programming was used for data management, statistical analysis

and graph generation. Statistical power analysis was used to ensure

adequate sample size for detecting significant difference between

samples. The variance is similar between groups that are being

statistically compared. All experiments (except the clinical trial) were

replicated for at least three times with consistent results in the lab-

oratory. All experimental including the clinical trial outcomes were

assessed by at least one blinded participating investigator.
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