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An application of an unsupervised neural network-based computer-aided diagnosis (CAD) system is reported for the detection
and characterization of small indeterminate breast lesions, average size 1.1 mm, in dynamic contrast-enhanced MRI. This system
enables the extraction of spatial and temporal features of dynamic MRI data and additionally provides a segmentation with regard
to identification and regional subclassification of pathological breast tissue lesions. Lesions with an initial contrast enhancement
≥50% were selected with semiautomatic segmentation. This conventional segmentation analysis is based on the mean initial signal
increase and postinitial course of all voxels included in the lesion. In this paper, we compare the conventional segmentation analysis
with unsupervised classification for the evaluation of signal intensity time courses for the differential diagnosis of enhancing lesions
in breast MRI. The results suggest that the computerized analysis system based on unsupervised clustering has the potential to
increase the diagnostic accuracy of MRI mammography for small lesions and can be used as a basis for computer-aided diagnosis
of breast cancer with MR mammography.
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1. Introduction

Breast cancer is one of the most common cancer among
women. Dynamic magnetic resonance imaging (MRI) of the
breast was reported to be a highly sensitive method for detec-
tion and further evaluation of clinically, mammographically,
and sonographically occult cancers [1]. However, the limited
specificity of breast MR imaging continues to be problematic.
Two different approaches are mentioned in literature [2]
aiming to improve the specificity: (1) single-breast imaging
protocols with high spatial resolution offer a meticulous
analysis of the lesion’s structure and internal architecture and
are able to distinguish between benign and malignant lesions
and (2) lesion differential diagnosis in dynamic protocols is
based on the assumption that benign and malignant lesions
exhibit different enhancement kinetics. In [2], it was shown
that the shape of the time-signal intensity curve represents an
important criterion in differentiating benign and malignant
enhancing lesions in dynamic breast MR imaging. The results

indicate that the enhancement kinetics, as represented by
the time-signal intensity curves visualized in Figure 1, differ
significantly for benign and malignant enhancing lesions and
thus represent a basis for differential diagnosis. In breast
cancers, plateau or washout-time courses (type II or III)
prevail. Steadily progressive signal intensity time courses
(type I) are exhibited by benign enhancing lesions. Also,
these enhancement kinetics are shared not only by benign
tumors but also by fibrocystic changes [2].

The success of CAD in conventional X-ray mammog-
raphy motivated the research of automated diagnosis tech-
niques in breast MRI to expedite diagnostic and screening
activities.

A standard multilayer perceptron (MLP) was applied to
the classification of signal-time curves from dynamic breast
MRI in [3]. Breast MR segmentation and lesion detection
is accomplished based on cellular neural networks in [4]
and a 100% detection sensitivity is reported. In [5], the
performance of a backpropagation neural network based
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Figure 1: Schematic drawing of the time-signal intensity (SI) curve
types [2]. Type I corresponds to a straight (Ia) or curved (Ib) line;
enhancement continues over the entire dynamic study. Type II is a
plateau curve with a sharp bend after the initial upstroke. Type III is
a washout time course. The initial contrast enhancement sai is given
by (4). In breast cancers, plateau or washout-time courses (type II or
III) prevail. Steadily progressive signal intensity time courses (type
I) are exhibited by benign enhancing lesions.

on kinetic, morphologic, and combined MR features was
shown to be comparable to that of an expert radiologist.
The same type of neural networks was used for breast
MRI lesion classification in [6]. As inputs, a subset of
13 features out of a total of 42 features describing lesion
shape, texture, and enhancement kinetics was selected. The
main result was that the performance of the human readers
significantly improved when aided by a CAD system. It could
be shown that specificity at a sensitivity of 90% was 0.505 for
lesion classification without CAD assistance and 0.807 for
classification with CAD assistance. Mean shift clustering in
connection with automated selection of the most suspicious
cluster resulted in accurate ROIs in breast MRI lesions,
as shown in [7]. In [8], a fuzzy c-means clustering-
based technique was tested for automatically identifying
characteristic kinetic from breast lesions. By using four
features extracted from these curves (maximum contrast
enhancement, time to peak, uptake rate, and washout rate of
the lesion kinetics), it was demonstrated that the prototype
curves determined by the fuzzy classifier outperform those
determined based on averaging over an ROI determined
by an experienced radiologist. Three different classifiers, a
multilayer perceptron, a threshold classifier, and a nearest-
neighbor classifier, were employed for the classification
of signal-time curves in [9]. As feature vectors, both the
complete signal-time curve and select descriptive parameters
derived from these curves were used. It was shown that
the quantitative classifiers can support the radiologist in the
diagnosis of breast lesions.

A major disadvantage of most supervised techniques
is the fixed number of input nodes which imposes the
constraint of a fixed imaging protocol, as shown in [10].
Delayed administration of the contrast agent or a different
temporal resolution has a negative effect on the classification
and segmentation capabilities. Thus, a change in the MR

imaging protocol requires a new training of the CAD
system. A signal time-series is obtained for every pixel and
has to be interpreted given the experimental conditions.
Thus, supervised and unsupervised represent two different
techniques when it comes to biomedical signal analysis. The
supervised technique represents a model-driven approach
that tries to interpret time-series as a result of dynamically
changing input parameters, given a specific model that
defines the pattern of interaction between the underlying
physiological processes and the observed signal dynamics.
However, this model-based, supervised technique is based
on the underlying knowledge of experimental conditions
and model assumptions. This aspect makes it difficult or
impossible and therefore unsupervised techniques represent
better training approaches for expert advanced CAD systems
since they fit the model to the observations and analyze and
visualize the data in an exploratory manner.

An important aspect remains the fact that many of these
techniques were applied on a database of predominantly
tumors of a size larger than 2 cm. In these cases, MRI
reaches a very high sensitivity in the detection of invasive
breast cancer due to both morphological criteria as well
as characteristic time-signal intensity curves. However, the
value of dynamic MRI and of automatic identification
and classification of characteristic kinetic curves is not
well established in small lesions when clinical findings,
mammography, and ultrasound are unclear.

In the present study, we design and evaluate an unsuper-
vised CAD system for the diagnosis of small breast masses
with a diameter of only a few mm. For those lesions contain-
ing only a small number of voxels, morphologic criteria can
hardly be evaluated. To overcome the above mentioned prob-
lems, we employ a “neural-gas” network as a quantization
method that focuses strictly on the observed complete MRI
signal time-series, and enables a self-organized data-driven
segmentation of dynamic contrast-enhanced breast MRI
time-series w.r.t. fine-grained differences of signal amplitude,
and dynamics, such as focal enhancement in patients with
indeterminate breast lesions. This method is developed,
tested, and evaluated for functional and structural segmen-
tation, visualization, and classification of dynamic contrast-
enhanced breast MRI data. In addition, a comparison with
another unsupervised method, the minimal free-energy
vector quantization, and the conventional segmentation
method is performed. We will show that the inspection
of the clustering results represents a unique practical tool
for the radiologists enabling a fast scan of the data set
for regional differences or abnormalities of contrast-agent
uptake. The proposed technique contributes to the diagnosis
of indeterminate breast lesions by non-invasive imaging.

2. Material and Methods

2.1. Patients. A total of 40 patients, all female and age
range 48–61, with indeterminate small mammographic
breast lesions were examined. All patients were consecu-
tively selected after clinical examinations, mammography in
standard projections (craniocaudal and oblique mediolateral
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projections), and ultrasound. Only lesions BIRADS 3 and 4
were selected where at least one of the following criteria was
present: nonpalpable lesion, previous surgery with intense
scarring, or location difficult for biopsy (close to chest wall).
All patients had histopathologically confirmed diagnosis
from needle aspiration/excision biopsy and surgical removal.
Breast cancer was diagnosed in 31 out of the total 40
cases. The size of malignant tumors ranged from 0.5 mm to
2.0 mm, average size was 1.06 mm, the size of benign tumors
ranged from 0.8 mm to 1.8 mm, and average size was 1.2 mm.

2.2. MR Imaging. MRI was performed with a 1.5 T system
(Magnetom Vision, Siemens, Erlangen, Germany) equipped
with a dedicated surface coil to enable simultaneous imaging
of both breasts. The patients were placed in a prone position.
First, transversal images were acquired with an STIR (short
TI inversion recovery) sequence (TR = 5600 ms, TE =
60 ms, FA = 90◦, IT = 150 ms, matrix size 256 × 256
pixels, slice thickness 4 mm). Then a dynamic T1 weighted
gradient echo sequence (3D fast low angle shot sequence)
was performed (TR = 12 ms, TE = 5 ms, FA = 25◦) in
transversal slice orientation with a matrix size of 256 × 256
pixels and an effective slice thickness of 4 mm.

The dynamic study consisted of 6 measurements with an
interval of 83 seconds. The first frame was acquired before
injection of paramagnetic contrast agent (gadopentatate
dimeglumine, 0.1 mmol/kg body weight, Magnevist,
Schering, Berlin, Germany) immediately followed by the 5
other measurements. The initial localization of suspicious
breast lesions was performed by computing difference
images, that is, subtracting the image data of the first from
the fourth acquisition. As a preprocessing step to clustering,
each raw gray level time-series S(τ), τ ∈ {1, . . . , 6} was
transformed into a signal time-series of relative signal
enhancement x(τ) for each voxel, the precontrast scan at
τ = 1 serving as reference. Thus, we ensure that the proposed
method is less sensitive to changing between different MR
scanners and/or protocols.

2.3. Computer-Aided Diagnosis (CAD) System. The small
lesion evaluation is performed by an automated computer-
aided diagnosis system based on preprocessing of the signal-
intensity time-courses, segmentation of signal-intensity
time-courses, and then automated evaluation of the time-
signal intensity curve based on an unsupervised classifier.
The flow diagram of the CAD system is shown in Figure 2.

In the present study, we selected only lesions with
an initial contrast enhancement ≥50% for a comparative
analysis between the conventional segmentation analysis
method and the unsupervised classifier.

2.4. Data Clustering. The employed classifier—the “neural-
gas” network—is based on grouping image voxels together
based on the similarity of their intensity profile in time
(i.e., their time courses). Another important feature of
the presented algorithm compared to SOM is that it does
not require a prespecified graph (network). In addition, it
can produce topologically preserving maps, which is only

possible if the topological structure of the graph matches the
topological structure of the data manifold. In cases, however,
where it is not possible to a priori determine an appropriate
graph, for example, in cases where the topological structure
of the data manifold is not known a priori or is too
complicated to be specified, Kohonen’s algorithm necessarily
fails in providing perfectly topology preserving maps.

Let n denote the number of subsequent scans in a
dynamic contrast-enhanced breast MRI study, and let K be
the number of voxels in each scan. The dynamics of each
voxel μ ∈ {1, . . . ,K}, that is, the sequence of signal values
{xμ(1), . . . , xμ(n)} can be interpreted as a vector xμ(i) ∈ Rn

in the n-dimensional feature space of possible signal time-
series at each voxel.

Cluster analysis groups image voxels together based on
the similarity of their intensity profile in time. In the
clustering process, a time course with n points is represented
by one point in an n-dimensional Euclidean space which is
subsequently partitioned into clusters based on the proximity
of the input data. These groups or clusters are represented
by prototypical time-series called codebook vectors (CVs)
located at the center of the corresponding clusters. The CVs
represent prototypical time-signal intensity curves sharing
similar temporal characteristics.

Vector quantization (VQ) represents a fast clustering
technique for feature vectors describing pixel time courses
in breast MRI. VQ approaches determine the cluster centers
wi by an iterative adaptive update based on the following
equation [11]:

wi(t + 1) = wi(t) + α(t)ai(x(t),C(t), κ)(x(t)−wi(t)), (1)

where α(t) represents the learning parameter, ai a codebook
C(t) dependent cooperativity function, κ a cooperativity
parameter, and x a randomly chosen feature vector.

2.4.1. “Neural Gas” Network. The “neural-gas” algorithm
[12] is an efficient clustering approach which, applied to
the task of vector quantization, (1) converges quickly to low
distortion errors, (2) reaches a distortion error [12],( which
measures the fidelity of data encoding and is given by the
squared Euclidean distance between the data vectors and
the corresponding approximating reference vectors) lower
than that from self-organizing map (SOM), and (3) at the
same time obeys a gradient descent on an energy surface
representing the error function of the learning algorithm.

Instead of using the distance ‖x − wi‖ or of using the
arrangement of the ‖wi‖ within an external lattice, it utilizes
a neighborhood-ranking of the reference vectors wi for the
given data vector x.

The learning rule for the “neural-gas” network is [12]

wi(t + 1) = wi(t) + α(t) exp
{
−ki
(

x,
wi

λ

)}
(x(t)−wi(t)),

(2)

where ki = 0, . . . ,N − 1 represents the rank index describing
the “neighborhood-ranking” of the reference vectors wi to
the data vector x in a decreasing order, N is the number
of units in the network, and λ determines the number of
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Figure 2: Diagram of the CAD system employed for the small mammographic lesion evaluation: the six MRI scans for each subject undergo
a signal preprocessing, the ROI is determined and all voxels within it are subject to cluster analysis. The obtained time-signal intensity (SI)
curves are compared to the four Kuhl classes from Figure 1 and automatically assigned to a class by the supervised neural network.

neural units changing their synapses with every iteration.
The step size α ∈ [0, 1] describes the overall extent of the
modification.

It was shown by Martinetz et al. [12] that the average
change of the reference vectors corresponds to an over-
damped motion of particles in a potential that is given by the
negative data point density. Superimposed on the gradient of
this potential is a “force”, which points toward the direction
of the space where the particle density is low. This “force”
is the result of a repulsive coupling between the particles
(reference vectors). In its form it resembles an entropic force
and tends to homogeneously distribute the particles (refer-
ence vectors) over the input space, like the case of a diffusing
gas. This suggests the name for the “neural-gas” algorithm.
It is interesting also to mention that the reference vectors wi

change their locations slowly but permanently, and wi that
are neighboring at an early stage of the adaptation procedure
might not be neighboring anymore at a more advanced stage.

2.4.2. Minimal Free Energy Vector Quantization. Another
important clustering method represents the minimal free
energy vector quantization [14, 15]. It is a divisive procedure
starting first with one cluster containing the whole data
set. During the learning process, the number of clusters
increases and their size decreases as they specialize on specific
data distributions. Other than fuzzy c-means clustering, this
algorithm does not operate with prespecified cluster centers
[13, 16].

The adaptation paradigm for this technique is [14]

wi(t + 1)

= wi(t) + ε(t)
exp−‖x(t)−wi(t)‖2/2ρ2

∑
i exp−‖x(t)−wi(t)‖2/2ρ2

(x(t)−wi(t)),

(3)

where ρ is the “fuzzy range” of the model and defines a length
scale in data space and is annealed to repeatedly smaller
values in the VQ approach.

The cooperativity function ai = (exp−‖x(t) −
wi(t)‖2/2ρ2)/(

∑
i exp−‖x(t) − wi(t)‖2/2ρ2) represents the

so-called softmax activation function, and accordingly the
outputs lie in the interval [0, 1] and they sum up to one.

The main advantages of fuzzy clustering based on deter-
ministic annealing over SOM were pointed out in [15]: (1)
the divisive and multiresolution aspect of data analysis, (2)
different control parameters (free energy, entropy) control

and enable a direct cluster splitting, and (3) the gradient
descent type of the learning rule monitored by an explicitly
given error function.

2.5. Lesion Segmentation Methods. In the following, we will
present the two employed segmentation methods for the
evaluation of signal intensity time courses for the differential
diagnosis of enhancing lesions in breast MRI.

2.5.1. Conventional Segmentation Method. The clinical stan-
dard method to analyze dynamic MRI of the breast is based
on carefully choosing a region of interest (ROI) surrounding
the contrast enhancing lesion [10]. Lesion segmentation was
performed automatically by a region growing algorithm after
positioning a seed within the lesion. For all the voxels belong-
ing to this ROI, an average signal intensity (SI) time curve
was computed. In the present study, we selected only lesions
with an initial contrast enhancement ≥50% for comparative
analysis between the standard evaluation method and unsu-
pervised clustering. Thus, we use a semiautomatic segmen-
tation method to determine the ROI including all voxels of a
lesion with an initial contrast enhancement of ≥50%.

The initial contrast enhancement was calculated accord-
ing to the following equation:

sai =
(

SI2nd frame post-contrast − SIpre-contrast

)

SIpre-contrast
× 100%. (4)

The postinitial signal course was calculated based on the
following equation:

svp

=
(

SI5th frame post-contrast − SImaximum 1st to 2nd frame post-contrast

)

SImaximum 1st to 2nd frame post-contrast

× 100%.
(5)

For all voxels belonging to this ROI an average time-
signal intensity curve is computed for both initial signal
increase and postinitial signal course. This averaged value
is then rated. This very simply method is fast but is
threshold-limited. Figure 3 illustrates the described segmen-
tation method. White pixels exhibit an above-threshold
signal increase. The contrast-enhanced pixels are shown in
Figure 3(b). Based on a region-growing method [17], we can
easily determine the suspicious lesion area.
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Figure 3: Conventional segmentation method. (a) Threshold segmentation. (b) Classification based on threshold segmentation: pixels
exhibiting time signal intensity curves above a given threshold are white. (c) The lesion is determined based on region growing.
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Figure 4: Variance of the minimal and maximal percentage of the
initial signal increase sai for 20 runs in function of the initial steps
size α varied from 0.1 to 1. As an optimal value, we obtain α = 0.3.

2.5.2. Segmentation Method Based on Unsupervised Cluster-
ing. This method uses the ROI of the previous segmentation
method while all the voxels within this ROI are subject to
cluster analysis. This allows the clinical radiologist to be a
more detailed view of the signal curves by partitioning the
ROI. This segmentation method reveals regional properties
of contrast-agent uptake characterized by subtle differences
of signal amplitude and dynamics as it is demonstrated by
our results in Figures 6, 7, and 8. As a result, we obtain
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Figure 5: Variance of the minimal and maximal percentage of the
postinitial signal intensity svp for 20 runs in function of the initial
steps size α varied from 0.1 to 1. As an optimal value, we obtain
α = 0.3.

both a set of prototypical time-series and a corresponding
set of cluster assignment maps which further provides a
segmentation with regard to identification and regional

subclassification of pathological breast tissue lesions.

For every single cluster a mean percentage signal intensity

change- (PSIC-) curve is computed which contains only
the signal information of the signal time curves that are

assigned to this particular cluster. For example, if we perform
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Figure 6: Segmentation based on the “neural-gas” network applied to data set #1 (malignant lesion, ductal carcinoma in situ (DCIS)) and
resulting in two clusters. (a) shows the cluster distribution for each slice ranging from 6 to 8. (b) visualizes the representative time-signal
intensity time curves for each cluster.
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Figure 7: Segmentation method based on the “neural-gas” network applied to data set #1 (malignant lesion, DCIS) and resulting in four
clusters. (a) shows the cluster distribution for each slice ranging from 6 to 8. (b) visualizes the representative time-signal intensity time curves
for each cluster.
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Figure 8: Segmentation method based on the “neural-gas” network applied to data set #1 (malignant lesion, DCIS) and resulting in six
clusters. (a) shows the cluster distribution for each slice ranging from 6 to 8. (b) visualizes the representative time-signal intensity time
curves for each cluster.

clustering for N = 4 clusters, then we obtain 4 cluster-
specific PSIC-curves. The obtained time-signal intensity
curves of enhancing lesions were plotted and presented
to two experienced radiologists who were blinded to any
clinical or mammographic information of the patients. The
radiologists were asked to rate the time courses as having a
steady, plateau, or washout shape—types I, II, or III, respec-
tively [2]. The cluster vector of each lesion with the highest
classification level was used for further statistical evaluation.

3. Results

All lesions (n = 40) with an initial signal increase ≥50%
after contrast injection were included in the comparative
analysis of the conventional segmentation method and
cluster analysis. Histological findings were malignant in
31 and benign in 9 lesions. Lesion size was determined
as the number of voxels with an initial SI increase of
≥50%.
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Table 1: Optimal parameter combination for the “neural-gas”
network optimized for data set #1 when choosing N = 4 clusters.

Parameter Step size α Nr. epochs Decay constant λ

0.3 10 N/4

Clustering results were evaluated by (i) qualitative visual
inspection of cluster assignment maps, that is, cluster mem-
bership maps according to a minimal distance criterion in the
metric of the pixel-time course (PTC) feature space shown
for the “neural-gas” network, (ii) qualitative visual inspec-
tion of corresponding cluster-specific time-signal intensity
curves for the “neural-gas” network, (iii) optimal parameter
combination, (iv) optimal number of clusters, (v) compar-
ison between “neural-gas” network, minimal free energy
vector quantization and conventional segmentation method,
and (vi) receiver operating characteristic (ROC) analysis.

3.1. Parameter Optimization of the Unsupervised Classifier.
The unsupervised classifier based on the “neural-gas” net-
work, as shown in (2), has three free parameters: the initial
step size α, the number of epochs being equal to the number
of the training steps multiplied by the number of training
data vectors, and the initial decay constant λ. We analyzed
the whole possible range of parameters, corresponding thus
to the largest range: α was varied between 0.1 and 1, the
number of epochs and the initial decay constant were also
varied according to [12]. We calculated the variations of
parameters in terms of the initial and postinitial contrast
enhancement according to (4) and (5) as these parameters
are crucial for the correct detection. We tested 30 different
parameter combinations with: (a) α being varied between
0.1 and 1, (b) number of epochs between 1 and 10, and
(c) λ between N/6 and N with N being the number of
clusters and additionally, λ = 3N/2, 4N/2, 5N/2, 6N/2. The
optimal combination of these three parameters is important
to achieve stable clustering results, in the sense that the same
clustering results are obtained regardless the initialization.

Our simulation results showed that an optimal parameter
combination for small lesion detection is characterized by
a small standard deviation of the minimum and maximum
values of the percentage of the initial signal increase sai and
the percentage of the postinitial signal intensity svp.

Exemplary, we show in Figures 4 and 5 the minimal and
maximal values for sai and svp for the variation of the initial
step size α. Small variances indicate a stable clustering result.
As an optimal value, we obtain α = 0.3.

The optimal parameter combination achieved for data set
#1 is shown in Table 1.

3.2. Optimal Number of Clusters. An important aspect is to
define the number of CVs prior to clustering. The exact
number of clusters is usually determined by cluster validity
techniques. In general, the higher the number, the finer
grained the analyzed ROI is partitioned, however at the
expense of an increase in signal noise susceptibility, while a
lower number leads to overlooking of pertinent information.
In [8], the number of clusters is determined as the number

of voxels in the 3D breast lesion is divided by 80. In our
study, we have experimented with different cluster numbers
ranging from 2 to 8.

The distribution of different cluster numbers to the four
Kuhl classes is shown in Table 2. The mean and standard
deviation of the clusters’ assignments to the Kuhl classes is
represented in function of the cluster number. The results are
for 20 runs performed on the actual kinetic curves using the
same parameters for the neural network but with different
codebook initializations and can be interpreted as follows:
the smaller the value of the standard deviation, the better
the reproducibility and the higher the significance of the
simulation experiments. It becomes quickly evident that the
optimal representation is achieved for four clusters: a zero
standard deviation means a correct identification of the time-
signal intensity curve types.

Figures 6 to 8 visualize the cluster distribution and the
representative time-signal intensity time curves for two, four,
and six clusters for data set no. 1.

All lesions with an initial signal increase ≥50% after
contrast injection were included in the comparative analysis
of the conventional segmentation method and the two cluster
analysis methods. Histological findings were malignant in 31
and benign in 9 lesions. In this study, lesion segmentation
was semiautomatically performed.

The results of the conventional segmentation method
compared with the two unsupervised clustering methods
were correlated with the histological findings and repre-
sented in Tables 3 and 4. The tables show the results for
the 40 data sets. Senstitivity increased with unsupervised
clustering in DCIS, in invasive ductal, and especially in
lobular carcinoma while specificity remained constant.

Clustering is done for 20 different runs using the same
parameters but different algorithms’ initializations. The
tables show an increased sensitivity of segmentation method
based on both vector quantization methods compared to
the conventional segmentation analysis in DCIS, lobular
and invasive ductal carcinoma in comparison to the mean
signal intensity time curve of the undivided ROI. “Neural-
gas” shows an increase in sensitivity versus MFE [10] for
the two latter carcinoma. Specificity remained constant for
all benign lesions for the “neural-gas”, however decreased
based on MFE for the benign lymph node. In summary, the
use of clustering allows a more differentiated view of the
hidden structure of the analyzed dataset. This method reveals
information, else not evident. On the other hand, the “single”
cluster of the undivided ROI contains too many information
details. In summary, clustering can be a useful tool to extract
this information from the signal.

3.3. ROC-Analysis. Clustering results were also evaluated
by an ROC analysis. In the ROC curve, we compare both
segmentation methods with the gold standard (histology).
For both segmentation methods, we obtain for each of the
40 small lesions a value between 1 and 4 showing to each
of the four curves from Figure 1 it belongs. For the benign
lesions we have the following: type Ia has value 1 and type
Ib has value 2. Similarly, for malignant lesions, we obtain the
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Table 2: Distribution of the four classes from Figure 1 for different number of clusters, N = 2 to 8, for 20 different runs. Represented are in
function of the number of clusters the mean and standard deviation of the clusters to the four Kuhl classes Ia, Ib, II, and III.

Number
Standard deviation Mean

Ia Ib II III Ia Ib II III

2 0 0 0 0 1 0 1 0

3 0 0 0.513 0.513 1 1 0.5 0.5

4 0 0 0 0 1 2 0 1

5 0.366 0.447 0.324 0.224 1.15 1.9 1 0.95

6 0.51 0.51 0.5 0.5 1.55 1.45 1.6 1.4

7 0.224 0.51 0.51 0.224 1.95 1.55 1.55 1.95

8 0.696 0.671 0.6 0 2.2 2.35 1.45 2

Table 3: Comparison of the conventional segmentation method and minimal free energy vector quantization and “neural-gas” network in
the detection of malignant lesions.

Histology Number
Conventional segmentation method MFE Neural Gas

True positive True positive True positive

DCIS 5 60% 80% 80%

Invasive ductal 17 82% 88% 94%

Invasive lobular 4 75% 75% 100%

Scirrous carcinoma 3 66% 66% 66%

Medullary carcinoma 1 100% 100% 100%

Table 4: Comparison of the conventional segmentation method and minimal free energy vector quantization and “neural-gas” network in
the detection of benign lesions.

Histology Number
Conventional segmentation method MFE Neural Gas

True negative True negative True negative

Mastopathy 3 33% 33% 33%

Fibroadenoma 3 66% 66% 66%

Granuloma 1 100% 100% 100%

Benign lymph node 1 100% 0% 100%

Scar, no relapse 1 100% 100% 100%

Papilloma 1 0% 0% 0%

Table 5: Results of the comparison between the two different
segmentation methods for the 40 small lesions: the average area
under the curve AZ and its deviations for 20 different ROC runs
using the same parameters but different algorithms’ initializations.

Segmentation method Area under the curve AZ

Conventional segmentation analysis 0.6207

“Neural-gas” network 0.8388

following: type II has value 3 and type III has value 4. To
determine the ROC curves, we have to vary the threshold
based on which a lesion is considered malignant. Each
ROC curve has 6 parameters: 4 from the different classes
and 2 corresponding to sensitivity = 1, specificity = 0, and
sensitivity = 0, specificity = 1.

From Table 5, we see that the second segmentation
method yields better results than the first one: in other words,
the unsupervised classification outperforms the conventional
segmentation method based on averaged above-threshold
classification.

4. Conclusion

The goal of the presented study was the introduction of new
approaches for the evaluation of dynamic MR mammog-
raphy in small lesions and is motivated by the conceptual
weaknesses of the conventional technique. We presented two
different segmentation methods for the evaluation of signal
intensity time courses for the differential diagnosis of small
enhancing lesions in breast MRI. It is important to mention
that the interpretation of kinetic curves is not standardized
in the current clinical practice.

A manually predefined ROI is substantially impacting
the differential diagnosis in breast MRI by being both
time-consuming and significantly suffering from inter- and
intraobserver variability. On the other hand, cluster anal-
ysis is almost independent of manual intervention but is
computationally intensive. The conventional method based
on threshold segmentation allows a differentiation between
contrast-enhanced lesions and surrounding tissue. However,
a subdifferentiation within the lesion is not provided. A
fusion of the techniques of threshold segmentation and
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cluster analysis combines the advantages of these single
methods. Thus, a fast segmentation method is obtained
which carefully discriminates between regions with different
lesion enhancement kinetics. The average computational
time needed for evaluation was of two seconds. We have
determined the optimal number of clusters and thus the
optimal number of characteristic curves for lesion segmen-
tation and classification. A small number will lead to a
characteristic curve being very close to the average curve,
and thus not able to subdifferentiate the lesion. A larger
number, however, makes the characteristic curve prone to
noise sensitivity. The performed ROC-analysis shows that
the unsupervised clustering technique represents a valuable
tool for supporting radiological diagnosis in dynamic breast
MR imaging. However, the most important advantage lies
in the potential of increasing the diagnostic accuracy of
MRI mammography by improving the sensitivity without
reduction of specificity for the data sets examined.
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