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Paramagnetic resonance in spin-
polarized disordered Bose-Einstein 
condensates
V. M. Kovalev1,2,3 & I. G. Savenko   1,4,5

We study the pseudo-spin density response of a disordered two-dimensional spin-polarized Bose gas to 
weak alternating magnetic field, assuming that one of the spin states of the doublet is macroscopically 
occupied and Bose-condensed while the occupation of the other state remains much smaller. We 
calculate spatial and temporal dispersions of spin susceptibility of the gas taking into account spin-
flip processes due to the transverse-longitudinal splitting, considering microcavity exciton polaritons 
as a testbed. Further, we use the Bogoliubov theory of weakly-interacting gases and show that the 
time-dependent magnetic field power absorption exhibits double resonance structure corresponding 
to two particle spin states (contrast to paramagnetic resonance in regular spin-polarized electron 
gas). We analyze the widths of these resonances caused by scattering on the disorder and show that, 
in contrast with the ballistic regime, in the presence of impurities, the polariton scattering on them 
is twofold: scattering on the impurity potential directly and scattering on the spatially fluctuating 
condensate density caused by the disorder. As a result, the width of the resonance associated with the 
Bose-condensed spin state can be surprisingly narrow in comparison with the width of the resonance 
associated with the non-condensed state.

Conventional paramagnetic resonance also referred to as the electron spin resonance, is a phenomenon known 
from the physics of electrons in metals1. After its discovery, this phenomenon was, in particular, used in the 
proposal of a quantum cyclotron2, it was employed to improve the measurements of the electronic magnetic 
moment and the fine structure constant3, and it has been utilized in the calculations of the magnetic transition 
dipole moments4.

In this article, we propose a new type of the paramagnetic resonance applied to bosonic systems. It is crucial 
that the bosons should possess spin degree of freedom and they can be represented by, for instance, a cold atomic 
gas5 under the applied magnetic field. Such systems have attracted substantial interest recently6. Another alter-
native is exciton polaritons (EPs) in a semiconductor microcavity. We will consider the latter system and show 
that the paramagnetic resonance in bosonic gases possesses new features over against two-dimensional (2D) 
electronic systems.

Due to their hybrid half-light–half-matter nature, EPs demonstrate a number of peculiar properties, standing 
aside from other quasiparticles in solid-state. In particular, their small effective mass (10−4–10−5 of free elec-
tron mass) inherited from the photons together with strong particle-particle interaction taken from the excitons 
make EP systems suitable for observation of quantum collective phenomena at astonishingly high temperatures7, 

8. Other significant effects have been reported, such as EP superfluidity9, the Josephson effect10, formation of 
vortices11. Some of the theoretically predicted phenomena such as polariton self-trapping12, polariton-mediated 
superconductivity13 are to be measured.

Beside fundamental importance, the strong coupling regime can be used in various optoelectronic applica-
tions14. A polariton laser should be mentioned here15–18 as a manifestation of BEC-based alternative light source. 
Coherently pumped microcavities also give us polariton neurons19 and polariton integrated circuits20. Further, 
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semiconductor microcavities under incoherent background pumping (for instance, electric current injection) 
can be used in optical routers21, 22, detectors of terahertz radiation23, 24, high-speed optical switches25, 26 and more.

One of the most significant quantum properties governing the dynamics of EPs, is their spin degree of free-
dom (also referred to as polarization)27. It opens a way to spin-optronics28. One one hand, as opposed to classical 
optics, where nonlinear Kerr interaction is usually weak, spin-optronics is in a more favourable position thank to 
advantageous relatively strong particle-particle interaction. On the other hand, as opposed to spintronics, using 
EPs can reduce the dramatic impact of the carrier spin relaxation and decoherence29–32. Polariton spin dynamics 
has been extensively studied in literature33–36, although many issues remain undiscovered.

Pseudospin susceptibility
Dynamics of EPs in a microcavity can be described by the spinor wave function, having two components related 
to two polariton spin states, ψ ψ ψ= + −

ˆ † †t t tr r r( , ) ( ( , ), ( , ))T. Our goal is to study the response of the polariton spin 
density, ψ σ ψ= ˆ ˆ†

S t t tr r r( , ) ( , ) ( , )l l , where σ l are the Pauli matrices ( =l x, y, z), to external space and time fluc-
tuating magnetic field, =t B tB r r( , ) (0, 0, ( , )), where ω= −B t B tr kr( , ) cos( )0 . Let us assume that the magni-
tude of this field is low enough thus a linear response theory can be applied. In its framework, the spin 
susceptibility is defined as37

χ= ′ ′ ′ ′ ′ ′ .∬S t d dt t t B tr r r r r( , ) ( , ; , ) ( , ) (1)
i

ij j

Utilising the EP interacting Hamiltonian in a special form38,

ψ ψ ψ ψ= + ++ − + −Ĥ U U1
2

( ) ,int 0
4 4

2
2 2

where = −U U U22 0 1, U0 and U1 are polariton-polariton interacting constants, we can write the Gross-Pitaevskii 
equation (GPE) for each of the spin components of the EP doublet:

ψ µ ψ ψ ψ α ψ= − + + + ± +± ± ±
�

∓ ∓ ∓
ˆi E u U U pr( ( ) ) , (2)p 0

2
2

2 2

where = ˆÊ Mp /2p
2  is the operator of kinetic energy of EPs with mass M (we assume parabolic dispersion at not 

very high p for simplicity), μ is the chemical potential. The non-diagonal terms α α= ±±p p ip( )x y
2 2 account for 

the TE-TM splitting of polariton states, mixing the ‘+’ and ‘−’ spinor components. An external magnetic pertur-
bation is given here via the term µ=t g B tr r( , ) ( , )s B

1
2

 . Here gs is an effective polariton g-factor, μB is the Bohr 
magneton, and we also assume that the perturbation is real for simplicity, =⁎B t B tr r( , ) ( , ). Randomly fluctuat-
ing impurity potential is assumed to have zero mean value, =u r( ) 0, and the following statistical properties:

δ δ′ =
′

′ =
′−u u u u u ur r p p( ) ( ) , ( ) ( ) , (3)r r p p0

2
, 0

2
,

where ...  means the averaging over the impurities positions.
Usually, EP lifetime is restricted to 5–20 ps. However here we assume that the bosonic system is a closed quan-

tum system, thus neglecting the particle losses and assuming relatively long lifetime of EPs39, 40. In the steady state 
(quasi-equilibrium) and in the absence of TE-TM splitting, the ground state of the EP condensate is sensitive to 
the sign of the interacting parameter, U1

27, 38. If U1 > 0, the ground state is a composition of equally populated 
spin-up and spin-down components of EP spinor. If, instead, U1 < 0, the ground state is characterized by nearly 
zero population of one of the circular component of the EP spinor and macroscopic population of the other one38. 
We will consider this case (U1 < 0). Under the action of external perturbation,  tr( , ), the TE-TM terms cause 
transitions of EPs from the condensed component (let it be ψ+) to the other one (ψ−), which was empty initially. 
We assume that the occupation of the condensed component ever remains much larger, ψ ψ+ −

2 2. Then we 
can disregard the non-linear terms proportional to ψ−U0

2 and ψ− −U U( 2 )0 1
2 in Eq. (2). After these agreements, 

the evolution equations read:

µ ψ ψ α ψ

µ ψ ψ α ψ

∂ − + − − − =

∂ − + − − + = .

+ + − −

+ − + +

ˆ

ˆ
( )
( )
i E U u p

i E U u p

r

r

( ) ,

( ) (4)
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0
2 2

2
2 2





Considering here   as a perturbation, we write:

ψ
ψ

ψ δψ
δψ









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→



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+
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t
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( ) ( , )
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,
(5)

0

where we have extracted the condensate fraction, ψ r( )0 , of ψ+ state and denoted small corrections, δψ±, assuming 
δψ δψ∼ ∼+ − . Substituting (5) into (4) and keeping only zero and first-order terms with respect to  , we find 

that zero-order terms describe the ground state of EP condensate in the impurity potential (see Supplementary):

µ ψ ψ
 − + + 

 =Ê U ur r r( ) ( ) ( ) 0, (6)p 0 0
2

0

while the first-order terms contain information about EP dynamics due to external perturbations,
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where the Green’s functions, Ĝ and Ĝ, are explicitly presented in Supplementary.
The formal solution of the system (7) reads:


δψ

δψ
ψ

δψ
δψ

δψ
δψ

δψ

δψ











= ′ ′ ′ − ′






′ ′ ′










+


























= ′ ′ ′ − ′










+

+
∗

−

−
∗

−

−
∗

∗ +

+
∗









∬

∬ G

t
t

d dt G t t t K

t
t

d dt t t K

r
r

r r r r r

r
r

r r r

( , )
( , )

( , ; ) ( ) ( , ) 1
1 ,

( , )
( , )

( , ; ) ,
(8)

R

R

0

and now the components of the spin density can be expressed as:

ψ δψ δψ
ψ δψ δψ

ψ ψ δψ δψ
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Let us consider different regimes.

Ballistic regime
In an ideally pure sample where polariton-impurity scattering can be neglected, ψ r( )0  is uniform in space, 
ψ ψ≡ = nr( ) c0 0 .

Then from Eq. (6) we get µ = U nc0 , and





ε

ε

ε

ε δ
=






+

− +






+ −
Ĝ
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where ε ξ= + = +( )E E U n sp p2 1p p p c0
2 2  is a Bogoliubov quasiparticle spectrum, ξ = Ms1/2  is a healing 

length, =s U n M/c
2

0  is the excitations velocity and  = +U E2p c p1  is a gapped dispersion branch of 
low-populated EP circular component38, see Fig. 1a. Then the exact solutions of Eq. (7) read

Figure 1.  (a) Schematic of the quasi-particle spectrum of the system with two types of transitions: (1) and (2). 
Blue solid dot is the condensate of ‘+’ polarized EPs. (b) Power absorption spectrum. The peaks (1) and (2) 
result from the transitions (1) and (2) from (a).
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with α= −
− − −ˆ ˆ GL G p( )

1 1 2 4 1. Calculating this inverse matrix, we keep all the α-containing terms in the numer-
ator and disregard their contribution to the denominator in determinant which appears in the matrix calculation, 
assuming that the TE-TM splitting is small and does not affect the dispersions, εk and k. Then in the lowest order 
in α we obtain the transverse,
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pseudo-spin susceptibilities. They experience resonance in the vicinity of the frequency of the collective 
(Bogoliubov) mode of the condensate, ω ε≈ k. Moreover, TE-TM splitting results in transitions of particles 
between the spin-polarized components of the EP doublet which results in emergence of an additional resonance 
at ω ≈ k . It should be mentioned that both the transverse (12), (13) and longitudinal (14) susceptibilities diverge 
at frequencies corresponding to the exact resonance, ω ε= k or ω = k  due to infinitely small scattering rates of 
‘+’ and ‘−’ EPs.

Finite polariton-impurities scattering
Accounting for the scattering mechanisms results in the line broadening and finite values of susceptibilities 
(12)-(14) at resonances. The most significant contributions to EP non-radiative lifetime at low temperatures are 
given by the polariton-polariton41 and polariton-disorder scattering. We will analyze here the latter case. A naive 
approach, commonly used in literature, is to assume that the iδ terms in (12), (13) and (14) have finite value, asso-
ciated with some phenomenological particle scattering time, δ → 1/τ, where τ is independent of the momentum 
and energy. However, what will happen with the scattering time when EPs condense?

In the presence of a disorder caused by impurities, the ground state of the system is to be determined from Eq. 
(6). To solve this equation and find ψ r( )0 , we follow the approach suggested in ref. 42 (for 3D excitonic systems). 
In its framework, the impurity field, u r( ), produces a static fluctuation of the condensate density, ψ r( )0 , assumed 
to be weak enough thus it cannot destroy the condensate, ψ φ= +nr r( ) ( )c0 , where φ  nr( ) c . Further, 
linearization of Eq. (6) with respect to φ r( ) gives:

δµ φ δµ
 − + + 

 = − −Ê U n u
n

ur r r2 ( ) ( ) ( ( ) ),
(15)

p c
c

0

where δµ µ= − U nc0  is a correction to the chemical potential. The formal solution of this equation reads:

∫φ δµ′= ′ ′ −n d g ur r r r r( ) ( , )( ( ) ), (16)c

where

δµ δ
− + − − 

 ′ = − ′Ê U n u gr r r r r2 ( ) ( , ) ( ) (17)p c0

and δµ is determined by the condition φ =r( ) 0. In the lowest order of the perturbation theory, we use the 
Green’s function, ′g r r( , ), taken at =u r( ) 0 and find the fluctuating part of the ground state wave function:

φ
ξ

= = −
+

n g u g
U n p

p p p p( ) ( ) ( ), ( ) 1
2

1
1 (18)c

c0
2 2

and δµ = 0. Now one can find the disorder-averaged Green’s functions and EP-impurity scattering times. To do 
this, one needs to linearize the Green’s functions (see Eq. (9) in Supplementary) with respect to φ r( ) to get the 
matrix equations: = +ˆ ˆ ˆ ˆ ˆG G G XG

R R R R
0 0  and = +ˆ ˆ ˆ ˆ ˆG G G G

R R R R
0 0 , where the bare (without disorder) functions, 

Ĝ
R

0 , Ĝ
R
0 , are given by Eq. (10) and we denote
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φ= +ˆ ( ) ( )X u U nr r r( ) ( ) 1 0
0 1 2 ( ) 2 1

1 2 (19)c0

φ= + − .ˆ ( )u n U Ur r r( ) [ ( ) 2 ( 2 ) ( )] 1 0
0 1 (20)c 0 1

These potentials describe the EP scattering on impurity field (terms ∼ u r( )) and on the static fluctuations of 
the condensate density (terms φ∼ r( )). Now we apply the standard Feynman diagram technique and find that in 
the lowest order of the Born approximation, the impurity self-energies take the standard form: 

− ′ = < − ′ ′ >ˆ ˆ ˆ ˆW X G Xr r r r r r( ) ( ) ( ) ( )
R

0  and − ′ = < − ′ ′ >ˆ ˆ ˆ ˆGr r r r r r( ) ( ) ( ) ( )
R
0W X X . The Green’s functions aver-

aged over the disorder can be found from the matrix Dyson equations43, < > = −
− −ˆ ˆ ˆG G W

1
0

1
 and 

< > = −
− −ˆ ˆ ˆG G

1
0

1
 . At this point, the general consideration with the spectrum of the Bogliubov quasiparticles, 

ε ξ= +sk k1k
2 2, and arbitrary k becomes a tricky issue. However, we can restrict our consideration to the most 

important analytical case of quasi-linear Bogliubov dispersion, ε ≈ skk , under the condition ξ k 1. Taking into 
account Eqs (19) and (20), we find:

∫ε
π

ε=










ˆ Ĝu U
U

dp p( ) 2
(2 )

( , ),
(21)

R
0
2 1

0

2

2 0

∫ε
π

ε= .ˆ ˆ( ) ( )W u d Gp p( )
(2 )

1 1
1 1 ( , ) 1 1

1 1
R

0
2

2 0

Substituting the bare Green’s functions (10) into Eq. (21), averaging over the disorder and using the matrix 
equations < > = −

− −ˆ ˆ ˆG G W
1

0
1

, < > = −
− −ˆ ˆ ˆG G

1
0

1
, we can now find the impurity-mediated scattering times.

Results and Discussion
In our chosen limit, ξ k 1, and at the mass shells ε = sk for ‘+’ polarized polaritons and ε = k for ‘−’ polari-
tons, we find the polariton-impurity scattering rates:

γ
τ

ξ γ
τ

= =










.+ −k U
U

1 ( ) , 1 2

(22)
k k

3 1

0

2

Here τ = Mu1/ 0
2 is the inverse scattering time in the normal (not condensed) state. As it is expected to be, ‘−’ 

polaritons which are assumed to be in the normal state, have regular scattering lifetime ( ∼U U2 / 11 0
44, 45), whereas 

the scattering of polaritons in the condensed state turns out severely suppressed due to ξ k( ) 13 .
Scattering rates (22) together with the expressions for the longitudinal and transverse spin susceptibilities, 

(12)–(14), are the key results of this article. They determine the paramagnetic absorption line widths. From these 
expressions it is obvious that the response line width of the macroscopically occupied component of the polariton 
function (‘+’ in our case) is much less in comparison with the line width of the initially unoccupied, ‘−’, compo-
nent of the doublet, since γ γ ξ∼+ −

k/ ( ) 1k k
3 . This fundamental result can be beneficial in experiments, check-

ing whether one of the components is Bose-condensed or not.
The response of the system is conventionally described by the power absorption:

ω χ ω∼ − .ωP B Im k( , ) (23)k zz0
2

To explain qualitatively the structure of its spectrum, we consider the quantum transitions of the particles 
under external perturbation, shown in Fig. 1a. In usual electronic systems, the power absorption spectrum of the 
paramagnetic resonance is characterised by single resonance associated with the transitions between two 
spin-resolved electron levels. In contrast to this situation, in our bosonic system we have a double-peak structure 
of the resonance. This is due to the fact that effectively, our system has three levels. Indeed, as one can see from 
Fig. 1a, beside the condensate itself, there are two branches of excitations with energies εk and Ek in the system. 
The transitions from the BEC to these two branches results in the double resonance structure, see Fig. 1b. Thus the 
presence of the BEC is crucial for the considered effect.

The second important difference from the regular paramagnetic resonance is the requirement to use nonuni-
form alternating magnetic field instead of a homogeneous one. In other words, finite values of =k k  are required 
(EPs in the BEC have zero momentum and in order to excite them one has to transfer the momentum from an 
external excitation). The third difference is absence of external uniform magnetic field since in our case the spin 
polarization occurs due to the strong exchange interaction between EPs.

We operate with two free parameters which can be determined by the experiment and the semiconductor 
sample: (i) the wave vector of the external perturbation, k, and (ii) impurity scattering time, τ. For (i), we have the 
following constraint: ξ k 1. In order to fix (ii), we take τ =U n 10c0 , since our theory is feasible if τ U n 1c0 . 
Taking into account that ≈ .U U0 51 0, we have τ =U n2 101 . Since in usual GaAs samples ∼ . ÷ .U n 0 05 0 5c0  
meV or it can be smaller, and this parameter can be controlled by the number of particles in the condensate, nc, 
we find τ  10 ps for ∼ .U n 0 05c0  and τ  1 ps for ∼ .U n 0 5c0 , respectively. Using the dimensionless units of 
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TE-TM splitting, Mα, we plot the power absorption spectrum in Fig. 2 for different values of ξk  (a) and Mα (b). 
Here we estimate Mα using46 and GaAs alloys parameters47, see Fig. 2. Clearly, both the positions of the reso-
nances and their widths depend on (i) and (ii). It can be useful for experimental testing of our theory. The value k 
determines the position and width of the first resonance (ω ∼ sk), whereas α determines the height of the second 
resonance. In fact, the position of the second resonance is determined by the EP blueshift value, U n2 c1 . This value 
also gives an estimation of the characteristic magnetic field frequency, ω ∼ U n2 c1 , required to observe the effect. 
Since in modern samples the lifetime can approach values τ ≈ 180 ps39, 40 and we should satisfy τ U n 1c0 , we 
find .U n 0 004c0  meV and thus ω . × =−

 s0 7 10 710 1  GHz. We can also roughly estimate the magnitude of 
the external magnetic field such that it can be considered as a perturbation. One can find it from the relation, 

µU n g BB0 0, thus µ ≈ .B U n g/( ) 0 5B0 0  T at = .U n 0 05c0  meV and µ = .g 0 11B  meV/T17. Let us also estimate 
the minimal magnetic field required for the observation of the effect. The time transfer from the condensate to 
excited modes of the system, which can be estimated as  µ ≈g B B/( ) 6/B  (ps ⋅ T) for µ = .g 0 11B  meV/T, should be 
of the order of particle lifetime. For τ ≈ 180 ps we find ≈ ⋅ −B 34 10min( )

3 T. Therefore one has to find ways to 
realise experimentally large enough values of >B B min( ) at ω > 7 GHz or make samples with long enough EP 
lifetime.

If we assume a hypothetical situation, when instead of having only z component the initial perturbation has an 
in-plane component σ∼ ˆ B tr( , )x , where σ̂x is a Pauli matrix, then initially in the absence of spin-orbit coupling the 
transitions (2) in Fig. 1a would be allowed, whereas (1) would be banned. With the account of the spin-orbit 
interaction, one can make the transitions (1) allowed for the in-plane perturbation. Thus, in the case of the 
in-plane perturbation we can also expect the same behavior of the system manifesting a two-resonance profile 
similar to one shown in Fig. 1b.

One more important point to mention is the role of polariton-polariton scattering to the widths of peaks of the 
paramagnetic resonance. It can become significant in a particularly clean cavity, where impurity scattering is 
negligible. It is known that the particle-particle scattering rate in a 2D Bose gas calculated within the Bogliubov 
theory depends on the wave vector as k3. One can expect that the particle-particle scattering rate in the normal 
(not Bose-condensed) phase will behave as a square of its energy, ∼E kk

2 4 and it will be less than in the condensed 
phase. Thus we expect that in this situation, the width of the low-occupied component can become narrower than 
the macroscopically occupied component which is the opposite situation to what we have observed here. In order 
to give a conclusive answer, one should also consider the scattering between the condensed, ψ+, and 
non-condensed, ψ−, EPs. This interesting question is beyond the scope of present article.

The second issue is the case >U 01 . In the case of equally populated circular components of the EP doublet, 
occurring at >U 01 , the Zeeman splitting becomes strongly suppressed by the particle-particle interaction up to 
some critical value of the constant magnetic field16, 17, 27. Thus, the paramagnetic resonance may only occur if the 
magnitude of the alternating magnetic field exceeds some critical value. This question also deserves an extra 
consideration.

Finally, we believe that a similar physics might be observed in indirect exciton gases with spin-orbit Rashba or 
Dresselhaus interaction in the limit of large exchange interaction between the electron and hole within the exci-
ton. Indeed, as it has been shown in ref. 48, the indirect exciton Hamiltonian has a form which exactly coincides 
with the EP Hamiltonian in the presence of the TE-TM splitting.

Conclusions
We have developed a microscopic theory of paramagnetic resonance in a spin-polarized polariton gas in a disor-
dered microcavity. Pseudospin susceptibilities were calculated accounting for TE-TM splitting. We have shown 
that both longitudinal and transverse susceptibilities have a double resonance structure, responsible for different 
polariton spin states, and calculated the widths of the peaks of the paramagnetic resonance taking into account 
the polariton-impurity scattering. In contrast to ordinary disordered electronic systems, exciton polaritons in the 
presence of the BEC phase can scatter off both the impurity potential and impurity-stimulated fluctuations of the 
condensate density. We analyze those scattering processes and find that the polariton-impurity scattering rates 
are dramatically different for macroscopically, on one hand, and low occupied, on the other hand, components 
of the polariton doublet.

Figure 2.  Power absorption spectrum for (a) various values of kξ: 0.1 (red solid), 0.2 (yellow dashed) and 0.3 
(blue dotted) and (b) various values of Mα: 0.1 (red solid), 0.2 (yellow dashed) and 0.3 (blue dotted curve).
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