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A B S T R A C T

This research aimed to explore the eco-friendly green synthesis of copper nanoparticles (CuNPs) using
Celastrus paniculatus leaves extract. Primarily, the biosynthesized CuNPs characterized by UV–vis
spectroscopy showed an absorption peak at 269 nm. Further, The SEM and TEM studies revealed the
spherical shape of particles with size ranged between 2�10 nm with an average particle diameter of
5 nm. FT-IR analysis confirmed the presence of functional groups ��OH, C¼C and C��H triggers the
synthesis of CuNPs. The negative zeta potential -22.2 mV indicated the stability of CuNPs was confirmed
by DLS and the composition and purity by EDS studies. Further, the photocatalytic property of the CuNPs
was divulged by their methylene blue dye degradation potential. The reaction kinetics followed pseudo-
first-order with k-values (rate constant) 0.0172 min�1. In addition, this material was found to be a good
antifungal agent against plant pathogenic fungi Fusarium oxysporum showed 76.29 � 1.52 maximum
mycelial inhibition.
© 2020 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Modernization and industrialization discharged a bulk amount of
industrial effluents along with organic dyes into the water bodies.
Organic dyes are widely used as a colorant in various industries such
as textile, leather tanning, paper, cosmetics, pharmaceutical, and
plastic [1]. These organic dyes highly toxic, carcinogenic, and non-
degradable, can cause serious health problems such as skin diseases,
cancer, allergic reactions, and mutation for people [2,3]. For such
purposes, numerous water treatment approaches have been
explored for the treatment of industrial wastewater effluents such
as precipitation, coagulation, electrolysis, activated carbon, oxida-
tion, and reduction reactions [4]. However, these techniques are
costly and often transfer toxic pollutants to water bodies. Therefore,
need to develop an eco-friendly and cost-effective method for the
degradation of an organic pollutant from wastewater [5]. Recently,
biosynthesized nanoparticles (NPs) attracted much attention due to
their photocatalytic application in the degradation of organic dyes
[6]. Different types of plants and their derived products have been
used successfully in the synthesis of different green nanoparticles of
zinc oxide [7,8], platinum [9], palladium [10], silver [11,12], cobalt
[13], magnetic [14], and gold [15].
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However, there are several studies on CuNPs synthesis using
different plants extract [16–23] have been reported but the study
of application of CuNPs on the treatment of dye effluent is limited.
The agriculture sector exploits different kind of pesticides,
herbicides, and antimicrobial [24,25] substances to control plant
diseases. These substances are responsible for soil pollution as well
as biomagnification in living organisms [26,27]. Despite photo-
catalytic activity, CuNPs attracted more attention due to its
nontoxic, antimicrobial efficacy in controlling plant diseases. An
extensive literature survey revealed that the antifungal activity of
CuNPs mostly tested against human pathogenic fungi [28]. The
least study conducted on CuNPs antifungal activity on plant
pathogenic fungi, so, there is a crucial need for more assessment
and evaluation in this field [29].

Nowadays nanomaterials are of huge interest due to a wide
range of applications in chemical, biological, and environmental
sciences [30,31]. The NPs exhibited a variety of applications,
including optical, electrical, thermal conductivity, catalysts,
antioxidant, antimicrobial, and anticancer activity. Among the
NPs, CuNPs have great attention due to its catalytic, high electrical
conductivity, optical, antifungal, and antibacterial properties
[6,32–34]. The unique physical and chemical properties of NPs
which are not exhibited by the bulk materials, received much
attention to synthesis of NPs. In the last few years ago several
methods such as physical, chemical, and biological used for the NPs
synthesis. The physical methods for NPs synthesis such as pulse
laser ablation, mechanical/ball milling, pulsed wire discharge,
C BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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sputtering [35–39], etc. have been reported. The chemical
synthesis includes colloidal [40,41], electrochemical [42,43],
Chemical reduction [44], and photochemical [45] methods. The
toxicity and relatively high material cost of these methods
restricted their use in a better way. Biological method for NPs
synthesis attracted researchers due to its simple, direct, non-
toxicity, and ecofriendly characteristics upon chemical and
physical methods. The biological method of NPs synthesis carried
out by various sources bacterial, fungal, actinomycetes, yeast, algal,
viruses [46–51], and plant extracts. Plants are reservoir of
phytochemicals such as flavonoids, polyphenols, alkaloids, terpe-
noids, saponins, vitamins, polysaccharides, and proteins which act
as reducing, capping and stabilizing agents for the biosynthesis of
NPs [52]. Celastrus paniculatus (C. paniculatus) commonly known as
black oil plant, Malkangani, and Jyotishmati is a traditional
ayurvedic medicinal plant of family Celastraceae. The phytochem-
icals in crude extracts of C. paniculatus found alkaloids, flavonoids,
phenylpropanoids, diterpenoids, triterpenoids, tetraterpenes, β-
dihydroagarofuranoids, lignans, etc. [53].

This study reports a green route for the synthesis of CuNPs using
C. paniculatus leaf extract, evaluation of its antifungal activity
against phytopathogenic fungi Fusarium oxysporum (F. oxysporum),
and its photocatalytic efficiency in the decomposition of organic
dye. There is no report of C. paniculatus leaf extract mediated green
synthesis of CuNPs and application in antifungal and photo-
catalytic activity to date.

2. Materials and methods

2.1. Materials

Copper (II) Sulfate pentahydrate (CuSO4.5H2O, CAS-No: 7758-
99-8), was purchased from Sigma Aldrich. Methylene blue AR
(RM116) was obtained from Himedia and F. oxysporum (ITCC No.
4998) procured from IAARI, New Delhi. The leaf samples of C.
paniculatus were collected from Madan Mohan Malviya Govern-
ment Ayurvedic College, Udaipur (Raj.) India. Collected plant
material was authenticated by Herbarium, Botany Department,
University of Rajasthan, Jaipur, India (No. RUBL211672). Deionized
water was used to prepare plant extract and copper sulfate
solution.

2.2. Methodology

2.2.1. Preparation of plant extract
Collected leaves were rinsed with tap water to remove dust

particles. Further, leaves were rinsed with double distilled water
(DDW) and shade dried for 1 week to remove the moisture content.
The dried leaves were powdered in grinder mixer and powder
stored in dark at ambient temperature. To prepare the plant
extract, 2 gm of dried leaf powder was added in 200 mL deionized
water in 500 mL flask, mixed well on a magnetic stirrer with hot
plate at 60 �C for 20 min. The prepared extract was filtered using
Whatman filter paper with size 11 mm followed by vacuum
filtration using cellulose nitrate membrane. The filtrate was used
immediately or stored at 4 �C for further use.

2.2.2. Synthesis of nanoparticles
For the synthesis of C. paniculatus copper nanoparticles,

50 mL (5 mM) copper sulfate solution was mixed with 5 mL of
aqueous plant extract [54]. The pH value 7.0 adjusted for the
mixture by the addition of NaOH (1 N) solution. Further, the green
color mixture was obtained. The mixture centrifuged, pellets
collected and dried overnight in a hot air oven at 60 �C. A dark
green color powder obtained was stored at room temperature for
further use.
2.2.3. Photocatalytic activity
The Photocatalytic activity of the CuNPs was evaluated by the

degradation of MB in an aqueous solution under sunlight
irradiation. Stock solution (10 mg/l) of MB was prepared. In the
experiment, 10 mg CuNPs mixed with 100 mL of 10 mg/l MB
solution and pH adjusted to 9.0 in the dark at ambient temperature
[55]. Afterward, the resulting solution was kept under direct
sunlight with a solar flux of 1100 lx measured by lux meter. About
3 mL aliquot of the suspension was taken and centrifuged at
selected time intervals (every 15 min) to remove suspended CuNPs.
The rate of dye degradation was determined by measuring the
absorption spectrum using a UV–vis spectrophotometer at
664 nm. The photocatalytic degradation efficiency was assessed
based on the formula.

% Degradation efficiency ¼ C0 � Cð Þ
C0

� 100

Where, C0 is the initial MB concentration, C is residual MB
concentration after time t.

2.2.4. Antifungal activity
Antifungal activity of CuNPs was accessed using poison food

technique against F. oxysporum. In this study, seven treatments
(one control with water and three CuNPs at 0.12, 0.18 and 0.24 %, w/
v in water along with 0.1 %, 1 % CuSO4, and plant extract) were
performed to evaluate antifungal activity. These treatments carried
out in triplicate and the experiment was repeated thrice. The
treated plated compared with control (without CuNPs) to calculate
the % mycelial inhibition rate by using the formula given by Vincent
[56].

% Inhibition rateð Þ ¼ Mc � Mtð Þ
Mc

X 100

Where Mc is the mycelial growth in control, Mt is the mycelial
growth in treatment.

3. Characterization of CuNPs

The absorbance spectrum of green synthesized CuNPs was
analyzed using UV–vis spectroscopy (ELICO SL-159 UV–vis
spectrophotometer) in the range of 220�540 nm. The morpholog-
ical features of CuNPs were studied by using the transmission
electron microscopy (TEM) (FEI Tecnai G2 20) and scanning
electron microscopy (SEM). The elemental composition of the
particles was examined by Energy-Dispersive X-ray spectroscopy
(EDS) using JEOL SM-7600 F, Japan model. Fourier-transform
infrared spectroscopy (FT-IR) analysis was employed to find out
the role of biomolecules in leaf extract for metal reduction in the
range of 500-4000 cm�1. The charge and size distribution of CuNPs
was measured using Malvern Zetasizer (Malvern Instrument Inc.,
London, U.K). Dynamic light scattering (DLS) measurements were
performed by dispersing 20 mg CuNPs powder in 40 mL deionized
water. The solution was stirred in a vortex mixer for 5 min to break
up any aggregates and then 1�2 ml was transferred to the zeta-
disposable cell.

4. Results and discussion

4.1. UV–vis spectra of CuNPs

Primarily, the formation of CuNPs confirmed by the change in
color from yellow to green upon the addition of plant extract into
aqueous CuSO4 solution. The interaction between conduction
electrons of metal NPs and incident photons was responsible for
color change [57]. Further, CuNPs synthesis confirmed by a
characteristic peak obtained at 269 nm (Fig. 1) [58,16]. In this



Fig. 1. UV–vis absorption spectrum.
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experiment, effect of pH 7 on reduction of CuSO4 into CuNPs was
assessed by UV–vis spectroscopy. The neutral pH sharp absorbance
peak was observed which may be due to the ionization of the
phenolic groups present in plant extract [59]. The peak value was
found to be gradually decreased with an increase in particle size
(Fig. 1). This experiment concluded that the pH 7 is optimum for
reduction of Cu2+ ions into CuNPs.

4.2. FT-IR characterization of CuNPs

FT-IR studies find out the possible biomolecules in plant extract
which are responsible for the reduction and stabilization of CuNPs.
FTIR spectra of C. paniculatus leaf extract have shown in Fig. 2,
where the spectra of C. paniculatus leaf extract depicted broad
peaks at 3315.28 cm�1 representing the hydroxyl (��OH) func-
tional group in alcohols and phenolic compounds and
1635.50 cm�1 can be assigned to the aromatic bending of alkene
group (C¼C), while smaller peaks at 526.98–452.95 cm�1 are also
assigned to the aromatic bending vibration of alkane groups
(C��H) (Fig. 2). The FTIR spectrum of CuNPs depicts the distinctive
characteristic bands at 3264.52 and 1636.62 cm�1 corresponds to
the C. paniculatus leaf extract bands (Fig. 3). These peaks indicate
Fig. 2. FT-IR spectra of aqueous C
the presence of flavonoid and other phenolic compounds in the
plant leaf extract [60,61]. The flavonoid biomolecules transformed
enol-form to the keto-form by releasing a reactive hydrogen atom
and that can reduce Cu2+ ions to form CuNPs. These biomolecules
stabilizes NPs by chelating with metal ions with their carbonyl
groups or p-electrons [62]. Thus, results conclude that the surface
of synthesized CuNPs was capped and stabilized by flavonoid and
other phenolic compounds in the C. paniculatus leaf extract.

4.3. Morphological characterization of CuNPs

4.3.1. SEM, TEM and EDS analysis
The morphological characterization of CuNPs was carried out

using SEM-EDS and TEM analyses. SEM analysis revealed the
presence of spherical particles with some agglomeration due to
sampling preparation (Fig. 4a-b). The size of the particles was
calculated by the TEM and SEM analysis was found to be in the
range of 2�10 nm with an average particle diameter of 5 nm as
displayed in size distribution histogram (Fig. 5b).

The EDS analyses confirmed the composition and stability of
synthesized CuNPs (Fig. 4c). The purity levels of the particles were
examined, which indicated that C. paniculatus mediated CuNPs had
79.87 % of Cu and some weak signals of C, O, Si, S, Ca and Zn
elements (Table 1). These weak signals may be due to the X-ray
emission from the macromolecules like flavonoids, phenolic
compounds, carbohydrates, glycosides, steroids and tannins
present in the extracts [63].

4.4. Dynamic light scattering (DLS) studies

DLS analysis was used to find out the size and surface charge of
NPs through the colloidal solutions. In the present study, the
negative zeta potential was found at -22.2 mV and zeta deviation
was 3.61 mV (Fig. 6a). The high negative value of zeta potential
specifies a strong repellent force among the particles and prevents
agglomeration [64,65]. The polydispersity index value of CuNPs
was 1.000. Fig. 6b shows green synthesized CuNPs average particle
size distribution was 290 nm. The larger size of CuNPs due to the
measured size included biomolecule and water layer covering the
surface of NPs [66]. It suggested that the size and charge
. paniculatus leaves extract.



Fig. 3. FT-IR spectra of synthesized CuNPs.

Fig. 4. (a-b) SEM micrographs of CuNPs, (c) EDS spectrum.
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distribution of the synthesized NPs promoted or enhanced the
biological property of CuNPs [67].

4.5. Photocatalytic degradation of MB

The potential of synthesized CuNPs for photocatalytic degrada-
tion of MB was examined under direct sunlight. The time
dependent decrease in the absorption band intensity of MB dye
was observed after the addition of CuNPs under solar light
exposure. The photocatalytic degradation efficiency measured
using spectrophotometer at 664 nm. In the experiment 10 mg L�1
concentration of MB mixed with 10 mg dosages of photocatalyst.
Almost complete degradation of MB seen in 120 min (Fig. 7). In the
presence of CuNPs the photodegradation was significantly
enhanced at basic pH (pH = 9). The basic pH influences the surface
charge properties of photocatalyst, the anionic dye molecule is
negatively charged adsorbed on the photocatalyst surface [68]. The
high pH favors adsorption of dye on the photocatalyst surface. The
calculated degradation efficiency for MB was 90 % plotted in Fig. 8.
The degradation experiments were performed with control (both
in presence and absence of catalyst) were carried out in the dark to
nullify any possibility of dye self-degradation, dye adsorption, and



Fig. 5. (a) TEM micrograph of CuNPs, (b) Size distribution histogram of CuNPs.

Table 1
Compositional and particle stability analysis of CuNPs.

Element Weight% Atomic%

C K 13.02 39.92
O K 5.32 12.25
Si K 0.27 0.35
S K 0.40 0.46
Ca K 0.28 0.26
Cu K 79.87 46.29
Zn K 0.84 0.47
Totals 100.00

S.C. Mali et al. / Biotechnology Reports 27 (2020) e00518 5
catalytic activity of CuNPs in dark. Under dark conditions, CuNPs
have not exhibited any insignificant effect on degradation of dye.
Thus, experiments concluded that the dyes were not significantly
degraded in dark conditions. Besides, dye degradation experiments
performed under direct sunlight in the absence of catalyst showed
negligible dye degradation while with catalyst dye almost
completely degraded (Fig. 8). These experiments depicted that
dye degradation was driven by a photocatalytic process.
Fig. 6. DLS analysis of Cu NPs (a) zet
In general, there were following steps in the photocatalytic
degradation which is summarized below.

Cu + hn → Cu (e� + h+) (i)

Firstly, the CuNPs absorbed the solar irradiation get photo
excited due to SPR influence (Eq. (ii)). Secondly, the electron and
holes produced can react with O2 (Eq. (iii)) and H2O (Eq. (iv))
particles to provide active hydroxyl radical (OH�), and anionic
superoxide radical (O2

�), respectively (Eq. (v)).

Cu + hn → Cu (e�) + Cu (h+) (ii)

Cu (e�) + O2 → O2
� (iii)

Cu (h+) + H2O → OH� (iv)

O2
� or OH� + Dye → degraded product (v)
a potential, (b) Size distribution.



Fig. 7. Photocatalytic degradation of MB using CuNPs.

Fig. 8. Photocatalytic degradation efficiency of MB under sunlight irradiation.

Fig. 9. Kinetic data for the degradation of aqueous MB under sunlight irradiation.
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Finally, both oxidation as well as reduction proceeds on the
photocatalyst surface. These highly reactive

�
OH and

�
O2 radicals

can interface with the MB aromatic ring and possibly break the
bond producing CO2, H2O, and numerous ions as by-products. The
literature sharma and dutta [69] described that hydroxyl radical
were dominant reactive oxygen species that contributed to
degradation using NPs. Thus, their study provided the suitable
justification for active species based photocatalytic degradation of
dyes when using CuNPs, as discussed in our work.

The kinetics of the photocatalyzed decolorization process
described by a pseudo first-order reaction for the concentration
of MB [70].

ln
Ct

C0
¼ �Kt

Where, C0 is the initial MB concentration and Ct is the MB
concentration at the irradiation time (t) and k is the rate constant
(min�1). The linear relationship between ln(Ct/C0) vs irradiation
time (t) described in Fig. 9 showed good linear correlation with the
values of correlation coefficient (R2>95). The slope of the linear
fitting line as shown in Fig. 9 concluded the rate constant (k) of the
reaction was found 0.0172 min�1. From this study we have
concluded that the time duration for degradation of MB dye was
120 min. pseudo first-order kinetics resulted that obtained value of
rate constant was found to be 0.0172 min-1. A comparative study of
photocatalytic reduction of MB using different types of photo-
catalyst described in Table 2.
Table 2
Comparison of various photocatalysts in the reduction of MB.

S. No Photocatalyst Time Ref.

AuNPs 8 min [71]
AgNPs 45 min [72]
SnO2 NPs 70 min [73]
rGO/TiO2/Co3O4 NPs 120 min [74]
Sb-ZnO NPs 210 min [75]
CuNPs 120 min This work
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Degradation mechanism of MB
5. Antifungal assay of CuNPs

The antifungal activity of the synthesized CuNPs was assessed
against F. oxysporum by measuring the mycelial radial growth.
Study results showed that F. oxysporum exhibited mycelial growth
inhibition at 0.24, 0.18, and 0.12 % CuNPs concentration (Fig. 10).
CuNPs showed 76.29 � 1.52, 73.70 � 1.52 and 59.25 � 0.57 mycelial
growth inhibition at 0.24 and 0.18 and 0.12 %, respectively (Table 3).
Maximum mycelial growth inhibition observed at 0.24 % CuNPs.
The experiment, confirmed that mycelial growth inhibition
depends on NPs concentrations. Commercial fungicide bavistin
(0.1 %) was used as a positive control showing 100 % inhibition of
fungal mycelial growth (Fig. 10). Whereas CuSO4 (1.0 %) showed
20.74 � 1.52 inhibition and plant extract was found ineffective in
inhibiting mycelial growth and spore germination. Possible
mechanisms of action of CuNPs are based on changes in the
structure and function of fungi cell. Furthermore, these particles
can affect macromolecule DNA, its replication and protein
synthesis which ultimately lead to death of fungi. Similar studies
Fig. 10. Antifungal activity (a) control, (b) plant extract, (c) 1 % C
have been reported for the antifungal activity of CuNPs against
different fungi [76,77].

6. Conclusion

In the present study, CuNPs synthesized by a simple and
benign method from leaf extract of C. paniculatus. The
characterization studies revealed the morphological parameters
and role of stabilizing agents during CuNPs synthesis. The TEM
and SEM results concluded that the particles were spherical
shaped and monodispersed with size ranging from 2 to 10 nm.
The purity of green synthesized examined by EDS studies. The
flavonoid and other phenolic compounds present in the C.
paniculatus leaf extract reduce Cu2+ ions into CuNPs confirmed by
FT-IR studies. The DLS studies revealed that biological property of
CuNPs enhanced by the size and charge distribution of the NPs.
The synthesized CuNPs exploited as photocatalyst exhibited
excellent degradation efficiency on organic dye MB under
uSO4, and CuNPs (d, e, f) 0.12, 0.18 and 0.24 % respectively.



Table 3
Effect of CuNPs on in vitro mycelial growth of F. oxysporum.

Treatment (%) % Inhibition (mycelial growth) F. oxysporum

Control 0.0 � 0.0
CuNPs
0.12 59.25 � 0.57
0.18 73.70 � 1.52
0.24 76.29 � 1.52
CuSO4 (1%) 20.74 � 1.52
Plant extract 0.0 � 0.0
Bavistin (0.1 %) 100 � 0.0

The mycelial growth inhibition of CuNP was performed in triplicate. Standard
deviation values are given in the above mentioned table.
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sunlight. The dye adsorption results were compared with
previously reported literature. The synthesized CuNPs showed
significant antifungal activity against F. oxysporum as demon-
strated using the poison food technique. The overall study
revealed that CuNPs successfully synthesized by green route and
used as photocatalyst and antifungal agents.
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