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Orexinergic system consisting of orexins and orexin receptors plays an essential role
in regulating sleep–wake states, whereas sleep disruption is a common symptom of a
number of neurodegenerative diseases. Emerging evidence reveals that the orexinergic
system is disturbed in various neurodegenerative diseases, including Alzheimer’s
disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and multiple sclerosis
(MS), whereas the dysregulation of orexins and/or orexin receptors contributes to the
pathogenesis of these diseases. In this review, we summarized advanced knowledge
of the orexinergic system and its role in sleep, and reviewed the dysregulation of the
orexinergic system and its role in the pathogenesis of AD, PD, HD, and MS. Moreover,
the therapeutic potential of targeting the orexinergic system for the treatment of these
diseases was discussed.
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INTRODUCTION

Orexinergic system is essential for the maintenance of various physiological processes including
sleep–wake states (Gamble et al., 2019; Yukitake et al., 2019; Zhang et al., 2019). Emerging
evidence reveals that the orexinergic system is disturbed in various neurodegenerative diseases,
such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and
multiple sclerosis (MS), whereas the dysregulation of the orexinergic system plays a pivotal role
in the pathogenesis of these diseases (Petersen et al., 2005; Asai et al., 2009; Fatemi et al., 2016;
Mander et al., 2016; Liguori, 2017). To gain a better understanding of the therapeutic potential
of targeting the orexinergic system for the treatment of these diseases, we extensively reviewed
the characteristics of the orexinergic system, its function in sleep–wake states, and its role in the
pathogenesis of the neurodegenerative diseases and underlying mechanisms.

OVERVIEW OF OREXINERGIC SYSTEM

Orexinergic system consists of orexins and their receptors. Orexin, also named as hypocretin,
includes two isoforms, namely, orexin A (OXA) or hypocretin-1 (HCRT-1) and orexin B (OXB)
or hypocretin-2 (HCRT-2) (de Lecea et al., 1998; Sakurai et al., 1998; Soya and Sakurai, 2020). OXA
and OXB are generated from the same prepro-orexin precursor via differential hydrolysis (Gotter
et al., 2012). OXA is a ∼3.5 kDa peptide with 33 amino acids, whereas OXB is a ∼2.9 kDa peptide
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with 28 amino acids. Both of them are highly conserved in
mammalian species (Sakurai et al., 1998; Dyer et al., 1999;
Spinazzi et al., 2006). Orexins are mainly expressed in lateral
hypothalamic neurons (Wang et al., 2018). Orexin receptors,
including orexin 1 receptor (OX1R) and orexin 2 receptor
(OX2R), are G-protein-coupled receptors (GPCRs) (de Lecea
et al., 1998; Sakurai et al., 1998; Soya and Sakurai, 2020). OX1R
is mainly expressed in ventromedial hypothalamic nucleus,
dorsal raphe, locus coeruleus, and hippocampus, whereas OX2R
is highly expressed in nucleus accumbens, anterior pretectal
nucleus, and cerebral cortex (Trivedi et al., 1998; Soya et al.,
2013). Both of them are highly conserved in mammals, for
example, human OX1R and OX2R share 94 and 95% identity
with rat OX1R and OX2R, respectively. Human OX1R and OX2R
consist of 425 and 444 amino acids, respectively, and they share
approximately 64% sequence identity (Spinazzi et al., 2006). OXA
binds to both OX1R and OX2R with similar affinity (Gotter et al.,
2012; Wang et al., 2018), whereas OXB prefers to bind to OX2R
(Gotter et al., 2012; Wang et al., 2018).

The main function of the orexinergic system is to regulate
sleep–wake states (Adamantidis et al., 2007; Gamble et al., 2019;
Yukitake et al., 2019; Zhang et al., 2019). Orexin deficiency
is the proximal cause of human narcolepsy with cataplexy,
which has been comprehensively studied and reviewed (Bassetti
et al., 2019; Nepovimova et al., 2019). Consistently, OX2R
agonist YNT-185 ameliorates narcolepsy symptoms in a mouse
model of narcolepsy-cataplexy (Irukayama-Tomobe et al., 2017).
Photostimulation of orexin neurons induces the transition of
sleep to wake in mice, indicating that orexin neurons play a
key role in promoting sleep-to-wake transition (Adamantidis
et al., 2007). Activation of orexin neurons leads to a marked
increase of wakefulness time and a reduction of sleep time
including both rapid eye movement (REM) sleep and non-REM
(NREM) sleep in mice (Sasaki et al., 2011). Consistently, OX2R
agonist YNT-185 markedly increases wakefulness time in mice
(Irukayama-Tomobe et al., 2017).

OREXINERGIC SYSTEM IN
NEURODEGENERATIVE DISEASEs

Orexinergic System in AD
AD, the most common neurodegenerative disease, is
characterized by the clinical manifestations such as progressive
memory loss, cognitive deficits, and sleep disruption. Neuritic
plaques, neurofibrillary tangles, and neuronal loss are the
neuropathological hallmarks of AD. β-Amyloid (Aβ) and
hyperphosphorylated Tau are the core components of neuritic
plaques and neurofibrillary tangles, respectively (Lane et al.,
2018; Qiu et al., 2019).

Although studies indicate that the orexin levels in
cerebrospinal fluid (CSF) are associated with circadian alteration
in AD and the OXA levels are positively correlated with the
cognitive function in AD (Liguori et al., 2020; Shimizu et al.,
2020), the dysregulation of the orexinergic system in AD remains
inconclusive. For example, a significant reduction of OXA
positive neurons and the levels of OXA were observed in patients

with AD (Fronczek et al., 2012), whereas both Slats et al. and
Liguori et al. reported that there was no difference of OXA
in CSF of patients with AD and healthy controls (Slats et al.,
2012; Liguori et al., 2014). In addition, Gabelle et al. reported
that OXA was increased in AD (Gabelle et al., 2017). The
inconsistent results might result from the different methods and
sample sizes. For example, studies by Fronczek et al. and Gabelle
et al. were performed in postmortem ventricular CSF and the
stored CSF samples, respectively (Fronczek et al., 2012; Gabelle
et al., 2017), whereas the participants were awaked in studies
performed by Slats et al. and Liguori et al., respectively (Slats
et al., 2012; Liguori et al., 2014). Moreover, increased orexin
along with more fragmented sleep was observed in patients
with AD with neuropsychiatric symptoms compared with
that in patients with AD without neuropsychiatric symptoms
(Liguori et al., 2018).

Orexinergic system is implicated in Aβ pathology. First, the
levels of OXA were correlated with the level of Aβ42 in patients
with AD (Slats et al., 2012; Gabelle et al., 2017; Figure 1A).
Importantly, orexin deficiency markedly decreased Aβ pathology
in AD model mice, amyloid precursor protein/presenilin 1
(APP/PS1) transgenic mice (Roh et al., 2014). Moreover,
sleep disruption, a common symptom of AD, facilitated Aβ

accumulation, contributing to neurodegeneration in AD, which
might be correlated with the alteration of the orexinergic system
(Mander et al., 2016; Liguori, 2017; Figure 1A). Reduced Aβ1−42
was correlated with the decrease of REM sleep and sleep efficiency
in AD, whereas the increase of OXA in CSF was correlated
with the decrease of REM and sleep efficiency in AD (Liguori
et al., 2014). The diurnal variation of Aβ levels in interstitial
fluid (ISF) was observed in human. Consistently, the Aβ levels
in ISF were positively correlated with the awaked time and
negatively correlated with the asleep time in mice (Kang et al.,
2009; Figure 1A). In addition, the rate of Aβ1−40 clearance
was much faster in sleeping mice than that in awaked mice
(Xie et al., 2013). Furthermore, the administration of orexin
significantly increased the Aβ levels in ISF during the light
phase and orexin receptors antagonist led to the inhibition of
the diurnal fluctuation of Aβ in ISF of AD model mice (Kang
et al., 2009). On the other hand, increased Aβ contributes to
the dysregulation of the orexinergic system and sleep disruption.
For example, the administration of Aβ25−35 markedly increased
awaked time and reduced NREM sleep in AD mice (Liu et al.,
2019; Figure 1A). Aβ25−35 significantly increased the level of
OXA in AD mice (Liu et al., 2019; Figure 1A).

The orexinergic signaling is associated with Tau pathology in
AD (Deuschle et al., 2014; Liguori et al., 2014; Liguori, 2017). The
level of OXA in CSF was correlated with Tau and phosphorylated
Tau (pTau) in patients with AD (Deuschle et al., 2014; Figure 1A).
Consistently, the level of OXA in CSF exhibited an evidently
positive correlation with Tau and pTau in patients with moderate
to severe AD (Liguori et al., 2014), and even in control subjects
(Shimizu et al., 2020). Importantly, the OXA downregulation
dramatically decreased the levels of Tau and pTau induced by
Aβ25−35 in vitro (Liu et al., 2019; Figure 1A). Moreover, studies
show that the levels of pTau were correlated with stage 1 of NREM
sleep in AD (Liguori et al., 2014; Figure 1A). It indicates that the

Frontiers in Aging Neuroscience | www.frontiersin.org 2 August 2021 | Volume 13 | Article 713201

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-713201 August 17, 2021 Time: 10:35 # 3

Wang et al. Orexinergic System and Neurodegenerative Diseases

FIGURE 1 | The potential roles of orexinergic system in Alzheimer’s disease (AD) and Parkinson’s disease (PD). (A) The potential roles of orexinergic system in AD.
Orexinergic system is involved in the regulation of sleep–wake states. Sleep disruption facilitated Aβ accumulation in AD. Orexin A (OXA) is associated with Aβ.
Evidence also suggests a potential relationship between Aβ levels and sleep–wake states. Moreover, OXA in cerebrospinal fluid (CSF) was correlated with pTau. The
levels of pTau were correlated with stage 1 of NREM sleep. More experiments are needed to clarify the correlation between pTau and orexinergic system-related
sleep dysfunction. (B) The potential roles of orexinergic system in PD. OXA exerted the neuroprotective roles in PD cell model via regulating HIF-1α or orexin 1
receptor (OX1R)/protein kinase C (PKC)/PI3-kinase (PI3K) signaling. Orexin 2 receptor (OX2R) and α7 nAChRs were involved in the promotion of the survivability of
DA neurons regulated by orexin B (OXB). OXA treatment or enhancement of orexin neurons activity markedly decreased the memory impairment in PD mice. OXA
and OXB significantly increased the rate of spontaneous firing of dopaminergic (DA) neurons via OX1R and OX2R. Sleep attack has been observed in PD.
Orexinergic system was involved in sleep disorders, indicating the potential roles of orexinergic system in regulating PD-related sleep disorders.
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role of orexinergic signaling in Tau pathology may be related to
sleep dysfunction.

Dysregulation of orexinergic signaling may be associated with
neurodegeneration and neuronal loss in AD. First, AD was
primarily associated with the loss of basal forebrain cholinergic
neurons (Zajo et al., 2016). Basal forebrain was one of the major
projection targets of orexin neurons (Li and de Lecea, 2020).
Orexin receptors were expressed in the basal forebrain (Li and
de Lecea, 2020), while orexin neurons directly communicated
with the cholinergic neurons in the basal forebrain through
synapses (Li and de Lecea, 2020). Moreover, the administration of
OXA in basal forebrain ameliorated distracter-induced attention
deficiency in rats (Zajo et al., 2016). These results indicate that
the orexinergic system may be involved in AD pathology by
regulating the cholinergic pathway in the basal forebrain.

Orexinergic System in PD
PD is characterized by the selective loss of dopaminergic (DA)
neurons in the substantia nigra (SN) and the formation of Lewy
body (Kalia and Lang, 2015; Reich and Savitt, 2019). The clinical
symptoms include both motor symptoms such as resting tremor
and bradykinesia and non-motor symptoms such as pain, sleep
disorder, and cognition dysfunction (Kalia and Lang, 2015).

The dysregulation of the orexinergic system in PD is
inconclusive as the number of studies is limited. First, it was
reported that the level of OXA was significantly decreased in
ventricular CSF of patients with advanced PD compared with
controls (Drouot et al., 2003). Consistently, the number of orexin
neurons was markedly decreased in patients with PD compared
with that in controls (Fronczek et al., 2007). However, the level of
OXA was within the normal range in CSF obtained from patients
with PD by lumbar puncture (Yasui et al., 2006).

Orexinergic system is implicated in the neuroprotective effect
on DA neurons (Cui et al., 2010; Feng et al., 2014; Guerreiro
et al., 2015; Hadadianpour et al., 2017; Pasban-Aliabadi et al.,
2017; Liu M. F. et al., 2018). The number of OXA positive
neurons tended to be decreased in hypothalamus of PD model
rats (Cui et al., 2010). OXA significantly ameliorated 1-methyl-
4-phenylpyridinium (MPP+)-induced injury in SH-SY5Y cells,
which was mediated by hypoxia inducible factor-1 alpha (HIF-
1α) (Feng et al., 2014; Figure 1B). Moreover, OXA significantly
attenuated 6-hydroxydopamine (6-OHDA)-induced cell toxicity
in SH-SY5Y cells, which was mediated by OX1R/protein kinase
C (PKC)/PI3-kinase (PI3K) signaling (Pasban-Aliabadi et al.,
2017; Figure 1B). In addition, OXA significantly attenuated 1-
methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced
DA neuron loss in the SN of mice, contributing to the
improvement of cognitive and motor ability (Liu M. F. et al.,
2018), whereas OX1R antagonist SB334867 could inhibit the
protective effect (Liu M. F. et al., 2018; Figure 1B). Consistently,
OXA significantly ameliorated 6-OHDA-induced impairments of
locomotor function, sensorimotor function, and muscle tone in
rats (Hadadianpour et al., 2017). Furthermore, OXB increased
the survivability of DA neurons mediated by OX2R but not by
OX1R, whereas nicotine markedly improved the neuroprotective
effects of OXB on DA neuron via the activation of α7 nicotinic
acetylcholine receptors (α7 nAChRs) (Guerreiro et al., 2015;

Figure 1B). The above evidence indicates that orexins and orexin
receptors are involved in the protective effect on DA neurons in
PD models.

Sleep disruption is a common symptom in PD (Asai et al.,
2009; Nie et al., 2019). Most of these patients suffer from excessive
sleepiness during daytime and some of them present the sleep
attack (Tracik and Ebersbach, 2001; Brodsky et al., 2003; Asai
et al., 2009). Some characteristics of sleep attack in patients with
PD are similar to narcolepsy symptoms (Arnulf et al., 2000;
Asai et al., 2009). Dopamine agonists were one of the major
factors influencing the emergence of sleep attack, suggesting
the close correlation between DA system and sleep attack in
PD (Paus et al., 2003; Figure 1B). Electrophysiological analysis
revealed that the administration of OXA and OXB observably
enhanced the rate of spontaneous firing of DA neurons in the
SN of rats and inhibition of OX1R and OX2R significantly
decreased the firing rate of DA neurons in the SN, implying
the roles of the orexinergic pathway in regulating DA system
(Liu C. et al., 2018; Figure 1B). Moreover, OXA application in
the hippocampus or chemogenetic activation of orexin neurons
significantly ameliorated the memory impairment in A53T
transgenic mice, a PD model mice (Stanojlovic et al., 2019;
Figure 1B). It indicates that the orexinergic system plays a key
role in sleep disruption and memory defects in patients with PD.

Orexinergic System in HD
HD, a kind of polyglutamine disorder described first by George
Huntington, presents autosomal dominant inheritance and is
characterized by a progressive decline of cognition, motor, and
behavioral functions (Wyant et al., 2017; Ghosh and Tabrizi,
2018; Croce and Yamamoto, 2019). Given that the molecular
mechanisms underlying HD pathogenesis remain unclear, there
is no effective treatment for HD (Ghosh and Tabrizi, 2018).
Orexinergic system is involved in the pathogenesis of HD.
A significant reduction of orexin neurons in the LH and
hypothalamus was observed in patients with HD compared
with that in controls (Petersen et al., 2005; Gabery et al., 2010;
Figure 2A). Consistently, a significant decrease of OXA and
OXB was observed in HD model mice (Petersen et al., 2005;
Figure 2A).

The abnormal sleep characteristics were observed in HD
model mice, including a shorter slow-wave sleep (SWS) duration,
more episodes of every vigilance state during the periods of light
and dark cycle, and a particular β rhythm with the frequency of
20–35 Hz (Jeantet et al., 2013; Lebreton et al., 2015). Promoting
sleep with the pharmacological method effectively slowed the
decline of cognition performance in HD mice (Pallier et al.,
2007). Imposing a drug-induced relative regular rhythm of wake–
sleep contributed to the enhancement of cognition ability in HD
mice (Pallier and Morton, 2009). In addition, the administration
of OX1R and OX2R antagonist significantly attenuated the β

activity during the sleep stage of SWS and REM, reduced sleep–
wake rhythm deficiency, and efficiently improved the behavioral
performance in HD mice (Cabanas et al., 2019; Figure 2A). These
results indicate that modulating orexinergic system may have a
therapeutic potential for the improvement of sleep and cognitive
performance in HD.
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FIGURE 2 | The potential roles of orexinergic system in Huntington’s disease (HD) and multiple sclerosis (MS). (A) The potential roles of orexinergic system in HD.
Studies show that the number of OX neurons decreased in HD. Abnormal sleep existed in HD. The details of orexinergic signaling in HD need to be further
investigated. (B) The potential roles of orexinergic system in MS. The OXA/OX1R signaling significantly decreased the inflammation and pathological processes in
EAE mice. Moreover, OXA could markedly reduce the reactive oxygen species (ROS) and microglial activation, indicating that the orexinergic system might involve in
MS pathology by regulating ROS and microglial activation. More experiments are needed to determine the relationship between orexin levels and MS pathology at
different courses.

Dorsal striatum is the major pathological region in HD (Page
et al., 2000). OXA increased the surface levels of α-amino-3-
hydroxy-5-methyl-4-isoxazolepropioinc acid (AMPA) receptor
in the striatum, leading to the functional changes of striatum
circuits (Shin et al., 2009). Both OX1R and OX2R were expressed
in dorsal striatum (Zhang et al., 2007). It suggests that orexinergic
system may involve in HD pathology by regulating the activity of
striatum circuits. Thus, modulating orexinergic system in dorsal
striatum-related circuits may be a potential target for the HD
treatment.

Orexinergic System in MS
MS is a kind of long-term inflammation-related autoimmune
disease with the major characteristic of demyelinating
in the central nervous system, ultimately leading to the
neurodegeneration (Correale et al., 2017; Gencer et al., 2019).
As the progress of MS is variable, MS is classified into relapsing
remitting MS (RRMS), secondary progressive MS (SPMS),
primary progressive form of MS (PPMS), and progressive
relapsing form of MS (PRMS) (Lublin and Reingold, 1996;

Correale et al., 2017; Hughes et al., 2018). The major
characteristic of patients with RRMS is experiencing partial
or complete recovery from the emergence of recurring symptoms
of the disease (Antel et al., 2012; Correale et al., 2017). After
periods of years, some of the patients slowly turn into gradual
deterioration, the stage called SPMS (Antel et al., 2012; Correale
et al., 2017). About 15% of the patients present a progressive
decline of neurological function without obvious relapses, which
is called PPMS (Antel et al., 2012; Correale et al., 2017). A group
of patients with MS who undergo episodes of distinct clinical
relapse are taken as PRMS (Hughes et al., 2018). Although
environmental element, inflammation, and genetic factors are
implicated in MS pathology, the precise mechanisms of MS
remain unclear (Correale et al., 2017).

Sleep disturbance is a trigger of relapse in MS, indicating
the potential roles of the orexinergic pathway in MS (Sahraian
et al., 2017). A significant decrease of OXA in CSF was observed
in a female MS patient with hypersomnia (Oka et al., 2004).
However, Constantinescu et al. showed that there was no
significant deficiency of OXA in patients with MS compared
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with controls with other inflammatory-related brain disorders
or non-inflammatory brain diseases (Constantinescu et al., 2011;
Burfeind et al., 2016). A recent study showed that serum OXA
was remarkably decreased in patients with MS compared with
that in healthy cases (Gencer et al., 2019). Moreover, serum OXA
was robustly lower in patients with SPMS than that in patients
with RRMS, indicating the serum OXA may correlate with the
progression of MS (Gencer et al., 2019). Given the complexity and
variety of the pathological courses of MS, further investigation is
necessary to determine the orexin levels in CSF of patients with
MS at different courses (Figure 2B).

Evidence indicates that neuroinflammation and glial
activation are the important pathological features of MS (Datta
et al., 2017; Grajchen et al., 2018). Experimental autoimmune
encephalomyelitis (EAE) was a commonly used animal model
of MS (Becquet et al., 2019). OXA significantly reduced the
formation of reactive oxygen species (ROS) in primary cultured
microglia (Tunisi et al., 2019; Figure 2B). Moreover, the
intraperitoneal injection of OXA decreased lipopolysaccharide
(LPS)-induced activation of microglia in the prefrontal cortex,
which was blocked by OX1R antagonist SB334867 (Tunisi
et al., 2019), indicating the regulation role of the orexinergic
system in neuroinflammation (Figure 2B). In addition, the OXA
treatment significantly reduced the inflammation and decreased
the pathological scores in EAE mice, which was inhibited by
SB334867 (Fatemi et al., 2016; Figure 2B). Consistently, the
administration of OXA dramatically reduced clinical symptoms,
decreased neuroinflammation, and alleviated demyelinating and
glial activation in EAE mice (Becquet et al., 2019; Figure 2B).
All the above studies indicate that the orexinergic system exerts
the neuroprotection roles by inhibiting the neuroinflammation
in MS (Becquet et al., 2019).

PERSPECTIVE OF TARGETING
OREXINERGIC SYSTEM

Given the dysfunction of orexinergic pathway is implicated
in the pathogenesis of AD, PD, HD, and MS, the orexinergic
system may be a potential therapeutic target for the treatment
of these diseases (Petersen et al., 2005; Asai et al., 2009;
Fatemi et al., 2016; Mander et al., 2016; Liguori, 2017).
Dysfunction of sleep–wake, abnormal protein aggregation, and
neuroinflammation are the common features of these diseases
(Glass et al., 2010; Correale et al., 2017; Illarioshkin et al.,
2018). First, dysregulation of the orexinergic system is implicated
in the disruption of the sleep–wake process in AD, PD, HD,
and MS (Asai et al., 2009; Mander et al., 2016; Liguori,

2017; Sahraian et al., 2017; Cabanas et al., 2019; Turkoglu
et al., 2020). On the one hand, sleep disruption contributes
to neurodegeneration by facilitating disease-associated protein
accumulation such as Aβ (Mander et al., 2016; Liguori,
2017). On the other hand, sleep disruption also attenuates
the clearance of Aβ, whereas sleeping facilitates Aβ clearance
in AD model mice (Xie et al., 2013). Moreover, abnormal
protein aggregation-induced neuroinflammation aggravates the
neurodegeneration and neuronal loss in AD and PD (Glass et al.,
2010). Thus, targeting the orexinergic system might ameliorate
sleep impairment attenuating abnormal protein aggregation and
subsequent neuroinflammation and neurodegeneration.

CONCLUSION

Mounting evidence shows that the orexinergic system is involved
in the sleep–wake process, whereas sleep disruption is a common
symptom of many neurodegenerative diseases including AD, PD,
HD, and MS. Moreover, dysfunction of the orexinergic pathway
is implicated in the pathogenesis of AD, PD, HD, and MS,
which is associated with sleep impairment, pathogenic protein
aggregation, neuronal loss, and activation of neuroinflammation
(Figures 1, 2). However, the exact roles of the orexinergic system
in the above diseases and underlying mechanisms are still not
fully understood. Thus, it is essential to further investigate the
dysregulation of the orexinergic system in neurodegenerative
diseases and its role in the pathogenesis of these diseases.
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