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KCML: a machine-learning framework for inference
of multi-scale gene functions from genetic
perturbation screens
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Abstract

Characterising context-dependent gene functions is crucial for
understanding the genetic bases of health and disease. To date,
inference of gene functions from large-scale genetic perturbation
screens is based on ad hoc analysis pipelines involving unsuper-
vised clustering and functional enrichment. We present Knowl-
edge- and Context-driven Machine Learning (KCML), a framework
that systematically predicts multiple context-specific functions for
a given gene based on the similarity of its perturbation phenotype
to those with known function. As a proof of concept, we test KCML
on three datasets describing phenotypes at the molecular, cellular
and population levels and show that it outperforms traditional
analysis pipelines. In particular, KCML identified an abnormal
multicellular organisation phenotype associated with the depletion
of olfactory receptors, and TGFb and WNT signalling genes in
colorectal cancer cells. We validate these predictions in colorectal
cancer patients and show that olfactory receptors expression is
predictive of worse patient outcomes. These results highlight KCML
as a systematic framework for discovering novel scale-crossing
and context-dependent gene functions. KCML is highly generalis-
able and applicable to various large-scale genetic perturbation
screens.
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Introduction

Despite the deluge of acquired datasets with high-throughput gene

perturbation screening (HT-GPS), the function of a large number of

human genes remains poorly understood (Dey et al, 2015). More-

over, gene ontology (GO), the most comprehensive and structured

annotation of gene functions, is largely limited to cell type- and

context-independent gene functions (Huntley et al, 2015). However,

gene function is highly contextual, even for unicellular organisms

(Radivojac et al, 2013; Liberali et al, 2014). Therefore, there is an

urgent need for new methods that allow data-driven and context-

dependent functional gene discovery based on more complex

phenotypes of multicellular organisms.

Although HT-GPS has proved to be a powerful method for

discovering novel gene functions, the analysis of these datasets has

remained a challenging task. This is due to the complexity of pheno-

types that the perturbation of a single gene can lead to, as a gene

can participate in different functions at different scales. These func-

tions depend on the gene product localisation in the cell (e.g., cyto-

plasm versus nucleus for transcription factors), cell cycle state (e.g.,

G1, G2 or S phase), cell type, cell–cell and cell–microenvironment

interactions and treatment conditions (Sero et al, 2015). Existing

analysis pipelines based on unsupervised clustering do not generally

account for these factors. Consequently, resulting phenotypic clus-

ters are difficult to interpret as they might be composed of different

subphenotypes (Yin et al, 2013; Sailem et al, 2014). These chal-

lenges are often avoided, particularly in image-based screens, by

analysing only a small fraction of the information contained in HT-

GPS datasets (Singh et al, 2014) which greatly underutilises their

potential.

Supervised machine learning has been applied successfully in

many HT-GPS studies (Held et al, 2010; Neumann et al, 2010; Shar-

iff et al, 2010; Sullivan et al, 2018; Eraslan et al, 2019). One attrac-

tive solution for addressing the lack of phenotypic annotations is

the utilisation of existing biological knowledge to build intelligent

systems that can identify functionally relevant features and pheno-

types. This approach is weakly supervised as existing knowledge

can only provide noisy labels (Dutta et al, 2020). Approaches that

utilise existing functional annotations have been successfully

applied to inference of pathways activity (Schubert et al, 2018) as

well as prediction of protein functions from multiple data types

including protein sequence and structure, phylogeny, as well as

protein–protein interactions and gene co-expression networks

(Radivojac et al, 2013; Dey et al, 2015; Jiang et al, 2016).
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Additionally, pioneering work has been done in inferring data-

driven gene ontology in yeast (Kramer et al, 2014; Yu et al, 2016;

Ma et al, 2018). However, to our knowledge, this approach has not

been applied in the context of large-scale HT-GPS datasets in multi-

cellular organisms where genetic redundancy and phenotypic

complexity are much higher.

Image-based screens are particularly advantageous for inference

of biological functions as they provide spatial and context informa-

tion at the single-cell level which allow capturing the emergent

behaviours in biological systems (Lock & Strömblad, 2010). Single-

cell data are critical for identifying loss-of-function phenotypes that

are dependent on cellular state or manifest in only a small

subpopulation of cells (partial penetrance) (Sacher et al, 2008).

However, even for a widely used marker such as DAPI, pheno-

typic information on nuclear morphology and organisation of cells

is often not fully utilised. The importance of studying the func-

tional relevance of nuclear morphology and multicellular organisa-

tion is underlined by the fact that this information is successfully

used by pathologists for patient diagnosis based on haematoxylin

and eosin-stained tumour sections (He et al, 2012; Uhler & Shiva-

shankar, 2018). Comprehensive analysis of changes in cell

morphology and microenvironment following perturbation is

crucial for the identification of genes associated with these impor-

tant biological traits.

Systematic evaluation of gene sets in biological contexts different

from the ones in which they are known to function can uncover

valuable insights into the regulation of biological systems. For

example, the roles of genes within the context of development, such

as mesoderm development (MSD), which involves the coordination

of cell migration, cell adhesion and cytoskeletal organisation

through TGFb and WNT signalling, are often deregulated within the

context of colorectal cancer (Klinowska et al, 1994; McMahon et al,

2010; Kiecker et al, 2016). Therefore, identification of phenotypic

signatures that are associated with perturbing MSD genes might

shed light on how dysregulation of MSD genes can contribute to

colorectal cancer development.

The importance of characterising context-dependent gene func-

tions can be exemplified by the increasing evidence on the role of

olfactory receptors in diseases such as cancer (Lee et al, 2019).

Olfactory receptors constitute the largest gene family in humans

(~400 genes) which were discovered in 1991 in sensory neurons.

However, their functions in non-sensory tissues are poorly under-

stood (Maßberg & Hatt, 2018). Investigating the similarity of olfac-

tory receptor perturbation phenotypes to the perturbation of known

gene programmes would enable the discovery of their functions in

different tissue types.

Here, we propose KCML, a novel framework for automated

knowledge discovery from large-scale HT-GPS. KCML is designed to

account for pleiotropic and partially penetrant phenotypic effects of

gene loss. We apply this framework to three large-scale datasets

generated by different methods, describing phenotypes at the molec-

ular, cellular and tissue levels, and show that it outperforms existing

analysis pipelines. We analyse a cell organisation phenotype that

KCML identifies and links to genes annotated to the Mesoderm

Development (MSD) term. KCML predictions include many genes in

TGFb and WNT signalling pathways as well as many olfactory

receptors. Through an integrative analysis with gene expression

data of colorectal cancer patients, we validate the link between the

expression of olfactory receptors and TGFb and WNT signalling and

show that the expression of some olfactory receptors can stratify the

outcome of higher-grade colorectal cancer patients. In summary,

KCML is a flexible and systematic framework for comprehensively

analysing HT-GPS datasets and identifying context and tissue-depen-

dent gene functions.

Results

A systematic framework for inferring gene functions from
high-dimensional phenotypic data

KCML aims to utilise existing biological knowledge, as captured by

GO, to automatically identify gene perturbation phenotypes in HT-

GPS datasets and map these phenotypes to potential biological func-

tions. Central to our approach are GO term classifiers that effectively

link gene annotations, which are not specific to a cell type or biolog-

ical context, to the rich contextual information provided in HT-GPS

datasets. Critically, each term classifier identifies the phenotypic

signature associated with a given gene annotation, and it can there-

fore be used to study how perturbation of biological functions at

lower-scale contributes to higher-scale phenotypes.

Here, a weakly supervised learning approach is used to train

each term classifier. Binary support vector machine (SVM) classi-

fiers prove to be well suited to this problem (Materials and Meth-

ods). Each GO term classifier learns to discriminate between

perturbation phenotypic profiles of genes annotated to that term

(positive class) and a random set of remaining genes (negative

class) (Fig 1A). To select features that are relevant to a given

biological function, we initially train the GO term classifier using

one feature and iteratively add features to the model if they

improve the performance of the classification based on the F-score

metric (i.e., forward feature selection; see Materials and Methods).

Only those classifiers that exceed a certain performance threshold

on unseen data are used for prediction (Materials and Methods).

For example, a classifier of the GO term “cell cycle” will select

features that are discriminative of the perturbation effect of the

annotated cell cycle genes and define a decision boundary separat-

ing these effects from a random set of negative genes (Fig 1A). If

such a classifier can successfully predict a held-out sample of

annotated cell cycle genes, then it is used to predict other potential

cell cycle genes based on phenotypic similarity. These predictions

can be ranked based on the distance to the SVM decision bound-

ary, which indicates the strength of the phenotype. Predictions

from different GO term classifiers are then combined to yield a

data-driven multi-ranking of gene functions. One of the main

advantages of this approach is the effective augmentation of GO

annotations in a context-dependent manner.

We train GO term classifiers from the three GO ontologies:

biological process, molecular function and cellular component

(Fig 1B, Materials and Methods and Table EV1). As GO terms can

vary in specificity and number of annotated genes depending on

their position in the GO tree, we only included terms with a suffi-

cient number of positive examples (100–500 annotated genes). On

average, each gene has 30 annotations (Fig 1C) with 2,152 genes

having more than 50 annotations and 2,908 genes having no anno-

tations based on the selected terms.
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Figure 1. KCML workflow for inferring gene functions from different large-scale genetic datasets.

A KCML workflow trains multiple classifiers to identify phenotypes and genes associated with different gene ontology terms. Feat: feature.
B Categories and numbers of included GO terms.
C The distribution of genes per term and vice versa based on GO annotations.
D Tested datasets.
E, F (E) Overview of single-cell-resolved image-based features measuring morphology, microenvironment and infection (F) and the generated statistics based on a

population of single cells when applicable (n > 625 and Table EV2). Examples on the various measurement types are shown on the right and include multiple
quantiles, mean, range, IQR (interquartile range), kurtosis, skewness, bimodality and KS distance.
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KCML generalisability

To illustrate the generalisability of KCML to various genetic pertur-

bation screens, we applied it to three datasets measuring different

types of phenotypic data and utilising different experimental tech-

nologies: (i) pooled genome-wide CRISPR/Cas9 screens measuring

cell viability in 60 cancer cell lines (cell population-level phenotype)

(Rauscher et al, 2018); (ii) a large-scale siRNA screen measuring

changes in the expression of 3,287 genes in MCF7 breast cancer cells

(transcriptome-level phenotype) (Duan et al, 2014); and (iii) an

arrayed image-based genome-wide siRNA screen measuring changes

in 168 single-cell features that quantify morphology, microenviron-

ment and infection in HCT116 colorectal cancer cells based on stains

of DAPI and the rotavirus-expressed viral protein 6 (VP6, single-cell

and population-level phenotypes) (Green & Pelkmans, 2016)

(Fig 1D and E). The latter dataset is composed of single-cell

measurements, in which each perturbed population has 6,040 cells

on average (Fig EV1A). To capture the heterogeneity in cellular

states and collective cellular behaviour as readouts, we aggregated

single-cell features into 1,719 features per gene perturbation profile.

Computed statistical measures include standard deviation (SD),

various quantiles, skewness, kurtosis, bimodality coefficient,

Kolmogorov–Smirnov (KS) (Altschuler & Wu, 2010) and rank-sum

statistics (Fig 1F, Materials and Methods and Table EV2). Further-

more, we corrected all features to detect cellular phenotypes inde-

pendent of cell number (Fig EV1A–D and Materials and Methods).

Performance and validation of KCML

For each of the datasets, we selected the most confident GO term

classifiers based on the recall (true-positive rate) and false-positive

rate such that it is significantly better than classifying a random set

of genes (Fig 2A and Materials and Methods). The average area

under the ROC curve (AUROC), which reflects specificity versus

sensitivity, for the three datasets is 75.44% (Figs 2A and EV1E).

The HT-GPS dataset using gene expression as a readout had the

highest recall and AUROC, as well as the number of classifiable

terms—i.e., classifiers scoring above our selection threshold (Fig 2A

and B). This is expected since this dataset measures, for each pertur-

bation, changes in the expression of 3,287 genes, whose variation is

representative for most of the transcriptome (Duan et al, 2014).

Interestingly, viability measured in 60 cancer cell lines from 12

tissue types can also be informative of gene functions as the number

of classifiable terms is comparable with the multivariate image-

based screen (Fig 2A and B).

Multivariate single-cell-resolved image-based readouts outper-

formed gene expression for some GO terms, while 33 terms were

only classifiable based on image-based single-cell features (Fig EV1F

and G). Many of those are involved in phosphorylation, ubiquitina-

tion or membrane transport. This might be due to the fact that bulk

gene expression does not necessarily capture phenotypic effects

caused by post-transcriptional events, or measure changes at the

single-cell level. For example, exopeptidase activity and voltage-

gated channels had a higher overall recall based on image-based

single-cell features compared to the gene expression dataset

(Fig EV1F). These results show that different experimental tech-

niques for probing biological systems complement each other and

provide different functional information.

The GO term classifiers obtained using KCML captured biologi-

cally relevant signatures, as they performed significantly better than

classifiers based on random sets of genes (Fig 2C, P < 1.8443e-17

and Materials and Methods). Furthermore, KCML outperformed

commonly used analysis pipelines for HT-GPS datasets based on

dimensionality reduction and unsupervised clustering. Clustering of

gene profiles using k-means and self-organising maps while varying

the number of clusters resulted in AUROC of 50%, which indicates

random classification (Fig 2D and Materials and Methods). Similar

results were obtained even when we considered pairwise correlation

between genes in a given GO term (Fig 2D and Materials and Meth-

ods). These results confirm the power of KCML in identifying func-

tionally relevant phenotypes and highlight the need for such a

systematic approach, as existing analysis methods do not provide a

clear functional interpretation of quantitative phenotypes.

To obtain unbiased validation of the KCML predictions, which

were based on annotations downloaded from UniProt in March

2018 (annotations2018), we downloaded annotations accumulated in

UniProt in July 2019 (annotations2019) and used the new annota-

tions between March 2018 and July 2019 (annotations2019-annota-

tions2018) as a validation set (11,383 annotations) (Fig 2E). Since

these new annotations were never seen by KCML, and were based

on diverse resources, they are not likely biased to a particular

dataset. We found that KCML can significantly predict many of the

newly reported annotations with comparable performance for the

different datasets (Fisher’s exact test right-tail P < 0.025e-11 and

Fig 2F). Furthermore, the performance of our models on annota-

tions2018 correlates with the performance on the new UniProt anno-

tations (Fig 2G). Therefore, GO term classifier performance can be

considered for selecting the more likely hypotheses.

An example of a gene for which new UniProt annotations are

consistent with KCML predictions is URB1; a homolog of the

▸Figure 2. KCML performs best in gene function inference and predicts many novel gene functions.

A AUROC and recall of test samples of classifiable terms across the three tested datasets (n > 141).
B The number of classifiable terms in the three datasets.
C, D Comparison of KCML against classifiers that were trained to classify random sets of 200 genes (P < 1.8e-17) (C), or clustering of genes using k-means, SOM

(self-organising maps) or enrichment for pairwise correlations (P < 1e-150) (D) (n > 100).
E Validation annotations are defined based on annotations accumulated between Mar 2018 and July 2019.
F Percentage of new GO annotations that was predicted by KCML correctly.
G Correlation between the performance of GO term classifiers on training annotations (annotations2018) versus validation annotations (annotations2019-2018).
H Predictions of many GO terms are significantly enriched for first neighbour interactions based on STRING, physical (based on experimental evidence in STRING) and

Pathway Commons databases (hypergeometric test). Error bars indicate 1 standard deviation (n = 145, 141, 688 from left to right).

Data information: Box plots elements: centre line, median; box limits, 25th and 75th percentiles; whiskers, � 2.7 standard deviation. Points: outliers.
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essential Npa1p yeast gene. URB1 has been characterised to play

a role in early steps of 60S ribosomal subunit biogenesis via

associating with RNP proteins, and it localises to the fibrillar

centre of the nucleolus, where ribosome biogenesis takes place

(Uhlén et al, 2015; Farley-Barnes et al, 2018). In August 2018,

UniProt had assigned URB1 a new function: non-coding RNA

processing based on a phylogeny analysis. KCML predicted that

URB1 is involved in non-coding RNA processing from each of

the three datasets analysed, which were generated by different

laboratories and different gene perturbation technologies. URB1

interacts with 26 ncRNA-processing proteins based on STRING

and Pathway Commons databases, which further supports this

prediction.

Other examples of new UniProt annotations that are consistent

with KCML predictions include the following: (i) All members of

CD1 glycoprotein family (CD1A, CD1B, CD1C, CD1D and CD1E)

were correctly predicted to be associated with “regulation of the

adaptive immune response” based on the siRNA screen with tran-

scriptome readout; and (ii) the mini-chromosome maintenance

(MCM) complex proteins (MCM2-7), which are known to be

involved in DNA replication, were correctly predicted to also be

involved in double-strand break repair, based on both the CRISPR/

Cas9 cell population viability screens and the siRNA screen with

transcriptome readout. These examples illustrate the power and

generalisability of KCML in predicting new gene functions based

on gene perturbation screens which can be useful for generating

data-driven hypotheses.

As gene ontology annotations are noisy and incomplete, KCML

can generate a high number of potential hypotheses. We sought to

determine whether these predictions can be due to the propagation

of perturbation effects to neighbouring genes in the protein–protein

interaction network. Especially, it is expected that interacting genes

are more likely to be functionally related and their depletion to

result in a similar phenotype (Evans et al, 2013). We found that a

large proportion of predicted genes for a given GO term do interact

with the genes that are previously annotated to that term, based on

STRING and Pathway Commons databases (Fig 2H). This enrich-

ment is significant for many of the terms. Moreover, accounting for

protein–protein interactions results in a large improvement in preci-

sion–recall curves (Fig EV1H). This provides further validation of

KCML predictions, where neighbouring genes in the interaction

network are more likely to perform similar functions.

Using KCML to identify GO terms represented in the image-based
dataset and their relationships

To demonstrate the use of KCML, we focus on the further analysis

of the image-based perturbation dataset, as it is the only dataset that

provides spatially resolved single-cell measurements, which are

particularly challenging to analyse and interpret (Collins, 2009). We

trained KCML using a subset of features to determine the GO terms

that can be learned from different cellular markers (morphology and

microenvironment features based on DAPI versus infection features

based on VP6 staining) (Materials and Methods). Shape features are

predictive of 61 GO terms while infection measurements are predic-

tive of 38 terms, with 8 terms shared (Figs 3A–C and EV2A).

Combining both feature sets result in an additional 54 classifiable

terms (Fig 3A). These results illustrate that multivariate imaging

data can be predictive of many gene functions even when only one

or two cellular stains are used.

To gain insight into the functions that have been learned by

KCML, we generated a network of classifiable GO terms based on

the overlap in their predicted gene lists (Figs 3D and EV2B and C).

We observe a strong cluster of membrane transport-related terms

including potassium, calcium, sodium and metal ion channels

(Fig 3D). Most of these terms can be classified using morphology

and microenvironment features alone and their phenotypic profiles

cluster together (Figs 4A and EV3). Interestingly, based on our data,

ion channel terms (molecular-level) are linked to multicellular

organismal signalling function (tissue level). Another cluster

included many phosphorylation- and ubiquitination-related terms,

many of which are classifiable based on infection features (Fig 3D).

Thus, KCML can classify biological functions that act at different

scales, from the molecular to the tissue level.

KCML automatically maps GO terms to functional phenotypes

To understand the phenotypic changes associated with different GO

terms, we categorised the phenotypic features based on feature type

(cell context, morphology, DAPI intensity and texture, VP6 intensity

and texture, state, etc.) as well as measurement type (summary

statistics, spread statistics, distribution shape or distribution

distance—the distance between perturbed and control distributions)

(Fig EV2E and Table EV2). We then counted and scaled the number

of features selected by a term classifier in the different categories

(Figs 4B and EV2D). Notably, the rank-sum statistic was among the

most selected measure by different classifiers indicating its biologi-

cal relevance and robustness (Fig EV2E).

Membrane transport-related terms are predicted based on the

increased number of cells and total cell area as well as local cell

density and cell distance to islet edge (Figs 4B and EV3). Surpris-

ingly, the “ligand gated ion channel activity” and “voltage-gated ion

channel activity” terms are the most accurately classified

(Fig EV2A). Depletion of chloride transport genes also affected

many texture and intensity measures of VP6, but most interestingly,

it significantly decreased rotavirus infection (P < 4.9e-139, Figs 4B

▸Figure 3. Analysis of functional information using KCML based on image-based dataset.

A The number of classifiable terms when using morphology versus infection features.
B AUROC and recall of test samples for classifiable terms when using different subsets of features (n > 38). Box plots elements: centre line, median; box limits, 25th and

75th percentiles; whiskers, � 2.7 standard deviation. Points: outliers.
C The improvement in performance when all the features are used for terms that are classifiable when only shape features are used (n = 61), only infection features

are used (n = 38), or either shape or infection features are used (n = 8). Only a slight improvement in classification performance is achieved by combining feature
subsets when the signatures based on a subset of features are already strong. Error bars represent mean + SD.

D Network representation of classifiable terms where edges indicate the overlap in the predicted gene lists between GO terms.
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and EV3A). These results illustrate the functional relevance of

single-cell aggregated measurements of cell morphology and context

and suggest that chloride channels might be required for the spread

or replication of rotavirus.

From image-based data, KCML predicted a number of genes

involved in mesoderm development (MSD). This was based on the

spread and summary values of cell context, DAPI intensities, as

well as the distribution shape of cell morphology, which are

indicative of changes in cell organisation (Figs 4B and EV4A).

Indeed, depletion of previously annotated (e.g., SMAD3) and

predicted (e.g., ITGAV, WNT8B and OR51B4) MSD genes results in

small cell colonies compared to control (Fig 4C). This phenotype

might indicate the inability of cells to spread or migrate. This

hypothesis is supported by the high overlap of the MSD-predicted

genes with GO terms such as migration (epithelial and ameboidal-

like) and morphogenesis of branching structure (Figs 3D and

EV4A). Thus, through a holistic analysis of multiple features,

KCML reveals a role for MSD-associated genes in the spread and

organisation of epithelial colorectal cancer cells into a uniform

epithelial sheet.

KCML allows multi-scale analysis of high-dimensional data

Because KCML predicts GO terms associated with different biologi-

cal scales, we asked whether it can subdivide higher-scale properties

shared by a set of genes into gene subsets that carry out different

aspects of the higher-scale property at lower scales. For example,

previously annotated genes to a higher-scale GO term such as MSD

are predicted by KCML to perform different functions at lower

scales, such as positive regulation of epithelial cell migration and

mammary gland development (Fig 5A). Interestingly, MSD genes

that are predicted to play different functions at lower scales tend to

occupy different regions in the MSD subphenotypic space, reflected

by differences in a subset of MSD features (Figs 5B and EV4B).

Thus, KCML allows specifying a common higher-scale phenotypic

property emerging from the collective action of a set of genes into

different lower-scale aspects of this property performed by subsets

of these genes.

In addition, perturbation of a biological function often affects

only a subset of the measured features. For example, the mean and

integrated intensity of DAPI is significantly lower in genes predicted

to participate in cell cycle checkpoint (Fig EV5A). However, these

genes do not cluster together when all measured phenotypic

features are considered, but only when considering features selected

by the cell cycle checkpoint classifier (Fig EV5B and C). Impor-

tantly, identification of subphenotypic effects associated with each

gene allows determination of which of those subphenotypic effects

are potential off-target effects. Specifically, predictions of genes that

are targeted by the same siRNA seed (guide strand) are filtered out

if the seed is significantly over-represented in a given GO term clas-

sifier (Fig EV5D–F and Materials and Methods). This emphasises

the importance of searching in the subphenotypic space to decon-

volve biological signals contained in high-dimensional data and

obviate off-target effects.

Validation of mesoderm development classifier predictions in the
context of colorectal cancer

Since loss of healthy tissue organisation is one of the main charac-

teristics in tumours (Hinck & Näthke, 2014), we sought to analyse

MSD genes whose perturbation resulted in abnormal cell organisa-

tion between HCT116 cells in culture. As expected, MSD genes are

significantly enriched for morphology-regulating pathways including

tight junctions, focal adhesion and actin cytoskeleton (Figs 6A and

EV6 and Table EV3). Among the predicted genes are 15 collagen, 12

integrin and many polarity genes, such as Par3 and Par6

(Table EV3). Moreover, many of the predicted MSD genes also

participate in pathways that are often dysregulated in colorectal

cancer including TGFb, WNT and PI3K-AKT pathways (Muzny et al,

2012) (Fig 6A). Predicted genes include TGFbR2, PTEN and ERBB2

which are often mutated in cancer (Kuipers et al, 2015). TGFb and

WNT signalling are known to contribute to mesoderm development

and their over-activation is associated with mesenchymal and stem-

ness phenotypes in colorectal cancer, respectively (Hinck & Näthke,

2014). Collectively, these results illustrate how KCML allows

constructing an integrative view of how modular gene programmes

coordinate different signalling pathways to drive cellular pheno-

types.

As known MSD genes are highly implicated in colorectal cancer,

we sought to determine the relevance of predicted MSD genes in

colorectal cancer patients. We interrogated The Cancer Genome

Atlas (TCGA) gene expression dataset (Muzny et al, 2012) of 577

colorectal cancer patients. Four consensus molecular subtypes

(CMS) of colorectal cancer have been identified: CMS1 (microsatel-

lite instability), CMS2 (WNT activation), CMS3 (metabolic) and

CMS4 (mesenchymal) (Guinney et al, 2015). Strikingly, the top 300-

predicted MSD genes recapitulate colorectal cancer molecular

subtypes with comparable performance to using all genes or known

mesoderm genes (Fig 6C, Materials and Methods). This is signifi-

cantly higher than random sets of 300 genes (P ≤ 3.44e-25 and

Materials and Methods). Therefore, MSD genes that alter epithelial

cell organisation in HCT116 cells can stratify colorectal cancer

patient’s molecular subtypes.

Next, we sought to validate the relationship between TGFb and

WNT signalling, and expression values of predicted MSD genes in

colorectal cancer. Average expression of WNT genes is used as a

▸Figure 4. Association between phenotypic changes in single-cell-based dataset and GO terms.

A Hierarchical clustering of the average fold change of predicted positive versus negative samples for each term using all features. Hierarchical clustering is based on
ward linkage and Euclidean distance. Regions outlined by cyan rectangles are shown in Figs EV3 and EV4A.

B The number of features in different categories that are selected by the respective GO term (scaled). Blue indicates the number of features with a higher average than
control, while red indicates the number of features with a lower average than control. * indicates the GO terms that are classifiable by either shape or infection
features.

C Example cell images following knockdown (k/d) of known or predicted MSD genes versus control (scrambled). (ii) zoom-in image of the region highlighted in (i). Blue:
DAPI, and green: VP6 antibody. Scale bars = 65 lm.
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surrogate for WNT signalling while the TGFb signature is based on

genes reported by a previous study (Calon et al, 2012) (Materials

and Methods). We found a significant correlation between MSD

genes and TGFb and WNT signatures in colorectal cancer patients

(Fig 6D). The correlation between the predicted MSD genes and

TGFb/WNT signalling in colorectal cancer patients further supports

their functional interaction.

Strikingly, 83 olfactory receptors were predicted by KCML to be

involved in MSD, and their average expression correlates with WNT

and TGFb signatures (Fig 6B and D, Table EV4). These include

OR51B4 and OR5K1 genes that are over-expressed in HCT116 cells

when compared to 947 cancer cell lines (Barretina et al, 2012). We

sought to investigate the correlation between olfactory receptors

and colorectal cancer patient outcomes as their application in color-

ectal cancer therapeutics is beginning to emerge (Lee et al, 2019).

OR51B4 and OR5K1 are mostly expressed in patients with tumour

grade 3 or higher (Fig 6E and F). Their expression, albeit at a low

level, is predictive of significantly worse patient outcome based on

Kaplan–Meier log-rank test especially in grade 3 and 4 tumours

(Figs 6G and H, and EV7A–E). Similar results are obtained when we
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Figure 5. KCML allows pleiotropic analysis of high-dimensional phenotypic data.

A Heatmap showing SVM-based ranks (z-scored) for known MSD genes against multiple functions. The functions on the y-axis are the top ten overlapping terms with
MSD classifier prediction.

B Embedding of MSD subphenotypic space using t-SNE based on the selected features by MSD classifier where only MSD genes are considered (Materials and Methods).
Colour indicates the respective SVM rank for each gene for the corresponding function.

▸Figure 6. MSD predicated gene list is associated with key colorectal cancer pathways and patient outcome.

A KEGG pathways that are significantly represented in MSD genes (P < 0.05 based on right-tail Fisher’s exact test). Previously annotated genes (known) to MSD are
shown in red while others are predicted by KCML based on phenotypic similarity to known MSD genes.

B Network depicting the interactions between MSD genes based on STRING and Pathway Commons.
C TCGA colorectal cancer patients’ data projected into the first two principal components based on the expression of all genes (left), and expression of the top 300

predicted MSD genes (middle) and the expression of known mesoderm genes.
D Spearman correlation coefficient between TGFb or WNT signatures and the average of known MSD genes, average of predicted MSD genes (rank 1–300, rank

301–600 and rank 301–1,000) or average of MSD-associated olfactory receptors (P < 0.05). ORs: olfactory receptors.
E, F Survival of colorectal cancer patients (months) against the expression of OR51B4 (E) and OR5K1 (F). Colour indicates tumour grade where grade 1 is well

differentiated, grade 2 is moderately differentiated, and grade 3 or 4 is poorly differentiated.
G–I Kaplan–Meier survival analysis of colorectal cancer patients based on Grade 3 � tumours and the expression state of OR51B4 (G), OR5K1 (H) and olfactory receptor

metagene (I), which is aggregated, based on the expression of many olfactory receptors (Materials and Methods and Fig EV7G).
J, K Wald statistic value based on Cox proportional hazard regression analysis of OR5K1 predictivity of survival against tumour grade, presence of lymph nodes and

metastasis. Detailed results for all tested variables and models significance are shown in Tables EV5–EV7. * indicates P < 0.05, and ** indicates P < 0.001.
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aggregated the state of many MSD-associated olfactory receptors

(Materials and Methods and Figs 6I and EV7F and G). This signifi-

cant association was not observed using randomly selected genes

(Materials and Methods). Importantly, expression of OR5K1 or the

olfactory receptor metagene is predictive of survival, independent of

other clinical variables including tumour grade, presence of lymph

nodes and metastasis state, as well as the expression levels of neigh-

bouring oncogenes (Fig 6J and K, Tables EV5–EV7 and Materials

and Methods). The expression values of these genes are unlikely to

be due to misalignment with other olfactory receptors as they gener-

ally share less than 95% sequence similarity with other olfactory

receptors (Fig EV7H and Table EV8). These findings confirm the

association between expression values of olfactory genes and the

WNT and TGFb pathways, which is consistent with our KCML

prediction based on gene perturbation phenotypes.

Discussion

Intelligent machine-learning methods that systematically integrate

existing biological knowledge are crucial for accommodating the

explosive growth of phenotypic data at multiple system levels. Here,

we propose a computable and flexible framework that integrates

functional annotations to automatically identify three-way relation-

ships between phenotypes, genes and biological functions. Not only

does KCML outperform clustering-based approaches, but it also

accounts for the pleiotropic nature of gene function and can mitigate

the problem of off-target effects. We show that KCML generalises to

different types of data and predicts novel gene functions based on

various multivariate phenotypic readouts from images and tran-

scriptome profiles.

A general problem in inferring functions from HT-GPS datasets is

that the gene perturbation phenotype might be a result of affecting a

biological function directly or indirectly through regulating a related

function, which are propagated through protein–protein interaction

networks. Indeed, we observe a high enrichment of protein–protein

interactions for genes that are predicted to share a given term. This

may explain the high number of positive predictions, as many

neighbours in the interaction network are predicted to contribute to

the same GO term. Another reason for the high number of predicted

genes is that existing phenotypic profiling techniques only provide

partial information on the phenotypic state of the cell and, therefore,

more genes are likely to share this partial state. Advances in multi-

omics approaches hold the promise to obtain more complete pheno-

typic profiles. Importantly, KCML allows prioritising predictions

based on SVM confidence or against other biological annotations

such as protein–protein interactions or KEGG pathways. Alterna-

tively, high confidence predictions can be obtained by integrating

results from various datasets. Taken together, our predictive analy-

sis framework serves as a tool to generate testable hypotheses and

pave the way to more integrative studies.

One limitation of our approach is the dependency on noisy GO

annotations which do not provide perfect ground truth. Moreover, a

sufficient number of positive genes are required to classify a certain

biological function. Both of these factors can restrict the application

of data-hungry deep learning methods and might influence KCML

performance. Nonetheless, these issues also apply to existing pipeli-

nes and will be reduced as our databases of gene functions expand.

Cellular morphology has been illustrated to reflect multiple

aspects of cell physiology (Fuchs et al, 2010; Sailem et al, 2014).

Here, we further show that advanced measures of single-cell distri-

butions in image-based screens are useful for identifying genes regu-

lating multicellular functions. KCML identified that depletion of

annotated ligand- or voltage-gated ion channel genes affects cell

area and microenvironment measures at the population level. This

is consistent with previous reports on the role of ion channels in cell

volume regulation and proliferation (Lang et al, 2007). At a higher

system level, KCML predictions for ion channel terms overlapped

with multicellular organismal signalling. This implicates that ion

channel perturbations affected communication between epithelial

cells akin to their function in neurons (Barshack et al, 2008; House

et al, 2015; Whited & Levin, 2019), but further experiments are

required to validate that. Importantly, aggregated measures of

single-cell features outperformed gene expression data in the identi-

fication of many membrane transport functions.

Our systematic analysis revealed a role for MSD genes in

multicellular organisation, which manifested in cell clumping and

increased local cell density in colorectal cancer cells. Cell

microenvironment has been shown to contribute to cancer initia-

tion and progression (Friedl & Alexander, 2011). Our analyses

demonstrate that perturbation of many extracellular matrix and

integrin genes can result in a similar phenotype to perturbing

TGFb and WNT signalling. This suggests an important link

between cell microenvironment (adhesion) and shape (cytoskele-

ton) and determination of cell fate (i.e., stemness and differentia-

tion via TGFb and WNT signalling). Consistent with this, SMAD3,

which plays an essential role in TGFb signalling, has been shown

to link shape information to transcription in breast cancer cells

(Sailem & Bakal, 2017), while WNT signalling can be linked to

cell microenvironment via the differential localisation of its down-

stream effector b-catenin. These results exemplify how KCML can

be used to automatically interrogate quantitative phenotypic pro-

files to identify combinatorial use of modular gene programmes

in different contexts.

The predicted role of olfactory receptors in MSD is consistent

with previous reports on their expression in developing mesoderm

tissue and their role in patterning (Dreyer, 2002; Nef & Nef, 2002;

Weber et al, 2002). Moreover, they are associated with TGFb and

non-canonical WNT signalling in neuronal cells (Getchell et al,

2002; Zaghetto et al, 2007). There is increased evidence for the ther-

apeutic potential role of olfactory receptors in many diseases includ-

ing cancer (Lee et al, 2019). We show that the expression of

OR51B4 and OR5K1 correlates with patient grade and worse progno-

sis. This supports the role of olfactory receptors in cell organisation,

as higher-grade tumours are characterised by poorly differentiated

cells and loss of epithelial tissue structure (Guinney et al, 2015).

Olfactory receptors in the gut might be activated by odours and

chemicals produced by microbes or ingested food. This might, in

turn, activate dedifferentiation via crosstalk with TGFb and WNT

pathways. Thus, while more work is needed to investigate the

underlying mechanisms, these results suggest that olfactory recep-

tors might provide a potential biomarker for higher-grade colorectal

cancer.

In summary, our results illustrate the generalisability and utility

of KCML as a framework for systematic gene function discovery

from HT-GPS datasets across multiple biological scales. We believe
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that KCML can scale-up to more complex phenotypic screens prob-

ing micro-tissues and organisms or utilising advanced multiplexing

technologies (Gut et al, 2018) and single-cell RNA sequencing

(Norman et al, 2019). We envision that systematic application of

KCML to the large amounts of generated HT-GPS datasets will

greatly accelerate and advance our understanding of gene functions

at the molecular, cellular and tissue levels which can lead to the

discovery of new therapeutic gene targets.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source Identifier or catalog number

Experimental models

HCT116 (H. sapiens) (Green & Pelkmans, 2016)

MCF7 (H. sapiens) (Duan et al, 2014)

60 cancer cell lines (H. sapiens) (Rauscher et al, 2018)

Software

Cytoscape v3.3.0 http://www.cytoscape.org (Shannon et al, 2003)

MATLAB 2019a https://uk.mathworks.com

CellProfiler https://cellprofiler.org (Carpenter et al, 2006)

R 3.6.2 https://www.r-project.org

Other

Gene ontology annotations http://geneontology.org/docs/download-go-annotations/

Protein–protein interactions https://www.string-db.org (Szklarczyk et al, 2017) and
https://www.pathwaycommons.org (Cerami et al, 2011)

TCGA colorectal cancer data https://portal.gdc.cancer.gov (Muzny et al, 2012)

Viability data (Rauscher et al, 2018)

Expression data of MCF7 http://www.lincsproject.org/ (Duan et al, 2014)

Sequence similarity of olfactory receptors https://genome.weizmann.ac.il/horde/ (Olender et al, 2013)

Methods and Protocols

KCML implementation and data analysis
KCML pipeline and all analyses were performed using MATLAB

(http://www.mathworks.com/) unless stated otherwise.

Preparation of GO annotations
GO annotations were downloaded from UniProt (March 2018).

Annotations of child terms were escalated up to parent terms in

order to have a sufficient number of positive examples for classifi-

cation. Only GO terms that had 100–500 gene annotations were

considered resulting in 1,575 terms. Highly redundant GO terms

(Jaccard index > 70%) were merged.

Gene profiles computation for image-based readouts
Image analysis was performed using CellProfiler as previously

described (Green & Pelkmans, 2016). Briefly, all images were pre-

processed using illumination correction and background subtrac-

tion. Nuclei were segmented based on DAPI channel. Cells were

defined as 10-pixel expansion of the nuclei. Shape, intensity and

texture features were quantified for DAPI and VP6 channels. SVM

classifiers were trained to identify mitotic, apoptotic, poorly

segmented and infected cells. Infection index was corrected for

population context (Green & Pelkmans, 2016). The number of cells

in different states was normalised to the number of cells in the

well.

Single-cell data were aggregated per well using various statistical

measures (Table EV2). KS and rank-sum statistics were used to

compare a treated population to scrambled/empty populations (dis-

tributions distance).

The rank-sum statistic was computed based on Mann–Whitney–

Wilcoxon rank-sum test using ranksum MATLAB function. All

values of a feature X were ranked when combining perturbed and

control samples. The sum of the ranks of the perturbed sample was

then used to calculate the statistic as following

U ¼ R� n1ðn1 þ 1Þ
2

where U is the rank-sum statistic, R is the sum of cell ranks in the

perturbed sample of cells, and n1 is the size of the perturbed

sample.

KS distance was computed as the KS statistic based on a

two-sample Kolmogorov–Smirnov test using kstest2 MatLab

function. KS distance measures the maximum distance between

the cumulative distribution of perturbed and control cell

populations.
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Both KS statistic and rank-sum test statistic were multiplied by a

scaling factor sf to account for differences in sample sizes.

sf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � n2

n1 þ n2

r

where n1 is the size of the perturbed sample, and n2 is the size of

the control sample.

Feature subsets of image-based dataset
All features based on DAPI channel as well as cell context measures

were defined as morphology features. On the other hand, features

based on VP6 channel including texture and intensity were defined

as infection features. These also include the microenvironment of the

infected cells such as the number of infected cells on the islet edge.

Data pre-processing
All datasets were cleaned by excluding samples or features with

more than 30% missing data. Remaining missing values were

imputed based on the weighted mean of the nearest 10 neighbouring

features based on Euclidean distance.

1 siRNA gene expression: siRNA gene expression profiles were

averaged per gene. Principal component analysis was

performed, and the first 1,000 principal components (z-scored)

were used for KCML classification.

2 Viability: z-score was used to normalise the data.

3 Image-based datasets: Genes that significantly reduced viability

(< 625 cells) were filtered to avoid SVM bias towards viability

phenotypes (Green & Pelkmans, 2016). All data were z-scored

by subtracting the plate mean and dividing by the plate stan-

dard deviation (SD). Then, the average per gene perturbation

was computed. To eliminate features dependency on cell

number, cell number was binned into 32 bins such that each

bin had at least 100 gene perturbation profiles. Finally, feature

values for samples in each bin were z-scored to the corre-

sponding bin mean and SD.

KCML training
Training of classification models: The same training pipeline was

applied to the three datasets. The annotated genes for each GO term

were split into 70% for training and 30% for testing. Different classi-

fication methods were tested on a subset of terms including Random

Forests, Lasso Regression and SVM. SVM was chosen because it

resulted in less overfitting (results are not shown). A binary SVM

with a Radial Basis Function (RBF) kernel was trained per term to

classify the annotated genes (positive class) against a set of randomly

selected genes excluding annotated genes (negative class). SVM was

trained based on a balanced number of genes in the negative and

positive class. All training was performed with a 30-fold cross-valida-

tion for training samples to avoid overfitting. Scale of SVM kernel

(sigma) was optimised by brute force search based on F-score metric.

Different sigma values were tested for each dataset. F-score consider

sensitivity as well as specificity of the model by computing the

harmonic mean of precision and recall metrics as following:

Fscore ¼ 2� precision� recall

precisionþ recall

Feature selection

Forward feature selection was applied to identify discriminative

features for each term. Features were initially sorted based on KS

test P-value comparing positive and negative samples. Sorted

features were added sequentially to the model, and only features

that improved the model performance based on F-Score were

retained. No more than 100 features were allowed per model.

Once parameters are optimised, an additional cross-validation

step may be applied to minimise potential bias to the initial split in

training and testing gene sets. Although KCML predictions are

robust in general to initial seed where on average 81% of the predic-

tions were consistent with the initial run. SVM can be retrained

based on the selected features and SVM parameters while using 10-

fold cross-validation using all the annotated genes. Then, predic-

tions that are consistent across 7/10 of the trained classifiers can be

considered. Therefore, cross-validation or even leave-one-out can be

used to obtain more stringent predictions following parameter

optimisation.

Restricting KCML to gene annotations based on experimental

evidence codes in UniProt (EXP, IDA, IEP, IMP, IGI and IPI) was

tested but did not improve the performance. We also tested exclud-

ing genes in terms that are semantically similar to the term under

classification from the negative class. This also did not have a signifi-

cant effect on KCML performance as selecting these genes had a very

low probability when a random sample from all genes was selected.

Scoring metrics and selection of classifiable GO terms
The classification performance can be affected by multiple factors:

(i) The quality of GO annotations. (ii) For a given GO term, not all

annotated genes would perform that function in the investigated cell

type or context. (iii) Incomplete data: the set of phenotypic readouts

acquired by a certain experiment provides a partial description of

cellular states. (iv) Perturbations efficiency.

AUROC provides a good indication on the true-positive rate

versus false-positive rate of each GO term classifier at different SVM

confidence cut-offs. However, AUROC is not sufficient, as some

models will have very high false-positive rate that is balanced by

high true-positive rate. Instead, we selected models based on combi-

nation of metrics to ensure the reliability of the model. Our cut-off

for false-positive rate is < 20%, recall on test samples > 30% and

recall on training samples > 40% as all classifiers of random gene

sets scored less than this cut-off.

Random gene sets: 100 random gene sets were drawn with each

sample having 200 genes. Then, KCML was trained to classify these

random samples.

Performance of clustering-based method
Principal component analysis was applied to reduce the dimension-

ality of the data. K-means and self-organising maps clustering meth-

ods were applied to the first 100 principal components which

captured 96.25% of the variability in the data. The number of clus-

ters was varied between 10 and 200 clusters, as it is not trivial to

determine the number of clusters. Hierarchical clustering was also

tested but found to result in one big cluster and many clusters with

very few genes. Once clusters were determined, the overlap between

genes in each of the clusters and genes in the 1,019 tested GO terms

were used to compute the recall and AUROC.
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Performance of correlation-based methods
Pearson correlation coefficient between genes annotated with the

same GO term was measured. A gene that has > 0.9 correlation with

any of the other genes in a given GO term was counted as a true-

positive if it is also annotated with that term or false-positive if it is

not annotated with that term.

Generation of GO term network for Image-based dataset
The classifiable GO terms based on the image-based dataset were

connected by an edge if their overlap is > 0.70. GO terms that

did not score an overlap above this threshold were connected to

the term with the highest overlap. This was performed iteratively

until all the terms got connected to the network. The generated

network was visualised in Cytoscape v3.3.

Interaction enrichment
For a given GO term classifier, we counted the number of positive

and negative genes on one hand, and those that are first neighbours

of the annotated genes for that term or not. Then, hypergeometric

test was used to calculate the significance of the number of first

neighbour interactions.

Detection of seed effects
A pool of four siRNA was used in the image-based single-cell-resolved

dataset. The siRNA seed was defined as the 2nd-7th position of the

siRNA sequence. 2,616 out of 3,575 seeds occurred in four or more

genes. On average, every seed occurred in 20.17 genes. If a seed associ-

ated with different genes was significantly enriched in the predicted

genes list for a given GO term (Fisher’s test right-tail, P < 0.01); then,

all the predictions linking the genes targeted by this seed to the enriched

termwere considered off-target effects and filtered out (Fig EV5D).

Subphenotypic space embedding
To generate the subphenotypic space that captures SVM decision

boundaries, we applied logistic regression to learn feature weights

for the selected features by SVM. We trained a logistic regression

model to learn the predictions of a given SVM term classifier based

on the selected features. Then, t-SNE embedding was generated

based on the selected features by SVM term classifier multiplied by

their corresponding weights.

TCGA analysis
Silhouette clustering index of colorectal cancer molecular subtypes

was used to determine clustering quality (separability and coher-

ence of clusters) based on all genes, top predicted MSD genes or

known MSD genes. Principal component analysis was used to

reduce the number of dimensions. The first 2 principal components

were used to compute the silhouette index of colorectal cancer

molecular subtypes. The same number of principal components was

used when considering the top 300 predicted MSD genes based on

SVM confidence. To estimate the significance of MSD genes in the

classification of colorectal cancer molecular subtypes, we generated

a hundred random samples of 300 genes and computed the mean of

average silhouette values for the hundred samples (t-test).

Transcription-based signatures

MSD signatures were computed as the average expression of top

predicted MSD genes (rank 1–300, rank 301–600, 301–1000) and

known MSD genes. Olfactory receptor signature was computed as

the average expression of olfactory receptors associated with MSD.

WNT signature was computed as the average of the following WNT

genes: WNT1, WNT2, WNT2B, WNT3, WNT3A, WNT4, WNT5A,

WNT5B, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT9A,

WNT10A and WNT10B. TGFb signature was computed as the aver-

age of genes identified in Calon et al (2012), except for endothelial-

associated genes.

Expression state of olfactory receptors was empirically deter-

mined depending on the distribution of their expression values as

following: OR51B4 cut-off = 0.25, OR5K1 cut-off = 0.01 and olfac-

tory receptor metagene cut-off = 0.1. Olfactory receptor metagene

was defined by aggregating the expression state of many olfactory

receptors as following: Each olfactory receptor was added iteratively

to the metagene and retained if the metagene scored significant

based on Kaplan Meier log-rank test (Fig EV7G). To avoid overfit-

ting, a leave-one-patient-out cross-validation was performed and the

gene is retained only if it scored significant in more than 85% of the

tests. Forty-five olfactory receptors were selected out of 83 genes.

To investigate potential spurious association between gene expres-

sion and patient survival, 100 random genes were drawn. No signifi-

cant association with patient outcomes using Kaplan–Meier survival

analysis was observed with P < 0.005.

Kaplan–Meier survival analysis and Cox proportional hazard

modelling were performed in R.

Independence of olfactory receptor metagene expression from

neighbouring oncogenes amplification

Known cancer genes (Repana et al, 2019) that are located on the same

cytogenetic bands as the olfactory receptors in our metagene were

retrieved. To test whether the olfactory receptor metagene can predict

survival independent of the expression of neighbouring cancer genes

Cox proportional hazard test was performed (Table EV9).

Data availability

Image-based single-cell data and KCML predictions are available on

FigShare repository (Data ref: Sailem et al, 2020 and Data ref: Green

& Pelkmans, 2020). Code is available on GitHub repository: https://

github.com/hsailem/KCML and is also provided as Code EV1.

Expanded View for this article is available online.
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