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Abstract

uncouples phenotype and genotype.

Therapeutic resistance of neoplasms is mainly attributed to gradual evolution of mutational profile'. Here, we
demonstrate a microRNA-mediated mechanism that effectively improves fitness of SKBR3 mammary carcinoma cells
by cytoplasmic reprogramming. The reprogramming is triggered by endogenous miR4673 transcribed from notch-1
locus. The miRNA downregulates cdk-18, a cyclin-dependent kinase that regulates M-G1 transition in cycling cells*”.
Suppression of cdk-18 triggers mitophagy and autophagy. Due to high autophagic flux, oestrogen receptor-1"/
progesterone receptort/p53* (Esr1t/Pr/p53™) SKBR3 cells are coerced into an Esr1~/Pr'®"/p53~profile. Increased
mitophagy in combination with proteasomal degradation of p53 transiently arrests the cycling cells at GO and
enhances radio-resistance of the SKBR3 population. These findings highlight the impact on cancer therapy of non-
encoded neoplastic resistance, arising as a consequence of miRNA-mediated autophagic reprogramming that

Introduction

Tumour resistance attributed to clonal evolution of
neoplastic cells, poses a major challenge for cancer ther-
apy*. Clonality of neoplastic cells is mainly considered to
reflect heterogeneity of mutational landscape®. In the
proposed linear evolutionary model, the mutational
landscape is shaped by selection for phenotypes that
improve the fitness profile of neoplastic cells in a step-
wise and protracted manner. Recent reports suggest,
however, alternative routes to tumour resistance. One
such mechanism is clonal competition that leads to
oscillatory dominance of resistance subclones in response
to treatment®. Similar reports of alternating phenotypic
reversal® suggest a more dynamic non-linear nature of
tumour resistance that is not necessarily encoded. While,
upstream mediators of “non-encoded” tumour resistance
remain largely unknown, improved survival of a
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neoplastic population is underpinned by enhanced
apoptotic threshold””®,

Enhanced apoptotic threshold is typically caused by
mutations that impair genomic surveillance mechanisms.
In particular, loss-of-function mutations of the tumour
suppressor gene p53 are associated with resistance to
apoptosis’. While p53 has a short half-life in normal cells,
DNA damage, among other sources of cellular stress, can
stabilise p53'°. The stabilised p53 in turn communicates
cell cycle arrest and activates apoptotic signalling'®.
However, apoptosis is avoided if p53 activates con-
comitant autophagy as a pro-survival mechanism"'. The
increased autophagic flux promotes rapid degradation of
p53 and prevents excessive accumulation of stable p53
and subsequent apoptosis'’. Neoplastic cells commonly
utilise the latter phenomenon to bypass p53-induced
apoptosis via increased autophagic flux'”. To that end,
microRNAs are emerging as key regulators of autophagy
in neoplastic cells'®>, While microRNAs inhibit various
stages of the autophagy cascade from induction to vesicle
nucleation'?, there is no evidence for the positive induc-
tion of autophagy. Herein, we report efficient induction of
autophagy by miRNA-4673 encoded in intron 4 of human
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notch-1 locus. The miRNA-induced autophagic flux
depletes cytoplasmic p53 and improves post-radiation
survival of neoplastic cells. The observed non-encoded
induction of resistance is underpinned by miRNA-
mediated cytoplasmic reprogramming.

Results

MiR4673 was initially detected in clinical samples of
breast cancer patients'”. Transcript level of miR4673 in
neoplastic breast tissue is significantly higher than other
tissues (Fig. la). We, therefore, selected the SKBR3
mammary carcinoma cell line with an extra copy of
ligand-independent Erbb-2 (Her2) and high endogenous
expression of miR4673 (Fig. 1a) to study potential invol-
vement of miR4673 in induction/suppression of non-
encoded resistance mechanisms.

Amplified miR4673 activity uncouples phenotype from
genotype

In SKBR3 cells, signalling input from an additional copy
of erbb-2 informs the neoplastic phenotype. Hyperactive
erbb2 inhibits glycogen synthase kinase-3B (GSK3B)'® that
activates MDM2 by phosphorylation. As a result, MDM2-
dependent degradation of p53 is abolished'” (Fig. 1b).
Likewise, catenin-p1 (key Wnt mediator) evades GSK3p-
mediated degradation (Fig. 1b). We initially investigated
the impact of miR4673 signalling on p53 and catenin-p1 as
phenotypic landmarks of SKBR3 cells. Amplification of
endogenous miRNA signalling (miR*™) by an exogenous
dose of the naked pre-miRNA (miR°™"**°) significantly
expanded the p537/p21~ population at the cost of p53*/
p217 cells within 24 h (45 to 86%; Fig. 1c, d). Quenching of
the endogenous miRNA by application of an antisense
RNA (AS**", 100 nM, 2 x 10° cells) largely reversed the
observed phenomenon (45 to 14%; Fig. 1c, d) within the
same timeframe. A similar bistable trend following
amplification/inhibition of the endogenous miRNA sig-
nalling was noted for catenin-f1 (Fig. 1c). Concurrent
reduction in miR*™"**° cells of both intracellular Notch-1
and antagonistic catenin-p1'®, hinted at a non-selective
depletion of the intracellular protein pool (Fig. 1c, d).

MiR4673 does not target p53, catenin-p1, notch-1 and
erbb-2 directly. Hence, offsetting the anti-catabolic sig-
nalling input from hyperactive Erbb2 can be accomplished
by post-transcriptional (Ago2-dependent RNA silencing)
and/or post-translational (mTOR-dependent autophagy)
mechanisms (Fig. 1¢c, d bottom). As predicted, miRend+exe
cells demonstrated Ago2™€"/mTOR"" profile in contrast
to the Ago2'™/mTOR™E" fingerprint of AS**" cells. The
miR-mediated Ago2™&" profile communicates enhanced
Ago2-dependent RNA silencing'®. The mTOR'"" profile,
on the other hand, is consistent with increased autophagic
flux*®. In addition to autophagy, downregulation of
mTOR reduces protein synthesis via ribosomal S6
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kinase®' and 4E-BP1 (Eukaryotic Translation Initiation
Factor 4E Binding Protein 1)**. The findings suggest that
the Ago2™&"/mTOR™" profile uncouples genotype and
phenotype by non-selective depletion of intracellular
protein reservoir. We, therefore, investigated potential
impact of phenotypic uncoupling on the breast cancer
diagnostic fingerprint®® informed by availability of Esrl,
Pr, and Erbb2 proteins.

Phenotype/genotype uncoupling distorts the diagnostic
portrait of neoplastic cells

Forced signalling by the microRNA (miRe"d+ex)
coerced an Esr~ and Pr'® molecular profile in the neo-
plastic cells (Fig. 2a) similar to the miR-induced depletion
of catenin-p1 and p53. The miRNA also restored normal
membranous representation of Erbb2 in Erbb2"e" neo-
plastic cells by overriding transcriptional input from the
extra copy of the gene (Fig. 2a). In agreement with our
findings, proteasomal degradation can effectively exhaust
the cellular reservoir of Erbb2?* and ESR-17° despite
active transcription and translation. The supervisory
dominance of proteasomal activity over transcription is
often invoked during development to offset transcrip-
tional noise and induce signalling robustness*®. The same
capacity is recapitulated in response to stressors where
p27 induces autophagy and cell cycle arrest as a pro-
survival mechanism®’. Interestingly, we noted re-
emergence of nuclear Ki-67 (Fig. 2a) following inhibi-
tion of the endogenous miRNA (AS“*") that suggests
entry into the interphase®®. One interpretation is that
enhanced protein degradation in miR®™4™*** SKBR3 cells
impacts on availability of cyclins and arrests the cells at
GO phase. In a parallel scenario, serum starvation arrests
cycling cells at GO by upregulating autophagy®. The
quiescent cells arrested at GO are expected to become
more resistant to stressors due to autophagy. As expected,
the miR* ™ cells changed morphology, became more
adherent and demonstrated higher survival rate and faster
recovery following UVC irradiation (Fig. 2b). Enforced
adherence to matrix suggested stabilised integrin-based
focal adhesions. Focal adhesion kinase signalling, in turn,
inhibits cyclin-dependent kinase inhibitors p21 and p27°°
and improves tolerance to DNA damage® caused by
irradiation. We, therefore, sought a molecular mechanism
that explains the increased protein degradation and GO
arrest instructed by miR4673 signalling.

A faux stress signal improves fitness of neoplastic cells by
invoking a GO molecular signature

We identified Cdk-18, the closest mammalian homo-
logue of yeast Pho85 cyclin-dependent kinase, as a
potential target of miR4673 (Fig. 3a). In yeast, Pho85 acts
as a nutrient sensor’” that licences M-G1 transition in cell
cycle’. Pho85 downregulates autophagy® to propel cell
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Fig. 1 Uncoupling of genotype/phenotype propelled by miR4673. a Endogenous miR4673 expression in various human tissues extracted from
miRmine database’®. See methods for detailed list of tissue samples represented in dots. Gel shows endogenous expression of miR4673 in SKBR3
cells detected by stem-loop PCR method at sequential time points 10 min. apart. b Diagrammatic representation of genotype/phenotype interface in
Erbb2"9" SKBR3 cells. Inhibition of autophagy, microtubule destabilization, and nuclear import defects characterise the phenotype of SKBR3 cells.
¢ Immunohistochemical panel highlighting the impact of miR4673 on bistable population-level transition of neoplastic cells. Application of the
exogenous MIRNA (miRend + exo) leads to repression of p53, catenin®1 and Notch-1 and suppression of the endogenous miRNA (AS*““") reverses
the observed trend. The molecular fingerprint subsequent to amplification of miR4673 strongly contrasts with the molecular signature after
application of Paclitaxel (Scale bars =40 um). d Quantification of immuno-labelling profile from ¢ following up- and downregulation of the
endogenous miRNA activity. Dynamics of four non-encoded clonal profiles are demonstrated by the presence or absence of the first and second
markers in four combinations (+/+, —/—,+/—, —/+) in stacked bar plots. The —/— to + / + conversion signifies non-encoded modulation of

cycle progression after mitosis. In response to nutrient
deprivation, pho85 induces arrest at GO to improve the
survival of yeast cells. Likewise, the human homologue
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of cyclin-A2%*

(PCTAIRE Protein Kinase 3 or cdk-18) acts downstream
to drive cell cycle progression. The impact
on cell cycle of Cdk-18 occurs in part by relieving
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endoplasmic reticulum stress®® and concomitant autop-
hagy®® to restore activity of cyclins that drive progression
through G1/S*’. Sequential application of exogenous
miRNA (200 nM, 2 x 10° cells) resulted in near-complete
post-transcriptional inhibition of cdk-18 (Fig. 3a). The
inhibition of cdk-18 inactivates cofilin®* that manifests as
reduced actin depolymerisation in miR™" ™ cells
(Fig. 3b). The miR4673-mediated suppression of Cdk-18
also explains the upregulated autophagy/mitophagy in
miR*™ " cells®® (Fig. 3b). The diminished mitochon-
drial activity subsequent to mitophagy not only con-
tributes to radio-resistance®® (Fig. 2b) but can also
indirectly trigger redox-dependent polymerisation of actin
microfilaments® (Fig. 3b). Enhanced mitophagy down-
stream to miR4673 signalling effectively offsets Paclitaxel-
induced perinuclear localisation of mitochondria shown
to trigger apoptosis by imposing an oxidative burden on
the nucleus®® (Fig. 3b). Arguably, communication of faux
nutrient deprivation signal (Cdk-18 equivalent to
Pho857) by miR4673 triggers a key stress-response with
concomitant autophagy/mitophagy that improves plasti-
city and survival capacity of neoplastic cells. The appli-
cation of exogenous miRNA-4673 enhanced the
induction of autophagy and progression to autophago-
some formation and subsequent degradation of the cargo
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(Fig. 4a—d). The inhibition of autophagic flux partially
restored the molecular profile of SKBR3 cells in miR™ +
cells (Fig. 4e, f). The latter also explains entry into inter-
phase following the suppression of miR4673 (ki-67"
ASA* cells in Fig. 2a) that communicates an absence of
stressors. We further dissected the impact of faux meta-
bolic stress (cdk-18" profile) on transcriptional finger-
print of cycling miR®™*™**° cells.

The cateninfl-cylinD1-retinoblastoma axis, as the
major propellant of cell cycle*""*?, was focused upon. A
key transcriptional signature of miR®™4™®° cells was
downregulation of cyclin-D1 short isoform that lacks the
cyclin box required for cdk4/6-mediated phosphorylation
of retinoblastoma protein*! (Fig. 5a). A similar trend was
evident in alternative splicing of catenin-p1 following the
amplification of miR4673. The transcriptional suppres-
sion of truncated cyclin-D1 eliminates decoy protein
(alternatively spliced with no cyclin box) that can inhibit
the Rb-E2f cascade at GO (Fig. 5a). The elimination of
decoy truncated catenin-fl (with actin binding and
phosphorylation domains) enhances the phosphorylation
likelihood of full length protein required for trans-sig-
nalling® (Fig. 5a). Transcriptional repression of Notch-1
(antagonist of catenin-B1) further energises the activated
cateninf1-cylinD1-Rb axis at M-G1 transition during cell
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Fig. 3 MiR4673 enhances autophagy and induces mitophagy. a MiR4673 can hybridise to cdk-18 with high affinity (left). Application of miR4673
inhibited cdk-18 in a dose-dependent manner. E1, E2, E3 are sequential electroporations 24 h apart (** indicates p < 0.01). b Ultrastructural changes of
SKBR3 cells after amplification of the endogenous miRNA (Red: nucleus & Aqua: mitochondria). Note stabilised actin microfilaments (middle) and
autophagy (black arrow) subsequent to amplification of the endogenous miRNA. The observed ultrastructural changes following amplification of
miR4673 contrast sharply with the numerous active perinuclear mitochondria detected after application of Paclitaxel (right). Amplification of
miR4673 signalling triggered mitophagy (bottom, blue arrowhead) in contrast to Paclitaxel-induced activation of mitochondria (bottom right, orange
arrowhead) Insets show mitochondrial ultrastructure (scale bars: top = 2 pm, middle left = 0.5 um, middle = 0.7 um, middle right = 1 um, bottom left,
bottom left = 0.2 um, bottom middle = 0.6 um, bottom right = 0.3 um, bottom left)
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cells occurs in anticipation of progress into
G1. Enhanced autophagy, by proteasomal degradation
(Fig. 1c), offsets the activity of cateninfl™ cylinD1-Rb axis

transcriptional change following amplified miR4673 sig-
nalling was silencing of Brca2 and X-Ray Repair Cross
Complementing 3 (Xrcc3). Brca2 and Xrcc3 are critical
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Fig. 4 Enhanced autophagic flux underpins the altered molecular fingerprint of amplified miR4673 signalling in SKBR3 cells. a Live-imaging
analysis of miR®"® and miR®"+e° SKBR3 cells 24 h after transfection with RFP/GFP-tagged LC3 reporter plasmid, ptfLC3 (Scale bars = 40 um). While
MiRE"4Tex SKBR3 cells express RFP, miRE™ cells express both RFP and GFP. The latter is consistent with the enhanced incorporation into the
autophagosomes and fusion with lysosomes of RFP/GFP-LC3 subsequent to the amplification of endogenous miR4673. b Co-localisation analysis of
RFP and GFP (based on Spearman'’s coefficient and overlap) confirmed uncoupled RFP and GFP signals in miRS"+**° cells as a result of upregulated
autophagy. ¢ Western blot analysis of autophagy-related proteins LC3, Beclin-1, p62 (SQSTM1), and Hsp-70. The reduced level of LC3-Il in miRe"+ex°
SKBR3 cells due to autophagy was consistent with live-imaging analysis of ptfLC3-transfected cells. Likewise, enhanced levels of Beclin-1 and p62
(SQSTM1) proteins in MRS+ SKBR3 cells indicated amplified induction/assembly phase of autophagy. Eventually, we investigated the availability
of HSP-70 as a chaperone for protein folding and autophagy. HSP-70 was retrieved at a lower level from miRE"4"®*° SKBR3 cells consistent with
enhanced degradation phase of autophagy. d Semi-quantitative analysis of ¢ based on intensity of the bands normalised to the maximum intensity
(100%). e Reduction of autophagic flux by the application of Bafilomycin A1/chloroquine restored the reduced cytoplasmic pool of p53, PR, and
CateninB1 in miR="4*° SKBR3 cells to a level comparable to that of control miRend cells (Scale bars = 100 um). f Quantification of immuno-labelling

profile from e following the reduction of autophagic flux by the application of Bafilomycin Al/chloroquine

components of homologous recombination (HR)
machinery****. Inhibition of BRCA2 and XRCC3, which
suggests inactivation of HR, is also a signature of G0/early
G1*. The inhibition of HR alters the balance in favour of
error-prone non-homologous end-joining (NHE]). The
remarkably accelerated dynamics of NHE] compared to
HR in repairing DNA breaks (=30 min versus >7 h)*’
contributes to post-radiation survival and recovery*®*® of
miR*™™*° SKBR3 cells. Transcriptional silencing of
Brca2 may in part reflect the depletion of upstream acti-
vator ESR-1 by autophagy (Fig. 2a)>°. On the other hand,
the mitophagy-mediated switch to glycolysis exhausts the
cellular supply of NAD" and decreases NAD'/NADH
ratio that in turn triggers transcriptional silencing of
brca-1°". The findings point to a stress signature invoked
by endogenous miR4673 signalling compatible with GO
molecular fingerprint (Fig. 5b). The latter is aligned to the
ancestral role of Pho85 (Cdk-18 homologue) in signalling
GO arrest in response to stressors®. Hence, suppression of
cdk-18 by miR4673 communicates a faux stress signal
analogous to stress-mediated inhibition of Pho85 that
triggers pro-survival autophagy and stress adaptation. In
addition to GO lengthening, downregulation of brcal,
brca2, and xrcc3 combined with proteasomal degradation
of p53 can potentially relax the G1-S checkpoint and
accelerate interphase during which cells are more sus-
ceptible to DNA damage (Fig. 5c). Acceleration of inter-
phase by suppressing the G1 checkpoint is a feature of
embryonic stem cells’® and it is not uncommon for
neoplastic cells to recapitulate aspects of ontogeny. In our
proposed model for reprogramming of cell cycle by
miR4673 activity, miR™4"° cells dwell longer in GO
(stress-resistant phase) and progress more rapidly through
G1 (sensitive phase).

We confirmed miR4673-induced cell cycle reprogram-
ming by dissecting the population growth dynamics of
miR*™ ™ cells SKBR3 cells. In contrast to smooth
exponential growth of control cells, sequential application
of the exogenous miRNA induced periods of dormancy

Official journal of the Cell Death Differentiation Association

followed by episodic population growth (Fig. 6a). This
behaviour was consistent with transient cell cycle arrest at
GO (dormancy) followed by fast synchronised cycling and
division (episodic population growth) (Fig. 6b). The
unchanged growth rate despite arrest at GO indicated a
reciprocal shortening of interphase (Fig. 6a). Repro-
gramming of cell cycle by miR4673 can potentially
improve resistance profile of the neoplastic cells by
lengthening GO (resistant phase) and simultaneous
shortening of interphase (sensitive phase). We next
explored endogenous transcriptional oscillations of
miR4673 and the associated downstream genes that
instruct windows of resistance in neoplastic populations.
The cells were first synchronised at GO by serum starva-
tion. Subsequent to addition of serum, a high-resolution
temporal fingerprint of endogenous miR4673 and asso-
ciated genes, that instruct the population fitness of SKBR3
cells, was generated.

Endogenous oscillations of miR4673 and the downstream
cascade portray a variable resistance landscape
Transcriptional activity of the endogenous miRNA and
the host gene notch-1 oscillated with a periodicity of 2h
(Fig. 7). These results are consistent with the reported
periodicity of notch-1 oscillations. Notably, amplitude of
the miRNA oscillation ([max]:[min]~80-fold) was much
higher than notch-1 oscillation ([max]:[min]~3-fold). In
addition, notch-1 oscillation lagged behind that of the
endogenous miRNA by 1 h. Concurrent oscillation of the
endoplasmic reticulum stress was measured based on shift
in the alternative spliced product of X-Box Binding Pro-
tein 1 (xbp-1)>*. High endoplasmic reticulum stress
(characterised by abundance of short alternative splicing
product of xbp-1) temporally accorded with peak
miR4673 transcriptional activity (Fig. 7a). The transcrip-
tion of rad51 recombinase (a core component of HR) and
PPP1R13B (ASPP1; a positive regulator of p53 activity)
and xrcc3 showed a periodicity of 1-1.5h and was
repressed concurrent with the second peak activity of
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Fig. 5 Amplified miR4673 signalling coerces transcriptional fingerprint of SKBR3 cells into a GO signature. a The short isoform of cyclin-D1
only encodes for retinoblastoma binding domain. The short isoform of catenin-31 only encodes for the phosphorylation domain of the protein. The
graphs show altered molecular fingerprint of SKBR3 cells following the amplification of endogenous miR4673 signalling (* indicates p < 0.05, **

indicates p < 0.01). E1 and E2 are sequential electroporations 24 h apart. We used two separate sets of primers to fingerprint the 5" and 3 notch-1
locus. b Schematic demonstration of system-level miR4673 interactions that improve fitness profile of neoplastic cells. Interactions triggered by the
miRNA signalling eventually improve anti-oxidant defence capacity and accelerate DNA repair mechanisms through non-homologous end-joining.
¢ Schematic representation of cell cycle shows prolonged GO subsequent to the amplification of the endogenous miRNA activity that instructs
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miR4673 (Fig. 7). Transcription from brca-1 was, how-
ever, totally in phase with oscillations of miR4673 and
showed a periodicity of 2 h. We fingerprinted Snail family
members as potent inducers of GO arrest and neoplastic
resistance®”. The transcriptional fingerprint of twist-1, a
trans-acting partner for notch-1°°, was temporally aligned
to the latter gene and showed a periodicity of 2 h (Fig. 7).
The transcriptional oscillation of snai-2 as a downstream
target of Notch-1>" accorded with twist-1 expression
(periodicity: 1.5h). These oscillatory fingerprints fore-
shadow the alignment of endogenous miR4673 oscilla-
tions to the windows of resistance that occur at intervals
of 2 h. We, therefore, tested the contribution of miR4673
to the adaptation of SKBR3 cells to the acute stressor,
ionising radiation.
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Endogenous signalling by miR4673 improves the survival
likelihood of SKBR3 cells

We modelled the contribution of endogenous miR4673
to post-radiation survival of the neoplastic cells based on
Poisson statistics and assumption of “single-target single-
hit”>®. The binary model assumes that a single exposure to
the radiation is sensitive enough to kill the impacted cell.
Hence if the radiation hits a cell “4” times, the likelihood
of escape from the impact of radiation or P(k=0) in
Poisson probability space corresponds to:

k

m _m

mlxe ™
Plk=0) =" =
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Where m (dose correction parameter) is proportional to
the probability of exposure to the radiation. To measure
endogenous variability in resistance, SKBR3 cells were
exposed to ionising radiation at sequential time points 1 h
apart. Notably, the post-radiation survival rate (SR) of
control SKBR3 cells (with endogenous miR4673) oscil-
lated with a periodicity of 2—3 h (Fig. 8a). The endogenous
difference between the maximum SR (£3) and the mini-
mum SR (¢;) in the control group based on Poisson
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statistics

P(k=0)=e" = m"/m" = Ln(SR")/Ln(SR®)
= Ln(0.15)/Ln(0.47) = 2.5

indicated ~2.5-fold reduction of the impact of radiation
on population from ¢ to £3 (measured based on day 1
post-radiation SR). We then translated the =~2.5-fold
reduction of radiation impact at a population-level to the
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improved fitness of individual cells based on the growth of
parameter “m” from t; to t3

Pk=0)=¢" = m" —m"
= Ln(0.47) — Ln(0.15) = 1.14

The growth by 1.14 unit of the parameter “m”, that is
given a default value of 1 based on the “one hit one target”
model, corresponds to a halved probability of death by
irradiation for individual cells. Therefore, two hits are
required to cause lethality based on Poisson’s model. On
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the other hand, a single exogenous dose of miR4673
(Fig. 8b, c) reduced the impact of radiation on neoplastic
cells at ¢4 by

mly /m" = Ln(SRE)/Ln(SR™)

= Ln(0.18)/Ln(0.49) = 2.4
where m, and m refer to irradiated miR*"4°"**° and
control groups, respectively. Enhanced survival rate after
exogenous application of miR4673 at ¢, (2.4-fold)
approached the maximal endogenous radio-resistance
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(2.5-fold). Further, amplified miR4673 signalling
enhanced the incidence of radio-resistant periods by
two fold at 100 nM (Fig. 8b) and by three fold at 200 nM
(Fig. 8c). Remarkably, a second dose of radiation at day 19
triggered a reversal of the survival profile at ¢3 in the
control group (dotted lines in Fig. 8a—c) and at ¢, in
the miR®™°"*° population consistent with the non-
encoded nature of radio-resistance. The application of
Chloroquine reduced the mean survival rate in both
miR™™ and miR**"*° SKBR3 cell to ~10% (Fig. 8d). We,
therefore, propose a model for the miR473-induced
enhancement of neoplastic fitness profile (Fig. 8e) where
50% increased resistance of individual neoplastic cells
anticipates a 2.5-fold improvement of the population
survival rate at any time point. In our proposed model,
miR4673 signalling also increases the incidence of resis-
tant temporal windows.

Discussion

The findings reported herein attest to plasticity of
molecular signatures that inform non-encoded resistance
in a neoplastic population. Plasticity results from
miR4673 signalling that upregulates proteasomal degra-
dation and overrides the transcriptional fingerprint of
SKBR3 cells. The resultant phenotypic uncoupling sig-
nificantly improves fitness profile of the neoplastic
population. Phenotypic uncoupling is particularly man-
ifest in the repressed profile of p53 following the ampli-
fication of miR4673.

Tumour suppressor p53 is a key target of human
oncogenic miRNAs. MiR-125b, for example, down-
regulates p53 by targeting the 3’-untranslated region
(UTR) of the transcript in human neuroblastoma cells and
human lung fibroblast cells®. Likewise, miR504-mediated
suppression of p53 enhances the resistance of neoplastic
cells by increasing the threshold of apoptosis®’. Hybridi-
sation to the UTR, however, triggers partial inhibition of
the targeted transcript®’. In contrast, indirect inhibition of
p53 by miR4673-mediated autophagy leads to near-
complete suppression of the protein. Direct targeting of
xrcc3 by miR4673 complemented indirect suppression of
p53. Notably, loss-of-function mutations of XRCC3
attenuate the apoptotic signalling in neoplastic cells®*. At
a population-level, reprogramming of cell cycle by
miR4673 (transient arrest at GO followed by accelerated
interphase) maximises the resistance of neoplastic cells.
Enhanced autophagy is the key to the major phenotypic
manifestations of miR4673 signalling.

The autophagy-mediated nuclear uncoupling reflects a
developmental capacity to reprogram the proliferating
cells by depletion of cytoplasmic protein repertoire®®, The
most remarkable example of the nuclear uncoupling
occurs during reprogramming of the highly differentiated
oocyte into undifferentiated zygote by complete
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degradation of maternal proteins®*. Mitophagy is also
commonly employed in physiological processes ®°. Dif-
ferentiation of the reticulocytes, for example, is governed
by amplified mitophagy®®. Recapitulation of autophagy-
mediated reprogramming enables neoplastic cells to adapt
to stressful situations ’. In response to the application of
anticancer drugs autophagy can act as a pro-survival
mechanism®®, Autophagy also improves resistance to
ionising radiation®”. The induction of autophagy by
miR4673 is unique as most reported human microRNAs
are negative regulators of autophagy'®. Some other
aspects of the autophagic reprograming by miR4673 are
also worthy of attention.

A distinguishing feature of signalling by miR4673 is
system-level interactions that complement autophagy-
mediated reprogramming and enhance the potency of the
microRNA signalling. Suppression by autophagy of p53,
for example, is complemented by transcriptional inhibi-
tion of xrcc3. Another distinguishing feature of
miR4673 signalling is acute endogenous oscillations of the
miRNA (every 2 h). These transcriptional oscillations are
aligned to temporal behaviour of notch-1, the host locus
of miR4673. Transcription from Notch-1 locus and the
associated downstream mediators oscillates with a peri-
odicity of 2h®®. The transcriptional oscillations of
miR4673 accommodate windows of neoplastic resistance
with potential implication for therapy. The phenotypic
variability may also impact on the accuracy of diagnosis by
distorting the molecular fingerprint of tumours. Finally,
the non-encoded nature of the described reprogramming
mechanism suggests that the capacity may be available to
other neoplastic cells with active transcription from
notch-1 locus. Even in the absence of active transcription,
epigenetic remodelling may unlock this capacity and alter
the behaviour and molecular profile of the neoplasm
acutely.

From a diagnostic perspective, cytoplasmic reprogram-
ming by autophagy can potentially alter the molecular
fingerprint of neoplastic cells. Non-encoded reprogram-
ming of SKBR3 cells by miR4673, for example, commu-
nicates a Esr1/Pr'®"/erbb2'°" subtype that can potentially
indicate more aggressive treatment options. In parallel,
the enhanced fitness profile not only improves real-time
survival of neoplastic cells but also facilitates accumula-
tion of iatrogenic genetic changes that may in turn propel
a switch from non-encoded to encoded (genetic) resis-
tance associated with poor prognosis”®.

From a therapeutic perspective, non-encoded homo-
geneity is not without consequences. Our findings
demonstrate that miR4673 improves radiation resistance
of SKBR3 cells by 50% that translates into a 2.4-fold
higher survival rate of the population. The improved fit-
ness results from increased mitophagy that enhances anti-
oxidant capacity of the neoplastic cells. The inhibition of
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homologous recombination machinery to empower non-
homologous end-joining (NHE]) cascade also improves
DNA repair capacity. This effect is particularly manifest in
resistance to ionising radiation where accumulating evi-
dence indicates an indispensable role of NHE] in repair of
DNA damage*®*>7!,

In conclusion, we have uncovered a non-coded route to
tumour resistance (as opposed to mutational resistance)
that results from intrinsic oscillations of miR4673
expressed at high levels in breast cancer. The signalling
cascade utilised by the microRNA may be targeted to
reveal the true molecular fingerprint of tumour by inhi-
bition of the autophagic reprogramming. Suppression of
the endogenous miRNA may also improve the response to
therapy.

Methods
Materials and reagents
All chemicals were purchased from Sigma-Aldrich Inc.

unless stated otherwise. All primers were purchased from
IDT DNA.

Cell culture

SKBR3 cell line was purchased from ATCC cell bank
(ATCC" HTB-30™). Cells were cultured in standard
McCoys-5A medium (Sigma-Aldrich®, M4892) supple-
mented with 10% FBS (Gibco™) and were split at ~75%
confluence. All the experiments were performed at a
similar confluency rate. Serum starvation method was
utilised to synchronise the cycling cells at GO.

Electroporation

For electroporation, cells were harvested and resus-
pended in a modified “Intracellular buffer””* composed
of HEPES (200nM), MgCl, (1.35uM), Glutathione
(10pM) pH: 7.4. ECM-830 square wave generator
(Harvard Apparatus BTX) was used for electroporation.
The settings were 4 pulses of 1.6kV/cm, 710ps, at
intervals of 1s. After electroporation cells were trans-
ferred into T25 flasks (Falcon’). Naked microRNA-4673
was applied at 400 nM/2 x 10° cells. Inhibition of the
endogenous miRNA was achieved by utilising 2'-O-
Methyl antisense RNA inhibitors (application dose: 200
nM/2 x 10° HNPs) rendered RNAse-resistant by terminal
N,N-diethyl-4-(4-nitronaphthalen-1-ylazo)-phenylamine
(ZEN™, IDTDNA).

UVC irradiation

SkBr3 cells were were collected and transferred into a 6-
well-plate and cultured for 2 days. A 30 Watt UVC gen-
erator at a distance of 40 cm from the plate was used as a
source of ionising radiation. The UVC lamp was turned
on for 3x20s with 10s intervals. The cells were then
immediately supplemented with fresh McCoys media.
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RNA isolation

RNA was isolated using a Trizol reagent. Bromochloro
(0.1 M) was added per 1ml TRIzol® Reagent (Ambion,
15596018). The tubes were vortex then centrifuged for
15 min at 12000 g at 4 C. The aqueous phase was mixed
with 2 pl of 5 pg/ul linear polyacrylamide (ambion) and
500 ul of isopropanol. The solution was then vortexed
then left to incubate at room temperature. The solution
was then centrifuged for 1h at 20,000 x g at 4 C. The
supernatant was discarded followed by the pellet being
washed with 1ml of ice cold 200-proof ethanol. The
sample was then vortexed followed by centrifugation for
30min at 12,000 xg at 4 C and the supernatant was
discarded. The RNA pellet was left to air dry, then
resuspended in 50pl of RNAse free H,O (Ambion™
AM9937) and stored at -80 C.

Reverse transcription

After DNase treatment, reverse transcription of
extracted RNA was carried out by using a mixture of
reverse primers (2pmole/primer, 4 ul total RNA, 1l
dNTP mix (10 mM each), 4 pl of 5x First-Strand Buffer,
1ul of 0.1 M diothiothreitol (DTT), 1 pul of RNAseOUT
(40U/ul), 1ul (200U) of Superscript-III reverse tran-
scriptase. Reverse transcription was performed at 50 C for
1h

Real-time qPCR

Real-time quantitative PCR (38 cycles) was performed
using SensiFAST™ SYBR™ Lo-ROX reagents (BIOLINE®).
Reaction mix comprised of 2 ul of cDNA, 400 nM inner
primers (1.5 pl/primer), 10 pl of 2x SensiFAST SYBR Lo-
ROX Mix, and 5 pl of PCR-grade water on a Stratagene
Mx3000P real-time PCR instrument. Average efficiency of
PCR amplification for each gene of interest was quantified
based on a linear regression model using the LineRegPCR
software”. The relative (normalised to [-actin) expression
ratio of gene of interest (test: control) was then calculated
using the efficiency of amplification (Eff.) values based on
the method proposed by Pffai’* as follows:

E Act _tar get(controlftest)
.

Act_reference(control—test)

(E ref)

To generate the temporal fingerprints of genes, we used a
variation of the above method:

(Eff )Act_target(cantrolfmin)
tar

Ratio = ) Act _reference(control—min)

(Eff ref

Where min. refers to the time point with minimum
expression level of the gene of interest and all other time
points are normalised to min.
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Melt curve analysis and visual inspection of the ampli-
fied products on 2% agarose gel electrophoresis confirmed
the presence of target amplicons. Relative expression of
transcripts for each gene was plotted as ratio between the
average concentration of transcript in the test and control
groups normalised to the average concentration of B-actin
transcripts in both groups (above formula). The primers
used in the current study are presented at Supplementary
Table 1.

Stem-loop PCR for detection of endogenous miRNA

Small RNA from proliferating HNPs was isolated using
mirVana™ miRNA isolation Kit (Ambion) according to the
manufacturer’s protocol. Detection of the miRNA-4673
was accomplished using stem-loop PCR as described
elsewhere”. Specific primers were designed for reverse
transcription and stem-loop RT-PCR amplification of the
miRNA as shown in Supplementary Table 2. Reverse
transcription of the extracted small RNA was carried out
using a mixture of 1 pl of 5uM room temperature (RT)
primer, 4 pl total RNA, 1 ul ANTP Mix (10 mM each), 4 pl
of 5x First-Strand Buffer, 2 ul of 0.1 M DTT, 1ul of
RNaseOUT (40 units/ul), 1 pl (200 units) of SuperScript-
III reverse transcriptase. Reverse transcription was per-
formed at 16 °C for 30 min followed by 42 °C for 30 min.
PCR reaction (35 cycles) comprised 4 pul of template
c¢DNA, 1l of 5uM forward/reverse primers, 12.5 ul of
HotStarTaq Master Mix (Qiagen) and 6 ul of PCR-grade
water. PCR amplification was achieved through 40 cycles
of denaturation (94 °C, 15s) and annealing (60 °C, 45 s).
After PCR amplification, products were run on a 1.5%
agarose gel at 5 V/cm, stained in SYBR Gold for 45 min
and destained in 1 x TAE buffer for 30 min before ima-
ging. Imaging was performed using the MultiDoc-It™
Imaging System.

Immunohistochemistry

After blocking in incubation buffer containing 0.1 M
PBS, 1% BSA, 0.1% Tween-20, and 5% normal goat serum
(for detection with rabbit Abs) or 5% normal rabbit serum
(for detection with mouse Abs) for 40 min, sections were
incubated with the primary antibodies overnight at 4 °C
and secondary antibodies for 1 h at room temperature as
per Supplementary Table 3. Specificity controls were
carried out by incubating sections with rabbit or mouse
IgG negative control antibodies.

Primary antibody characterisation

1. Mouse monoclonal anti-p53 antibody (Abcam,
catalogue no. ab26) recognises both mutant forms
and wild-type human p53. The immunogen is gel-
purified p53-beta-galactosidase fusion protein
containing murine p53 from aal4-389 (derived
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from pSV53C cDNA clone). Mapping has
demonstrated specificity to amino acids 213 to 217
on human p53 protein. The lysate from NIH/3T3
cells treated with 1 M doxorubicin for 24 h revealed
a single band at 50 kDa corresponding to molecular
weight of P53 [manufacturer’s technical
information)].

Rabbit polyclonal anti-P21 (Abcam, catalogue no.
ab109199) detects a clean band at 21 kDa
corresponding to p21, as well as a cross-reacting
band at 26 kDa [manufacturer’s technical
information]. The immunogen is a synthetic
peptide conjugated to KLH derived from within
residues 100 to the C-terminus of Human p21.
Rabbit polyclonal anti-Notch-1 (Abcam, catalogue
no. ab8925) recognises an epitope
(VLLSRKRRRQHGQC) that is only exposed after
gamma secretase cleavage and is not accessible in
the uncleaved form. The immunogen is human N-
terminal sequence of the cleaved Notch-1
intracellular domain (amino acids 1755-1767).
Mouse monoclonal anti-tapal antibody (Abcam;
cat. no. Ab79559) in Western blot recognises the
low-molecular weight 26 kDa subunit of human
tapal. Immunogen is MOLT4 (human T-ALL cell
line)

Monoclonal anti-mechanistic Target of Rapamycin
(mTOR) antibody (Abcam; cat. no. Ab2732) was
raised in Rabbit, which was immunised with a
proprietary synthetic peptide within Human
mTOR (aa 200-250). Western blotting shows a
band at ~ 250 kDa.

Mouse monoclonal anti-argonaute-2 (Ago2)
antibody (Abcam; cat. no. Ab57113). The
immunogen is recombinant fragment
corresponding to human Ago2 aa483-859 and in
western blots the antibody recognises a band of
molecular weight 97 kDa.

The nestin antibody (Millipore, Bedford, MA; cat.
no. MAB5326; clone 10C2) was raised in mouse by
using a fusion protein. The antibody reacts
specifically with human nestin and it recognises a
major band at 200-220 kDa in western blot of
human umbilical vein endothelial-cell (HUVEC)
lysates (manufacturer’s technical information).
Polyclonal anti-Catenin-f1 antibody (Abcam; cat.
no. Ab6302) was raised in Rabbit immunised with
synthetic peptide (PGDSNQLAWFDTDL)
conjugated to KLH and corresponding to amino
acids 768-781 of Human p-Catenin. The antibody
does not cross-react with a-catenin or y-catenin
(plakoglobin). In western blotting of extracts from
Madin-Darby Bovine Kidney (MDBK) cultured
cells the antibody recognises a single band of 94
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kDa molecular weight.

9. Monoclonal anti-Oestrogen Receptor al (ESR1)
antibody (Abcam; cat. no. Ab32063) was raised in
Rabbit immunised with a proprietary synthetic
peptide. In western blots the antibody recognises a
single band at molecular weight of 60 kDa.

10. Mouse monoclonal anti-Progesterone Receptor
(PGR) antibody (Abcam; cat. no. Ab2765). The
antibody detects the B form of progesterone
receptor and does not cross-react with oestrogen
receptor or glucocorticoid receptor. The
immunogenicity corresponds to chicken
progesterone receptor and is purified using chick
oviduct cytosol. Western blots detected a single
band at 99 kDa.

11. Mouse monoclonal anti-Erbb2 antibody (Abcam;
cat. no. Ab16901) was immunised with a synthetic
peptide (TAENPEYLGLDVPV) which corresponds
to C terminal amino acid 1242-1255 of human c-
Erbb2.

12.  Mouse monoclonal anti Ki-67 antibody (Dako,
catalogue No. M72404) detects a nuclear protein
Ki-67 antigen. The Ki-67 antigen is preferentially
expressed during all active phases of the cell cycle
(G1, S, G2 and M-phases), but it is absent in resting
cells (GO-phase)”®. Two isoforms of 345 and 395
kDa have been identified””. In western blotting of
lysates of the multiple myeloma cell line, IM-9, the
antibody labels bands of 345 and 395 kDa, identical
to isoforms of Ki-67 protein (manufacturer’s
technical information).

Autophagy inhibitors

To inhibit the autophagic flux, Bafilomycin A1l (Sigma)
and Chloroquine (Sigma) were applied at a final con-
centration of 10nM and 50 puM, respectively. The cells
were incubated with the inhibitors for 16h and then
processed for immunohistochemical staining as outlined
before.

Western blotting

Extracted proteins were separated re-separated by
PAGE using gradient 5 to 12% minigels, transferred to
0.2-pum nitrocellulose membranes (Bio-Rad) and blocked
for > 2 h with 3% bovine serum albumin (Sigma) in 0.1 M
Tris buffered salts solution pH 7.4 (TBS). Blotted antigens
were incubated with a mouse monoclonal anti-HSP-70 (2
pg/ml, Abcam ab2897), rabbit monoclonal anti-Beclin-1
(2 pg/ml, Abcam ab207612), rabbit polyclonal antiLC3(
(1 pg/ml Abcam ab51520) and rabbit polyclonal anti-p62
(2 pg/ml Abcam ab91526), 0.05% Tween20/TBS for 2 h,
washed and subsequently incubated with alkaline phos-
phatase (AP)-conjugated secondary antibody (goat-anti
rabbit/mouse IgG, DAKO, Denmark) diluted 1:1500 in
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Tween20/TBS for 2 h. Bound antibody was visualised with
AP substrate (BioRad).

Live-imaging analysis of pftLC3 autophagy reporter

The autophagy reporter plasmid, ptfLC3, was a gift from
Tamotsu Yoshimori (Addgene plasmid #21074). SKBR3
cells were electroporated with the reporter plasmid alone
or in combination with miR4673 as described before. For
live-imaging analysis cells were cultured in 6-well plates
overnight and transferred into the live-imaging platform
(Leica DMI6000B live cell imaging microscope). Phase
contrast images were captured every 30 min for 16 h from
multiple wells (20x magnification). To analyse mitotic
activity, images were imported into FIJI (Image]) platform.

Transmission electron microscopy

For TEM analysis, samples were fixed in Karnovsky’s
fixative overnight at room temperature followed by post-
fixation in OsO, for 1 h. Preparations were dehydrated in
graded alcohols and embedded in low viscosity resin
(TAAB Laboratory and Microscopy, United Kingdom).
Ultrathin sections were mounted on Pioloform/formvar
coated slot grids, stained in uranyl acetate and lead citrate
and examined in a Phillips CM120 BioTWIN electron
microscope.

Bioinformatics analysis

The expression profile of miR4673 in various human
tissues was extracted from the miRmine database as per
Supplementary Table 4. The raw output was analysed and
a graph generated using the GraphPad software.

Quantification and statistical analysis

SPSS statistical software (SPSS v.16, Chicago, Illinois,
US) was used for the statistical analysis of data. The
relative expression levels of genes of interest were com-
pared using non-parametric Mann—Whitney U-test. In
the present study, a p-value <0.01 was considered as
statistically significant.
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