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Introduction: Intracranial aneurysms (IAs) are a common vascular pathology and are

associated with a risk of rupture, which is often fatal. Aneurysm growth is considered a

surrogate of rupture risk; therefore, the study aimed to develop and evaluate prediction

models of future artificial intelligence (AI) growth based on baseline aneurysmmorphology

as a computer-aided treatment decision support.

Materials and methods: Follow-up CT angiography (CTA) and magnetic resonance

angiography (MRA) angiograms of 39 patients with 44 IAs were classified by an expert

as growing and stable (25/19). From the angiograms vascular surface meshes were

extracted and the aneurysm shape was characterized by established morphologic

features and novel deep shape features. The features corresponding to the baseline

aneurysms were used to predict future aneurysm growth using univariate thresholding,

multivariate random forest and multi-layer perceptron (MLP) learning, and deep shape

learning based on the PointNet++ model.

Results: The proposed deep shape feature learning method achieved an accuracy of

0.82 (sensitivity = 0.96, specificity = 0.63), while the multivariate learning and univariate

thresholding methods were inferior with an accuracy of up to 0.68 and 0.63, respectively.

Conclusion: High-performing classification of future growing IAs renders the proposed

deep shape features learning approach as the key enabling tool to manage rupture risk

in the “no treatment” paradigm of patient follow-up imaging.

Keywords: intracranial aneurysm, growth prediction, vascular disease, deep learning, classification, morphologic

features

1. INTRODUCTION

Intracranial aneurysms (IAs) are a common cerebrovascular pathology characterized as abnormal
bulges forming on the intracranial vessel wall. Most often, they are located near the circle of
Willis (approximately 85%) (Schievink, 1997) but also near vessel bifurcations. Despite being
highly prevalent (∼2–8% of the general population) (Vlak et al., 2011), most IAs do not rupture
throughout the lifetime of the patient. In case of rupture, the bleeding from IA may cause
hemorrhagic stroke, a serious life-threatening condition with a high fatality rate (50%), while about
66% of those who survive suffer from a permanent neurological deficit.

Increasingly more IAs are accidentally discovered before rupture, during screening for other
intracranial vascular diseases. In such situations, the treatment path needs to be determined.
Surgical treatments, such as coiling and clipping, are associated with a certain risk of complications.
For instance, the results of the ISUIA trial showed that morbidity and mortality were 12.6
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and 10.1%, respectively, for surgical clipping and endovascular
therapy (Hodes et al., 1959). Furthermore, the risk of
complications progressively increases with age (Sedat et al.,
2002; Brinjikji et al., 2013).

Due to the rather high risks of surgical treatments and
a high volume of cases, the “no treatment” approach with
follow-up imaging and IA monitoring seems a possible
alternative. Specifically, the imaging is justified when the risk
of surgical treatment is higher than the risk of spontaneous
rupture (Brinjikji et al., 2016). To date, clinical decisions
regarding unruptured IAs and the interval between two imaging
sessions are largely based on the intuition of the clinician.
The general distrust toward previously published IA growth
predictors is based on contradictory research results and low
predictive values. For instance, Brinjikji et al. (2016) performed
a review and meta-analysis and estimated, based on rupture
incidence analysis, that rupture risk for small IAs is 0.8%
(aneurysm size <3.9 mm), 1.2% for medium (4–10 mm), 7.1%
for large (10–25 mm), and 43.1% for the giant ones (>25 mm).
On the contrary, Chien et al. (2019) showed that aneurysm size is
not significant factor of future growth.

There is a prompt demand for a more objective decision-
making in the management of patients with aneurysms, which
may be achieved with the support of computer-aided prognostic
tools. In this study, we developed and evaluated such tools to
prioritize treatment or extend the surgery waiting periods of
patients with aneurysms, based on baseline imaging data. Our
primary aim was to answer the following research question:
“Can we predict, and with what level of performance, the future
aneurysm growth from an angiographic scan acquired prior to
rupture?”

2. BACKGROUND

A few quantitative approaches that aim to objectivize the clinical
decision-making between longitudinal follow-up IA monitoring
or surgery have already been proposed. One popular approach
is the PHASES score (Backes et al., 2015), proposed in a
study including 557 subjects. The PHASES score provides
absolute risks of IA rupture based on six easily retrievable risk
factors [population, hypertension, age, size of aneurysm, earlier
subarachnoid hemorrhage (SAH) from another IA, and site of
IA]. Two years later, the same authors updated the study and
proposed the ELAPSS score (Backes et al., 2017). The main
factors in the ELAPSS score are the location of the IA, age of the
subject, population, size of the aneurysm, shape of the aneurysm,
and earlier SAH. Even though several factors are considered, the
aneurysm size can contribute up to 55% of the final score.

Although several other studies already questioned
the aneurysm size as the key parameter in rupture risk
prediction (Clarke, 2008; Sonobe et al., 2010), the PHASES
score still attributes the size as having the highest impact on
aneurysm rupture risk. First, this is somewhat biased against
small aneurysms, namely, these will have little chance of
being classified as high risk. However, the small aneurysms
also grow and occasionally rupture. Second, the study of 382

patients (Chien et al., 2019) concluded that aneurysm size is
not a significant factor of aneurysm growth prediction, whereas
growth is considered a surrogate for rupture risk (Villablanca
et al., 2013).

Another drawback of aneurysm size is the current
measurement procedure. The IA size is usually measured on 2D
cross-sections of the 3D image using manual measurement tools.
This process does not take into account the full 3D morphology
and the measurement objective is ill-defined; size could be
ambiguously understood as maximal diameter, transverse
diameter, dome height, etc. The required measurement precision
is in the range of spatial image sampling (below 1 mm), which
is in the range of manual measurement error. Furthermore, the
threshold for growth identification is vaguely defined, i.e., from
0.5 to 2 mm. Growth could also be characterized by irregular IA
shape developments, which are prone to subjective judgment.
To avoid subjective judgment and related measurement errors,
an alternative is to use automatic methods for aneurysm growth
prediction.

Recent attempts to understand rupture risk and aneurysm
growth have taken new approaches, such as using hemodynamic
modeling, morphological analysis, and wall inflammation
detection (Can and Du, 2016; Hu et al., 2016; Skodvin et al.,
2019).

The study on 382 patients (Chien et al., 2019) showed
that smoking and hypothyroidism had a large effect on the
growth rate of large aneurysms. Aneurysms in patients with
multiple IAs were 2.43 times more likely to grow than those
in patients with single IAs. The growth rate of large IAs was
significantly faster than the growth rate of small IAs (p-value of
0.003). Although small IAs were less likely to grow, there is a
need to identify those small aneurysms that tend to grow. For
instance, patients harboring such IAs should be monitored more
frequently. Although there are many clinical, hemodynamic, and
geographic data that may aid the future IA growth prediction, the
focus of this study is on predicting IA growth based on aneurysm
morphology.

Several studies have established (Villablanca et al., 2013;
Brown Jr and Broderick, 2014) that simple in-vivomeasurements
of morphologic features such as aneurysm size (HMAX), aspect
ratio (AR), non-sphericity index (NSI), size ratio, volume (V),
surface area (SA), and others are important factors for assessing
rupture risk; however, they are not decisive factors. Liu et al.
(2018) have studied the prediction performance of several
morphological features, among which vessel size, aneurysm size,
perpendicular height, aspect ratio, size ratio, aneurysm angle,
aneurysm lobulations, and hypertension achieved a predictive p-
value of 0.001 or less. They found single cross-sectional feature
insufficiently informative for future IA growth prediction. On the
other hand, in a study by Chien et al. (2018), only the NSI proved
informative for growth prediction [area under receiver operating
characteristic (ROC) curve of 0.72], while other features such as
HMAX, V, AR, and SA achieved AUC values close to 0.5 (random
guess). It seems that univariate models based on crude features of
IA morphology may have limited prediction performance.

Neyazi et al. (2020) recently concluded that a high number
of established morphological and hemodynamical parameters
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seem to have little or no effect on the prediction of aneurysm
rupture. In their study, they analyzed 21 morphological
and 28 hemodynamic parameters. Some of the morphologic
parameters that they found significant were the maximal height,
volume, area, aspect ratio, convex hull volume, non-sphericity,
and gamma of the aneurysm. However, the results showed
mediocre performance. Then they constructed a regression
model using forward selection and achieved an AUC of 0.75
for rupture prediction. Their study shows that multivariate
models, incorporating complementary morphologic parameters
describing the IA,may improve the prediction over the univariate
models and thus are a promising avenue to explore.

The morphologic features discussed thus far are univariate
shape descriptors employed only in the domain of IA analysis.
In general, the shape descriptor is considered a concise
yet informative vector representation that provides a 3D
object with an identification signature as a member of some
category. Therefore, shape descriptors can provide much more
information than any morphologic feature alone. Recent deep
learning-based methods adopted for unstructured data such as
point clouds (Qi et al., 2017a) enable the automatic extraction of
shape descriptors tailored for a specific task and thus will be in
the focus of this study.

3. MATERIALS AND METHODS

3.1. Data
Our dataset consisted of CT angiography (CTA) and magnetic
resonance angiography (MRA) of 39 patients. The inclusion
criteria for this study were as follows: (i) each patient harbored at
least one unruptured IA, (ii) the unruptured IAs in these patients
were untreated, and (iii) follow-up imaging included at least two
angiographic scans with >6 months time difference. This study
was based on secondary data. Data were de-identified before
being used in this study. The results of this study did not impact
patient care.

All images were acquired at University Medical Centre
Ljubljana using standard imaging protocols as in the clinical
routine. For instance, the matrix size of the CTA scanning
protocol was 512× 512, with an in-plane pixel size of 0.19− 0.41
mm, a section thickness of 0.6–1 mm, and a field of view of
180 mm. The matrix of MRA images was 512 × 512, in-plane
0.4× 0.4 mm spacings, and 60–140 transverse slices with 0.5–0.8
mm thickness. The median difference between the two imaging
sessions was 2 years.

The 39 patients had a total of 44 aneurysms. The size of
IAs at baseline scan varied from 1.4 mm to 12.2 mm with a
median value of 5.01 mm. Hence, the majority of IAs were
small to medium size. Follow-up imaging aimed to monitor the
morphological changes of the IAs observed at baseline. Namely,
each particular IA was labeled either as growing or stable based
on visual comparison of the baseline and follow-up scans by
a neurosurgeon with more than 10 years of experience in IA
assessment and treatment. Among the 44 IAs, there were 25
labeled as growing and 19 as stable (57 vs. 43%, respectively).
Information about the datasets is reported in Table 1.

TABLE 1 | Dataset information.

Number of patients (male/female) 39 (15/24)

Patient age span (median) 43–85 (67)

Number of intracranial aneurysms 44

Imaging modality (CTA/MRA) 20/24

Aneurysm location

Posterior communicating artery

Superior hypophyseal artery

Ophthalmic artery

25

6

13

Aneurysm size

Small (<3.9 mm)

Medium (4 – 10 mm)

Large (>10 mm)

11

30

3

Median aneurysm size 5.01 mm

3.2. Image Preprocessing
Preprocessing of the baseline and follow-up 3D images aimed
to extract the surface mesh of intracranial vascular structures,
i.e., vessels and aneurysms. First, vascular structures in the
original CTA or MRA images were enhanced by applying the
vesselness filter (Jerman et al., 2015). The original and filtered
images were each interactively thresholded to mask vascular
structures, and then the obtained masks were merged using
logical or to get the segmentation mask. Possible spuriously
masked voxel groups consisting of less than 60 connected voxels
were removed by applying connected components filter to the
segmentation mask. The resulting mask was fed into marching
cubes and smooth non-shrinking algorithms (Lorensen and
Cline, 1987; Cebral and Löhner, 2001) to extract the 3D
surface mesh of intracranial vascular structures. The obtained
meshes were visually assessed by the neurosurgeon to localize
the IA(s). Next, manual mesh clipping tools were used to
isolate each IA from its parent vasculature. The neurosurgeon
visually inspected the corresponding pairs of isolated IA meshes
from the baseline and follow-up scans, using side-by-side mesh
visualization to determine morphology changes. The usual
clinical procedure to determine aneurysm growth is to perform
manual measurements separately on baseline and follow-up
volumetric images, by observing and annotating 2D slices of
3D images. We used the side-by-side mesh visualization to give
the neurosurgeon more insights into the change in morphology
between baseline and follow-up image, which can not be
interpreted only by observing 2D slices or using morphologic
indices. Each baseline IA was thus classified as growing or
stable. The sequence of applied preprocessing steps is shown
in Figure 1.

3.3. Morphological Features
Quantification of IA morphology is often based on established
in-vivo measurements such as HMAX, V, SA, NSI, and AR.
These were determined as important factors for assessing rupture
risk (Villablanca et al., 2013; Brown Jr and Broderick, 2014). For
the purpose of future IA growth prediction, we computed the five
features from the isolated IA surfaces. Figure 2 illustrates how the
feature values are defined and computed.
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FIGURE 1 | Preprocessing of angiographic scans to extract the surface meshes and the visual assessment of baseline and follow-up meshes to determine changes

in (IA) morphology.

FIGURE 2 | Morphologic indices of the IAs and corresponding illustration of

IAs for low, medium, and high values of each index.

3.4. Prediction Models
This study hypothesizes that IA morphology (size, shape), as
characterized by the baseline IA mesh, is a predictor of future
AI growth. Therefore, we trained and validated prediction
models of future artificial intelligence (AI) growth by using
the baseline IA mesh and its morphological features as the
input to the prediction models and the expert classification
obtained by visual assessment of the follow-up scans as the
model output. Three different types of prediction models
were considered: (i) univariate threshold-based, (ii) multivariate
learning, and (iii) mesh-based deep learning models. The models
were distinguished by their increasing complexity and the input
information (Figure 3). The univariate and multivariate models

input the established (hand-crafted) features, such as HMAX, V,
SA, NSI, and AR, computed from the baseline IA mesh, while the
deep learning model input the extracted baseline surface mesh
coordinates.

The univariate models applied a threshold to the input
baseline IA morphological feature to distinguish between
growing and stable aneurysms. This approach was based on
the assumption that a particular feature takes on distinct values
for the classes of growing and stable IAs. For each feature, the
optimal threshold was determined by testing thresholds across
the min–max range of a particular feature and choosing the value
with maximal classification accuracy.

The morphological features may incorporate complementary
information, which could benefit the classification task. Thus,
we applied two multivariate learning models that aimed to find
an optimal feature subset or feature weights and thus maximize
classification performance. First was the random forests (RF)
classifier (Breiman, 2001), which constructed a collection of
binary decision trees from multiple random subsets of input
features. In the training phase, optimal binary decisions in
tree nodes, using feature thresholding similar to the univariate
models, were found by maximizing the information gain. We
used 100 trees, each with depth 3 to train the classifier. In the test
phase, posterior class probabilities at leaf nodes were aggregated
across the collection of binary decision trees to determine the
most probable output class.

Another popular multivariate learning model is the multi-
layer perceptron (MLP) (Rosenblatt, 1958), which is formulated
as a hierarchical stack of ensemble linear classifiers, each with
a non-linear activation. Learning the MLP was based on the
backpropagation of the cross-entropy classification error on
training samples, which iteratively updated the linear weights of
the linear classifier such that classification error was reduced. The
MLP classifier had two hidden layers, each with 100 neurons and
was trained with a learning rate of 10−4 and LBFGS solver. We
used all five features HMAX, V, SA, NSI, and AR as input to the
RF and MLP models.

Recent deep learning approaches enable automatic feature
extraction from raw input data. To apply this capability to the
extracted surface meshes, we used the PointNet++ (Qi et al.,
2017a,b). The PointNet++ inputs the raw point coordinates
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FIGURE 3 | Prediction of future (AI) growth is based on the baseline IA morphology. Three distinct prediction approaches and several models were tested for the task.

pi = [xi, yi, zi]T of the surface mesh and corresponding surface
normals ni = [nx,i, ny,i, nz,i]T; i = 1, . . . ,N. Hence, the input
surface mesh was represented as a 6 × N matrix. In the first
step, the PointNet++ used a sequence of sampling and grouping
layers at multiple resolutions, and a sequence of MLP layers
to encode the pattern of the local regions into feature vectors.
Specifically, a shared MLP used input rotation augmentation and
then mapped each sampled and rotated six-dimensional input
vector to 64 features, followed by a second shared MLP that
mapped the 64 features to 1, 024 dimensions. Then, max pooling
was used to create a global 1, 024-dimensional representation
of the input mesh. The obtained global representation, which
was scale and rotation invariant, was passed to a three-layer
MLP with a two-class output for the purposes of our prediction
task. Each surface mesh was resampled to 2, 048 points for
training and inference with the PointNet++. During training,
the negative log-likelihood loss was minimized using an SGD
optimizer with a momentum of 0.9, an initial learning rate of
0.005, and a decay rate of 0.0001. The batch size was set to 32
and number of epochs was 200. The PointNet++ model was
tested with two different inputs: (i) surface mesh of the IA
dome and its parent vasculature and (ii) surface mesh of the IA
dome only.

3.5. Experiments
The 44 aneurysm cases were used to test the performances of the
prediction models. We tested five univariate models, i.e., for each
of the features HMAX, SA, V, NSI, and AR. For evaluating the
RF, MLP, and PointNet++ models, we adopted a four-fold cross-
validation approach. Namely, the dataset was split into four-folds,
each consisting of 11 IA cases. For each model, training and
testing were executed in four runs, each run using 33 IA cases
(3-folds) to train the model and the remaining 11 IA cases (1-
fold) for testing. The ratio between stable and growing IAs was
approximately the same across all four folds. All models used the
same fold split and the same hyperparameters in all four runs.

The classification scores obtained from the testing folds were
aggregated and used for evaluation.

For classification evaluation purposes, we plotted the ROC
curve and computed the area under ROC curve AUC. We
reported the highest achieved classification accuracy and
corresponding sensitivity and specificity.

3.6. Implementation
All preprocessing of volumetric images was implemented
in Python programming language, using the SimpleITK
library (Lowekamp et al., 2013). Mesh editing such as smoothing,
remeshing, and clipping was performed in MeshLab (Cignoni
et al., 2008). Morphological features were automatically
computed from the extracted and isolated aneurysm dome
meshes using our in-house Python scripts, based on the
trimesh (tri, 2019) and numpy (Harris et al., 2020) libraries.
We used the RF and MLP implementations in Python library
scikit-learn (Pedregosa et al., 2011) and the PointNet++
implementation provided by its authors (Qi et al., 2017a).

Experiments were executed on a Linux workstation with an
8-core Intel I7 processor, 32 GB system RAM, and NVidia GPU
with 11 GB RAM.

4. RESULTS

Classification performances across all 44 IA cases and for the
five univariate and three learning-based prediction models are
summarized in Table 2. The ROC analysis for all methods is
shown in Figure 4. In general, the univariate models exhibited
poor performance; the classification accuracy was from 0.54 to
0.63 and the AUC values from 0.52 to 0.62. The best performing
univariatemodel was based on theNSI (acccuracy= 0.63, AUC=

0.62), with a good sensitivity of 0.89, but a rather poor specificity
of 0.29.

Similar performances were observed with the multivariate
learning-based MLP model, with an accuracy of 0.64 and an
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TABLE 2 | Classification performance of future (IA) growth prediction models.

Model Test data AUC accuracy sensitivity specificity

NSI all 0.62 0.63 0.89 0.29

HMAX all 0.52 0.54 0.36 0.80

AR all 0.52 0.56 0.88 0.15

V all 0.48 0.58 0.48 0.78

SA all 0.48 0.56 0.36 0.84

RF all 0.66 0.68 0.63 0.66

MLP all 0.62 0.64 0.71 0.55

PointNet++ (dome) all 0.72 0.77 0.80 0.63

PointNet++ all 0.795 0.82 0.96 0.63

RF fold 1 0.56 0.55 0.33 0.80

RF fold 2 0.81 0.81 0.83 0.8

RF fold 3 0.63 0.64 0.66 0.6

RF fold 4 0.63 0.72 1.0 0.4

MLP fold 1 0.65 0.63 0.50 0.80

MLP fold 2 0.61 0.63 0.83 0.4

MLP fold 3 0.55 0.55 0.50 0.60

MLP fold 4 0.67 0.72 1.00 0.4

PointNet++ fold 1 0.81 0.82 0.83 0.80

PointNet++ fold 2 0.70 0.73 1.0 0.4

PointNet++ fold 3 0.70 0.91 1.0 0.4

PointNet++ fold 4 0.75 0.82 1.0 0.5

The best result across all data is marked in bold.

AUC of 0.62. Compared with the NSI based univariate model,
the sensitivity–specificity (0.71 vs. 0.55, respectively) trade-off
obtained by the MLP was more balanced. When using the RF, the
trade-off was even more balanced with a sensitivity of 0.63 and a
specificity of 0.66, and a slightly improved accuracy of 0.68 and
an AUC of 0.66.

Deep learning-based PointNet++ model, using the IA dome
and parent vasculature surface mesh as input, achieved the best
classification performance with an accuracy of 0.82 and an AUC
of 0.795. The respective values for the PointNet++ model input
with IA dome surface mesh were slightly lower at 0.77 and 0.715.
Hereafter, PointNet++ is used refer to the best performingmodel,
unless otherwise stated. Compared to other tested models, the
best PointNet++ model also improved on the sensitivity (0.96),
while specificity was comparable with the RFmodel (0.63 vs. 0.66,
respectively).

We also observed the performance of RF, MLP, and
PointNet++ models in each of the four-folds (Table 2). In
general, the model performances were quite comparable in terms
of AUC, accuracy, and specificity, while the differences were
mainly in the sensitivity, critical for detecting the future growing
IAs. All methods had a sensitivity of 1.0 in fold number four,
while the IA cases seem to be more challenging in the other
three-folds. The PointNet++ model showed the most stable
performance across all folds. This is also supported by the

accuracy observed in the training folds, which was 0.97 for runs
1, 2, and 3 and 0.96 for run 4. The final loss was less than 0.07 in
all four runs.

Figure 5 visualizes the prediction results with respect to each
ground truth class and the predicted class, and with respect to
baseline IA size. In the stable IA class, 13 out of 19 IAs were
correctly classified by PointNet++, while six falsely as growing
IAs. More importantly, PointNet++ only misclassified one large
IA (size > 10 mm) as stable, while it correctly classified 24 out of
25 growing IAs with sizes from 3 to 8 mm.

Other prediction models had a much larger proportion of
misclassification in both stable and growing IA classes and
throughout the whole range of the IA sizes.

5. DISCUSSION

In this study, we objectively and comparatively evaluated the
established and novel models for predicting future IA growth
based on morphologic information. To our knowledge, this is the
first study to consider deep learning models to predict future IA
growth and employ only its baseline morphologic characteristics.
In addition, we compared the deep learning-based approach
with traditional learning-basedmethods and simplemorphologic
feature thresholding on our datasets. According to the results,
the deep shape learning-based PointNet++ model can predict
the future IA growth with high accuracy of 0.82, which is much
higher than any of the established or non-deep-learning-based
methods (accuracy≤ 0.68).

The deep shape learning model successfully predicted
aneurysm growth of 37 out of 44 IAs used in this study (Figure 5).
The high sensitivity of 0.96 indicates that the model was capable
of detecting those IAs that are prone to growth (24 out of
25 growing aneurysms were correctly classified). Specificity was
mediocre at 0.63, namely, the model correctly identified 13 out
of 19 stable aneurysms. In the terms of sensitivity, only the
univariate thresholding based on the NSI feature came close
(0.89). Interestingly, Chien et al. (2018) previously identified NSI
as a relevant predictor of future AI growth. However, in this
study, the NSI feature had poor specificity (0.29), which resulted
in its overall mediocre accuracy of 0.63.

Univariate cross-sectional features other than NSI did not
show a reasonable prediction value, which is also confirmed
by the ROC curves in Figure 4. Namely, the models based on
univariate features V, SA, AR, and HMAX have the ROC curves
close to the diagonal, indicating a close to random classification
performance. Both multivariate models, the RF and MLP, scored
better accuracy (0.68 and 0.64, respectively) than the NSI-
based model (0.63), or any other univariate based predictors.
The slightly increased accuracy in the two models seems to be
due to a better trade-off between sensitivity and specificity. In
general, it seems that there is little complementary information
in the five tested morphologic features, which the RF and MLP
models could exploit. Another important aspect is that all five
morphologic features characterize only the IA size and shape, but
do not encode the information about the parent vasculature.
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FIGURE 4 | Receiver operating characteristics (ROC) curves for all tested prediction models separated in to four panels: ROC curves of univariate models (upper left),
ROC curves of multivariate models (upper right), ROC curves of deep learning models (lower left), and best ROC curves for each approach (lower right).

The proposed PointNet++ based deep learning model was
superior compared to other tested methods, especially in
classifying cases in the growing IA class. The proposed method
was greatly improved on the state-of-the-art published results
by Chien et al. (2018). In their study on 93 aneurysms, they
achieved an AUC of 0.721, compared to the AUC of 0.795
by the PointNet++ model. There are two main benefits of
using PointNet++. First, the PointNet++ inputs surface mesh
vertex coordinates and corresponding normals and then aims
to learn local shape features with an increasing contextual
scale such that they are most discriminative for the posed
classification task. For instance, the PointNet++ model trained
on aneurysm dome surface mesh as inputs achieved better
AUC than any univariate or multivariate models tested in this
study, proving the importance of the automatically extracted
local shape features. Second, another benefit of PointNet++ is
that it may input both the aneurysm and its parent vasculature
surface mesh, thus also taking into account local features
of the proximal vessels and their configuration. There seems
to be relevant additional morphologic information provided
by the parent vasculature as the PointNet++ model trained
solely on the IA dome surface mesh exhibited slightly inferior

performances. Thus, an interesting avenue is to investigate
the use of morphologic features that characterize the parent
vasculature, such as aneurysm-to-vessel size ratio, aneurysm
inclination angle, and vessel angle (Dhar et al., 2008). However,
these features seem very crude and may not capture all
the possible parent vasculature configurations. It does not
seem reasonable to expect that such features could compete
with the automated feature extraction mechanism in the
PointNet++, which seamlessly weights the contributions of the
IA dome and parent vasculature morphology for the posed
classification task.

This study and similar studies (Liu et al., 2018, 2019) show
that more accurate predictions may be obtained using machine
learning models, compared to conventional univariate models
based on a single morphologic feature. Liu et al. (2018) compared
the morphology of ruptured and unruptured aneurysms and a
trained machine learning-based model for predicting aneurysm
growth. The authors achieved a high AUC of 0.948, which can
also be attributed to the aneurysm morphology change due to
rupture. Another study (Liu et al., 2019) based on the dataset
of already ruptured aneurysms achieved an AUC of 0.853. Even
though the datasets and the associated research question being
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FIGURE 5 | Classification results for IAs, classified as growing and stable

based on follow-up image assessment, with respect to the baseline IA size are

shown for four best-performing methods. Blue and red dots denote correct

and false classification results.

addressed in those studies cannot be directly compared to ours,
there is an obvious improvement when using machine learning-
based methods compared to the use of conventional univariate
morphologic features, possibly owing to the use of a rich feature
set and larger training datasets. In this way, future studies could
further improve the performances of models like RF and MLP.

An important limitation of this study is the number of IA cases
in our dataset. Although follow-up imaging and “no treatment”
approach is recommended for monitoring small IAs, it is not yet
widely used in clinical practice. A few studies that used larger
datasets usually had only extracted the manual measurements
from aneurysm viusalizations, such as aneurysm size and other
morphologic features (Chien et al., 2019), but unfortunately did
not extract the surface meshes. Furthermore, since the clinical
practice is in favor of surgical treatment, the availability of long-
term follow-up imaging datasets is extremely rare. Despite these
difficulties, we managed to retrospectively collect 44 pairs of
IAs for this study and, by using a cross-validation approach,
demonstrated a clear improvement in the prediction capability
using vasculature surface meshes and the PointNet++ deep
learning model for classification.

The high sensitivity of the proposed prediction model
allows for adequate prioritization of surgical interventions for
those patients at high risk of future aneurysm growth, thus
mitigating the risk of spontaneous rupture in the waiting

period. The observed specificity of the model is not very
high; however, this does not seem to have adverse implications
for clinical adoption. For example, in the current practice at
our partnering clinical institution, most aneurysm patients will
undergo surgical treatment and prioritizing patients according
to certain risk measures is essentially the goal. Thus, the false-
positive predictions, i.e., patients indicated as high risk but not
exhibiting future aneurysm growth, would thus receive treatment
earlier than otherwise. This is less concerning than the opposite
scenario, where a false-negative result could lead to-high-risk
patient not being treated. With the proposed PointNet++ model
we observed a low number of false-negative results, leading
to the high sensitivity, which is an important contribution of
this study.

While the rate of growth and other surrogate measurements
are highly relevant and can be assessed with high accuracy as
shown in our previous study (Bizjak et al., 2019), the integration
in the clinical routine proved to yield an insignificant impact,
since, under current workflow and guidelines, the clinician rarely
decides for the “no-treatment approach” with follow-up imaging.
These practical observations motivated this study to provide
prognostic tools to support the decision for the “no-treatment
approach,” such that these tools are based solely on the baseline
data and aim to determine future growth/rupture risk.

Causes of the rather low specificity of prediction models
could lie in the distinctive aneurysm shape heterogeneity and
homogeneity in the respective growing and stable classes and
artifacts resulting from imperfect surface mesh extraction. For
instance, future growing aneurysms generally exhibit higher
values of NSI, indicating that the shape of such aneurysms
is rather irregular. Shape irregularity is reflected through high
variability in surface curvature and roughness, which are local
surface features that the proposed PointNet++ model could
capture extremely well. On the other hand, the class of
stable aneurysms exhibits lower NSI values and seems much
more homogeneous in terms of shape characteristics, with
more regular convex shapes. However, the process of mesh
extraction from the volumetric scans may introduce minor
surface irregularities that could impact the prediction using the
PointNet++ model, specifically by increasing the rate of false
positives that adversely impacts the specificity. A possible strategy
to improve specificity could thus be to increase the resolution
of the volumetric scans and enhance their preprocessing, mesh
extraction, and processing. Moreover, increasing the number
of training cases might also further improve specificity and
overall prediction performance as the PointNet++ model could
better distinguish relevant local shape features from the artifacts
when given more cases and thereby accordingly reweigh their
contribution to the output classification score.

Correct classification of the growing IAs is most important
for the clinical application of mitigating rupture risk and
prioritizing surgical interventions.We thus feel that the proposed
method can greatly change and improve the process of IA
management in clinical practice, through providing rupture
risk patient stratification with respect to IA growth prediction.
Figure 4 shows that certain smaller IAs, predicted as growing,
could be considered more urgently compared to larger, but
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predicted as stable, IAs. Furthermore, such prognostic tools may
lead to wider clinical adoption of the imaging-based patient
follow-up and render the “no treatment” approach as a viable
alternative to surgical intervention in certain patients. Besides
preventing ruptures during waiting periods, such an approach
would indeed help to mitigate the high socio-economic impact
arising due to the high incidence and prevalence of the IAs in the
general population.
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