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Bladder cancer is one of the most common malignant tumors in urinary system.
Intravesical chemotherapy is a common adjuvant therapy after transurethral resection of
bladder tumors. However, it has several disadvantages such as low drug penetration rate,
short residence time, unsustainable action and inability to release slowly, thus new drug
delivery and new modalities in delivery carriers need to be continuously explored. Nano-
drug delivery system is a novel way in treatment for bladder cancer that can increase the
absorption rate and prolong the duration of drug, as well as sustain the action by
controlling drug release. Currently, nano-drug delivery carriers mainly included
liposomes, polymers, and inorganic materials. In this paper, we reveal current
researches in nano-drug delivery system in bladder cancer intravesical chemotherapy
by describing the applications and defects of liposomes, polymers and inorganic material
nanocarriers, and provide a basis for the improvement of intravesical chemotherapy drugs
in bladder cancer.

Keywords: bladder cancer, intravesical chemotherapy, nano-drug delivery system, liposomes, polymers,
inorganic material
INTRODUCTION

Bladder cancer (BC) is a common disease of the urinary tract, and its incidence ranks tenth in the
world among oncological diseases (1). Approximately 75% of patients with BC present with disease
confined to the mucosa (Ta or CIS) or submucosa (T1) (2), transurethral resection of bladder tumor
(TURBt) is a common treatment for bladder cancer and often following intravesical chemotherapy
(3). However, the bladder permeability barrier (BPB) including umbrella cells and
glycosaminoglycans (GAG) on its surface affect drug penetration, and the regular emptying of
the bladder dilutes or excretes the drug, resulting in a short drug residence time, which makes
intravesical chemotherapy less efficient (Figure 1) (4). Therefore, new drug delivery systems are
urgently needed to be developed.

In the field of medicine and pharmacology, nanoparticles are substances with diameters of 1-200
nm and 1-1000 nm separately. Nanomaterials are currently used to construct drug delivery carriers
as a novel drug delivery system. Liposomes, polymers, and inorganic nanomaterials are the most
dominant drug delivery carriers currently. These carriers exert longer duration of action and reduce
side effects by controlling drug release, and can encapsulate multiple drugs to achieve combination
therapy, which helps to improve the efficacy of intravesical chemotherapy (5–7). To provide a basis
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for the improvement of bladder cancer intravesical chemotherapy,
we elaborate current researches on the application of nano-drug
delivery systems. (Table 1)
LIPOSOMES

Liposomes are lipid based on spherical shaped vesicular systems,
in which a lipophilic bilayer is sandwiched between two
hydrophilic layers (8, 9). The biodegradability, biocompatibility
and high encapsulation rate of liposomes, as well as their
relatively simple production and stable properties, are of great
significance in the clinical application of drug delivery (42, 43).
During drug delivery, dynamic changes in the in vivo
microenvironment of liposomes can promote the release of
drug at specific locations or control the release in targeted
tissues, which is known as “triggered release” (44). Liposomes
mainly include thermosensitive, pH-sensitive, ultrasound-
sensitive, enzyme-triggered, magnetic field-sensitive and
ligand-targeted liposomes (45). Most liposomes currently used
in infusion chemotherapy for bladder cancer are ligand-targeted
(Figure 2). Though modification, liposomes show excellent effect
in intravesical chemotherapy.

Modified liposomes can effectively overcome the poor water
solubility of some drugs, which affects the cellular uptake rate
and perfusion effect (46). Bacillus Calmette-Guérin (BCG) is an
important agent for intravesical chemotherapy in non-muscle-
invasive bladder cancer, but it has greater local or systemic
adverse effects (47). BCG cell wall skeleton (BCG-CWS) has
relatively few adverse effects and can replace live BCG for bladder
perfusion, but it is poor in water solubility and low in cancer cells
uptake (10). Nakamura et al. (10) obtained homogeneous and
water-soluble nanoparticles (CWS-NP/LEEL) by the liposome
evaporated via emulsified lipid (LEEL) method. CWS-NP/LEEL
has a high uptake rate and significant tumor suppression ability
in rats. Although the drug-loaded liposome preparation was
enhanced by the addition of stearylated octaarginine (STR-R8)
Frontiers in Oncology | www.frontiersin.org 2
to enhance internalization, the problem of targeted drug uptake
by cancer cells was not addressed.

Taking advantage of the high metabolism of tumors,
modification of liposomes by specific metabolites can improve
the targeted uptake of drugs by tumors. Folic acid (FA) is
essential for tumor cell growth, and it has the advantages of
high receptor affinity, small size, economy, and stability. In
addition, folate receptor (FR) is deficiently expressed in normal
cells and abundantly expressed on a variety of tumor cancer cells
(48–52). Consequently, Yoon et al. (11) used folic acid (FA) and
the cell-penetrating peptide (Pep1) to improve the encapsulation
of LEEL and changed the solvent from pentane to
dichloromethane to form a novel vector CWS-FPL (FA- and
Pep1-modified liposomes). FA contributes to targeted drug
delivery to cancer cells, and positively charged Pep1 facilitates
drug delivery into the cells. The mean fluorescence intensity
(MFI) of CWS-FPL uptake rates in both 5637 and MBT2 cell
lines was significantly higher (138.26 and 132.59) than that of
ordinary liposomes (34.95 and 35.2). CWS-FPL also significantly
inhibited tumor growth. Rapamycin (Rap) encapsulated in FA-
modified liposomes (R-FL) can effectively remedy its
disadvantage of poor water solubility and improve the tumor
killing ability. Co-cultured with low doses of Rap, plain
encapsulated liposomes (R-CL) or R-FL for 48 h, the bladder
cancer cell viability varied, Rap and R-CL decreased the viability
less than 10%, while R-FL decreased the viability by 40%,
demonstrating that R-FL performed a significant cytotoxic
effect. This tumor inhibition ability resulted from the increased
cell adhesion by FA modification (12).

Functionalized liposome also improves the poor retention
and poor permeation of the drug in regular urination of the
bladder (53). Kaldybekov et al. (54) explored maleimide-
functionalized PEGylated liposomes (PEG-Mal) with efficient
mucosal adhesion and penetration ability. PEG-Mal WO50 (wash
out50, volume of artificial urine required to wash out 50% of
liquid formulation) (55) was significantly higher than that of
conventional liposomes (48 ml versus 15 ml), reflecting the
excellence in vitro retention, fluorescence microscopy of PEG-
FIGURE 1 | Levels of the bladder and bladder permeability barrier (BPB).
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Mal and conventional liposomes in the porcine bladder mucosa
also showed good mucosal penetration, the release time of PEG-
Mal was up to 8 h, which is significantly higher than the 2h
saturation release time of conventional liposomes. This method
effectively solves the problem of drug dilution and rapid loss due
to urination.
POLYMERS

Polymers are macromolecules composed of repeating subunits
(56). Drug delivery carriers composed of polymers are
characterized by controlled release times, biocompatibility, and
hydrophilic and hydrophobic selective release (57). Polymeric
carriers commonly used for nano-drug delivery are gels,
chitosan, microemulsions and micelles (Figure 3).
Gels
Gels are a hydrophilic three-dimensional polymer network (58)
and are classified as macrogels, microgels and nanogels
according to their size (59). Gels have sufficient adhesion to
the uroepithelial mucosa and remain attached to the bladder wall
after urination, which can avoid repeated drug instillation (60,
61). Nanogel delivery system can achieve floating or smart
release, slow drug release and reduce lumen obstruction, this
delivery system is appliable in intravesical chemotherapy
(62–66).

The modified gel nanomaterials provide intelligent drug
release and enhanced drug adhesion and penetration. Guo
et al. synthesized a positively charged disulfide-core-
crosslinked polypeptide nanogel of poly(L-lysine)–poly(L-
phenylalanine-co-L-cystine) (PLL-P(LP-co-LC)) to form a
d rug - l o ad ed nanog e l (NG/HCPT) ba s ed on 10 -
Hydroxycamptothecin (HCPT). The release of NG/HCPT was
slow in normal tissues and accelerated in tumor sites. Confocal
laser scanning microscopy (CLSM) of whole bladder wall
sections showed that the optical density of NG/HCPT at 0.5h,
2h and 6h was 1.7 times, 2.5 times and 5.3 times higher than that
of free HCPT, reflecting good permeability. This carrier
maintained a high concentration in bladder tissue and could
penetrate the bladder wall, and the anti-tumor effect was obvious
in animal model (13). In response to reduced efficacy in some
patients after repeated treatments, Guo et al. also synthesized a
smart disulfide-crosslinked polypeptide nanogel of poly-(l-
lysine)-poly(l-phenylalanine-co-l-cystine), which triggered the
breakage of the disulfide bond by high intracellular
concentration of glutathione, and led to the selective release of
hydroxycamptothecin from NG/HCPT (14). Then Guo et al.
synthesized a new optimized oligoarginine-poly(ethylene
glycol)-poly(L-phenylalanine-L-cysteine) nanogels (R9-PEG-P
(LP-co-LC)). The PEG significantly improved the dispersion of
the particles in water, and the non-specific interaction of PEG
chains with bladder mucosa and the electrostatic interaction
between cationic R9 and negatively charged bladder mucosa
further enhanced the adhesion of the gels. Besides, as a cell-
penetrating peptide, R9 effectively penetrated cell membranes
T
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FIGURE 2 | Modification of liposomes and various trigger release conditions of liposomes.
FIGURE 3 | Classification of polymer nanoparticles.
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and delivered drugs with more optimized antitumor effects than
previous nanogels (67).

A floating gel modified by chemical reaction can compensate
for ordinary gels defects that dislodged gel has direct contact
irritation to bladder mucosa and can obstruct the urethra (68). A
floating gel consisting of adriamycin (ADR), poloxamer 407
(P407) and NaHCO3 was developed, in which NaHCO3

produces microbubbles to float the gel in an acidic
environment. This nanogel can avoid the possible direct
contact and obstruction of the urinary tract (15). In addition,
NH4HCO3 instead of NaHCO3 in modified floating gel can
achieve temperature-controlled release. The microbubbles can
be produced spontaneously at body temperature (37°C) and the
gel float. This process was confirmed by ultrasound in rabbit
bladder (16).
Chitosan
Chitosan (CS) nanoparticles are applicable in drug delivery,
transport, targeted drug uptake due to their excellent
bioadhesion and permeability, unique polycationic, non-toxic
and bioresorbable properties (69, 70). Similar to gel systems,
chitosan plays an important role in bladder cancer perfusion
therapy by modification through different chemical reactions or
in combination with specific bioactive nanomaterials (71–76).

By coupling different substances, chitosan shows significant
advantages in increasing the adhesion rate of perfused drugs.
Some researchers have pioneered the reaction of chitosan with
methacrylic anhydride to prepare methacrylate chitosan, and
detected the adhesion and cytotoxicity on isolated porcine
bladder. This methacrylate chitosan had a best adhesion effect
compared with dextran and chitosan, and the adhesion ability
depended on the methylation degree (17). Kolawole et al. (18)
prepared high molecular weight chitosan (HCHI) with b-
glycerophosphate to form an new nanocarrier, which was
transparent and non-coagulable at room temperature. This
nanocarrier binds to mitomycin C and forms a mucoadhesive
gel layer with a large bladder area at elevated temperatures,
allowing prolonged drug diffusion. However, this study was
performed in isolated bladders filled with artificial urine, the
specific adhesion, release efficiency and other potential defects
need to be further verified and explored. In addition, the
synthetic borate-coupled chitosan derivatives (FS/LBCHI)
exhibited significantly elevated mucoadhesive properties by
applying coupling agents to interact chitosan with 4-
carboxyphenylboronic acid. It can be seen that coupling with
modified chitosan significantly improves the adhesion of
perfused drugs (19).Moustafa et al. used tripolyphosphate
(TPP)-treated chitosan and loaded with nanodiamond-bound
doxorubicin (DOX), which showed superior cytotoxic effects on
human bladder cancer cells than DOX or NDs alone and
increased drug retention in the isolated bovine bladder wall,
suggesting that this carrier may enhance the drug effect of
bladder perfusion (20, 21).

Besides, specific chitosan nanocarriers can increase
chemotherapeutic drug bioavailability and enhance tumor
suppression. Tumor-selective photosensitizer dyes in
Frontiers in Oncology | www.frontiersin.org 5
photodynamic therapy are retained and accumulated by
aberrant or overproliferating cells (e.g., tumor cells) and
combined with tissue oxygen and targeted illumination,
intracellularly produce cytotoxic reactive oxygen species (ROS)
to kill tumor cells and selectively destroy tissue in the diseased area
(77, 78). Specific chitosan nanocarriers based on photodynamic
therapy can increase the effect of chemotherapeutic agents.
Nitazoxanide (NTZ) and chlorine e6 (Ce6)-conjugated human
serum albumin (HSA-Ce6) formed self-assembled human serum
albumin-Ce6/NTZ nanoparticles (NPs), which were further
compounded across the mucosal carrier fluorinated chitosan
(FCS) to form HSA- Ce6/NTZ/FCS nanoparticle. The highest
AMPK a phosphorylation levels were detected in cells treated with
this nanoparticle, which effectively improved tumor tissue hypoxia
and inhibited tumor cell overproliferation. The 5-week survival
rate of mice with in situ bladder cancer perfused with this
nanoparticle reached 83%, which was significantly prolonged
compared to 17%-33% in other treatment groups, and could
effectively alleviate the effect of tumor hypoxia on drug
resistance (22). Manan et al. developed a novel Mn : ZnS
quantum dot-bound chitosan nanocarrier (CS-Mn : ZnS), which
can load drug such as Mitomycin C (MMC) and promote
engulfment of drug into target tumor cells efficiently and
continuously. This chitosan nanocarrier improves the
bioavailability of drugs, and it is possible to be a practical tool
for intravesical perfusion chemotherapy (23).

Microemulsions
Microemulsions are spontaneously formed single-phase
dispersion systems, which are thermodynamically stable and
isotropic. The small and uniform particle size of microemulsion
can improve the dispersion of the drug sealed in it and promote
the transdermal absorption of the drug (24, 25). Chen et al. (26)
used a microemulsion carrier to carry gemcitabine and cisplatin.
This carrier was chemically and physically stable, with significantly
better permeability than the corresponding aqueous solution and
significantly less bladder irritation than the chemotherapeutic
drug alone.

Micelles
Micelles are colloidal systems formed spontaneously by
amphiphilic copolymers in aqueous media (27). In aqueous
environment, hydrophobic chain segments gather each other
to form a hydrophobic core due to the exclusion of water
molecules, while hydrophilic chains surround them to form a
hydrophilic layer, eventually forming micelles with a core-shell
structure that remains stable in water. Unlike liposomes, micelles
have only one lipid layer, ranging in size from 15 nm to 80 nm
(28). DOX and IR780 dyes (a near infrared dye) were used to
form self-assembled micelles (DOX&IR780@PEG-PCL-SS NPs)
with PEG-PCL-SS (An amphiphilic copolymer containing
disulfide bonds) and cross-linked them internally to form
nanoparticles under disulfide bonding (DTT) catalytic
conditions. The DOX release rate was faster in bladder cancer
cells with high GSH concentration. In addition, the
photothermal effect of the nanoparticles by the photosensitizer
May 2022 | Volume 12 | Article 879828
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IR780 could also greatly promote the release of the drug. The
good photothermal properties and tumor targeting of this
micelle gives it a greater advantage in bladder intravesical
chemotherapy (29).
INORGANIC MATERIAL NANOCARRIERS

Common inorganic drug nanocarriers can be broadly classified
into non-metallic nanoparticles and metallic nanoparticles,
which show promising applications in targeted drug delivery,
controlled release and sustained release of drugs (79).

Non-metallic Nanoparticles
Mesoporous silica nanoparticles (MSNPs) are the more widely
used carriers among the non-metallic nanoparticle types. Their
excellent biocompatibility, high stability, rigid backbone, good
pore structure, tunable surface chemistry and controlled release
for drugs, determine they to be excellent drug carriers (30, 31).
Wei et al. (32) prepared novel targeting adriamycin mesoporous
silica nanoparticles and peptide CSNRDARRC couples (DOX-
loaded MSNs@PDA-PEP), which could load DOX more
efficiently compared to MSNs alone. It had higher
internalization rate and targeting efficiency in HT-1376 cells,
which could improve the therapeutic effect on bladder cancer
and show non-toxicity to mice model. Another highly
mucoadhesive nano-drug delivery system was prepared using
poly-amidoamine (PAMAM) modified MSNPs (MSNPs-
G0~MSNPs-G3) and loaded with DOX. With the dilution of
urine, the release of DOX increased significantly with the
decrease of pH, in addition MSNPs-G2 had the best
mucoadhesive property and the mucoadhesive ability of
MSNPs-G2 remained unchanged after loading DOX (33).
Frontiers in Oncology | www.frontiersin.org 6
Metal Nanoparticles
Common Metal Nanoparticles
Currently, metal nanoparticles are often prepared using
biological systems, which are nontoxic, economical and highly
efficient compared to traditional physical or chemically mediated
methods, and their applications are gradually expanding to
bladder cancer treatment (80). Ferreira et al. synthesized
Fusarium biogenic silver nanoparticle for the treatment of
NMIBC patients who are highly malignant, ineffective with
BCG treatment or relapsed, this nanoparticle can directly
induce DNA damage and have significant antitumor effects in
vivo (81). Cuprous oxide nanoparticles (CONPs) could activate
the ROS/ERK signaling pathway to induce apoptosis in bladder
cancer cells, and they were more metabolizable, less toxic, and
more suitable as drug carriers for intravesical chemotherapy.
Combining CONPs with gemcitabine chemotherapy reduced the
recurrence rate by synergistically exerting a more optimal effect
than single agents (82). In addition, studies have also confirmed
the killing effect of gold nanoparticles on different bladder cancer
cell lines with the same effect (83, 84).

Magnetic Nanomaterials
Magnetic nanoparticles (MNPs) are dominated by oxides of iron.
MNPs are appropriately sized, easily prepared and surface
modified, with good adsorption capacity and they can combine
with magnetic guidance (Figure 4). These characteristics make
MNPs as important tools in drug delivery, imaging and clinical
diagnosis (34, 35). With appropriately size, MNPs can increase
endocytosis by cancer cells. Jasna Lojk et al. (85) synthesized
polyacrylic acid (PAA)-coated MNPs and studied the differences
in their endocytosis in normal primary urothelial (NPU) cells,
RT4 cell line and T24 cell line. They confirmed that cancer cells
can selectively take up this vector. The surface modification of
MNPs can facilitate the binding of antitumor drugs and the
FIGURE 4 | Drug delivery mode and action of MNPs on tumor cells.
May 2022 | Volume 12 | Article 879828
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targeted uptake by tumor cells. Suo et al. prepared a novel
magnetic carboxylated multiwalled carbon nanotubes
(mMWCNTs) for loading epirubicin (EPI). Application of
such magnetic multi-walled carbon nanotubes not only
alleviated the toxicity of the drug to normal cells, but also
increased the dispersion and efficiency of the loaded drug,
resulting in good stability of the solution and anti-tumor
activity in vitro and in vivo (36). In addition, magnetic fields
acting on MNPs can lead to an increase in local temperature and
thus kill tumor cells (37, 38). Studies have shown that
methotrexate coupled with MNPs (MTX/MNPs) in
combination with magnetic heat achieves better cancer
suppression than drug therapy alone and adjuvant heat
therapy alone. The advantage of MTX/MNPs combined with
magnetic heat therapy was the low CEM43T90 value (the
cumulative equivalent minutes representing 43°C in 90% of the
tumor area) was sufficient for rapid tumor destruction and no
recurrence (39). Further the superparamagnetic nature of
magnetic nanomicrospheres allows for tumor localization and
vascular imaging for early diagnosis of disease (11, 32, 86, 87).
These advantages of MNPs can reduce the toxicity of perfused
drugs, induce slow and sustained drug release, increase targeted
binding, uptake and targeted killing of tumor cells, and will
enhance the efficacy of perfusion chemotherapy for
bladder cancer.
OTHERS

In addition to the above mentioned nanocarriers, there are some
special carriers that can be applied for chemotherapy of bladder
cancer. With self-propulsive properties, nanomotors show great
potential in overcoming drug delivery barriers (88). One
investigator prepared urease powered nanomotors of MSNPs
containing both polyethylene glycol and anti-FGFR3 antibodies
on their outer surface. The urease driven nanomotor converts
urea to carbon dioxide and ammonia thereby triggering the
propulsion of the nanomotor. The targeting functions of
substrate-dependent enzyme nanomotors was demonstrated in
spheroid culture (3D culture) of human bladder cancer cells (40).
Choi et al. prepared a biocompatible and bioavailable nanomotor
using dopamine (PDA) hollow nanoparticles. This nanomotor
was fluorescently labeled and showed strong fluorescence in the
bladder wall even after 12 hours of perfusion and penetrated to a
greater depth than the control group (41). Active motion
increased the penetration ability of the nanomotor, and active
antibody-modified nanomotors were more efficient than these
without antibody modification.
APPLICATION OF NANOCARRIERS IN
THE DIAGNOSIS AND MONITORING OF
BLADDER CANCER

The diagnosis and follow-up of BC are mainly based on
cystoscopy and urine cytology. Cystoscopy is invasive and
Frontiers in Oncology | www.frontiersin.org 7
costly, while urinary exfoliative cytology has low sensitivity
(89). The efficient binding and easy detection characteristics of
nanocarriers may become an important imaging tool for the
diagnosis and monitoring of bladder cancer. One investigator
used chitosan and ferromagnetic iron oxide nanocubes to design
peptide-conjugated chitosan nanoparticles (pMCNP). The
nanoparticles were administered to mice through the tail vein,
and then good MRI and optical dual-modality imaging were
detected. The pMCNP loaded with vincristine accumulated at
the tumor site and showed controlled release for up to 50 hours
(90). Besides the multi-binding site modification of MNPs has
the potential for drug perfusion with simultaneous imaging
detection (91). MNPs can also be used for urine protein
capture and detection. Researchers synthesized a novel bladder
cancer biosensor based on polycrystalline silicon nanowire field
effect transistor (Poly-SiNW-FET) for the quantification of
apolipoprotein A II protein (APOA2) in urine. The biosensor
can clearly differentiate urine from non-bladder cancer patients,
and the results are consistent with those of suspension chip
analysis system (Bio-Plex). The detection is non-invasive, simple
and fast. In addition, the biosensor accelerates purification
during immobilization of anti-APOA2, effectively preventing
denaturation of anti-APOA2 and increasing the accuracy of
the assay (92). MNPs can selectively capture urinary
glycoproteins from BC patients, contributing to the study of
glycoproteome and having the potential to uncover glycoprotein
biomarkers (93). Magnetic nanocarriers can also be used for the
detection of exfoliated tumor cells. Xu et al. combined Fe3O4 and
SiO2 to form new positively charged multifunctional nanoprobes
that can specifically capture and enrich tumor cells in urine in a
magnetic field, increasing the sensitivity of the detection (94).
DISCUSSION

The recurrence rate after TURBT for NMIBC is 50% to 80% (95),
and prevention of bladder cancer recurrence after surgery is a key
aspect to improve the prognosis of bladder cancer patients. Bladder
perfusion chemotherapy is an effective mean of preventing tumor
recurrence, but the tumor suppressive effect of the drugs reduces
due to the barrier effect of bladder epithelium and regular urination
behavior (61, 96, 97). Through the application of nanocarriers, both
lipid-soluble drugs and water-soluble drugs can better act on tumor
location. Meanwhile, drug adhesion, targeted uptake and killing to
cancer cell increases, toxicity, release rate and adverse effects reduce.
In addition, nanocarriers provide a low-invasive and efficient way to
monitor bladder cancer through specific imaging and targeted
binding detection of urine proteins or tumor cells.

However, there are still some drawbacks in the application of
nanocarrier technology in bladder cancer intravesical
chemotherapy. Firstly, liposome-based carriers have low water
solubility, large molecular weight, non-uniform particle size,
aggregate formation, and even affect the drug effect. Liposomes
still have a certain amount of binding between carriers and healthy
cells (28), which also proves that there may be toxic side effects on
normal cells. In contrast, most chemically cross-linked hydrogel
May 2022 | Volume 12 | Article 879828
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injections require high pressure and long delivery time when using
small-diameter catheters for bladder perfusion (68), resulting a high
attrition. Some polymer-based carriers are cumbersome to prepare,
with complicated preparation processes and high development
costs, limiting their translation to the clinic (36). Inorganic
nanomaterial carriers are also in the early stage of research,
lacking exact animal experiments and clinical experiments for
effect verification. The targeting, drug resistance, encapsulation
rate and release rate of the carriers themselves still need to be
optimized and improved.

The high recurrence rate of bladder cancer, the limitations of
perfusion drugs and their organ specificity require continuous
improvement of perfusion drugs and drug delivery system, and
the innovation and optimization of nano-delivery system is
Frontiers in Oncology | www.frontiersin.org 8
expected to provide a guiding idea for perfusion chemotherapy of
bladder cancer and become a powerful tool for the treatment of
bladder cancer.
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