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OBJECTIVE—The unraveling of the elaborate brain networks
that control glucose metabolism presents one of the current
challenges in diabetes research. Within the central nervous
system, the hypothalamus is regarded as the key brain area to
regulate energy homeostasis. The aim of the present study was to
investigate the hypothalamic mechanism involved in the hyper-
glycemic effects of the neuropeptide pituitary adenylyl cyclase-
activating polypeptide (PACAP).

RESEARCH DESIGN AND METHODS—Endogenous glucose
production (EGP) was determined during intracerebroventricu-
lar infusions of PACAP-38, vasoactive intestinal peptide (VIP), or
their receptor agonists. The specificity of their receptors was
examined by coinfusions of receptor antagonists. The possible
neuronal pathway involved was investigated by 1) local injec-
tions in hypothalamic nuclei, 2) retrograde neuronal tracing from
the thoracic spinal cord to hypothalamic preautonomic neurons
together with Fos immunoreactivity, and 3) specific hepatic
sympathetic or parasympathetic denervation to block the auto-
nomic neuronal input to liver.

RESULTS—Intracerebroventricular infusion of PACAP-38 in-
creased EGP to a similar extent as a VIP/PACAP-2 (VPAC2)
receptor agonist, and intracerebroventricular administration of
VIP had significantly less influence on EGP. The PACAP-38
induced increase of EGP was significantly suppressed by prein-
fusion of a VPAC2 but not a PAC1 receptor antagonist, as well as
by hepatic sympathetic but not parasympathetic denervation. In
the hypothalamus, Fos immunoreactivity induced by PACAP-38
was colocalized within autonomic neurons in paraventricular
nuclei projecting to preganglionic sympathetic neurons in the
spinal cord. Local infusion of PACAP-38 directly into the PVN
induced a significant increase of EGP.

CONCLUSIONS—This study demonstrates that PACAP-38 sig-
naling via sympathetic preautonomic neurons located in the
paraventricular nucleus is an important component in the hypo-
thalamic control of hepatic glucose production. Diabetes 59:
1591–1600, 2010

T
o maintain glucose homeostasis, a complex glu-
cose sensing and regulatory system has devel-
oped within the central nervous system (CNS),
involving hypothalamic and hindbrain areas

(1,2). Also a recent study in humans evidenced the sensi-
tivity of the hypothalamus to small changes in blood
glucose levels (3). Despite evidence from animal data for
roles in glucose homeostasis of several hypothalamic
nuclei such as the arcuate nucleus (ARC), ventromedial
hypothalamus (VMH), and paraventricular nucleus (PVN),
the major part of the neurochemical makeup of this
hypothalamic network is largely unknown.

Pituitary adenylyl cyclase-activating polypeptide (PACAP)
is a highly conserved peptide from the secretin-glucagon
superfamily (4), which exerts a plethora of peripheral and
central effects. PACAP also affects food intake and glucose
and lipid metabolism (5,6). PACAP-immunoreactive neurons
and their receptors (5) are distributed widely, including the
CNS and peripheral tissues such as adipose tissue and
pancreas. The highest concentrations in the CNS are found in
the hypothalamus (7), where PACAP-38 is produced abun-
dantly in VMH neurons and high release rates are reported
for the PVN (7–9). PACAP from retinal ganglion cells is
released primarily in the hypothalamic suprachiasmatic nu-
clei (SCN) (10). However, because tissue-specific knockout
animals are not available, it is unclear whether the effects of
PACAP on glucose metabolism are mediated via central or
peripheral pathways.

PACAP is structurally related to vasoactive intestinal
peptide (VIP). PACAP and VIP receptors have been clas-
sified as three different subtypes: PACAP-1 receptors
(PAC1R) (11), VIP/PACAP-1 receptors (VPAC1R), and
VIP/PACAP-2 receptors (VPAC2R) (12,13). VIP and PACAP
have a comparable affinity for VPAC1 and VPAC2 (14),
whereas PACAP also has a high affinity for the PACAP-
specific PAC1 receptor (15). Both PAC1R and VPAC2R are
broadly expressed in the brain, including the hypothala-
mus, whereas VPAC1R is mainly expressed in the cerebral
cortex and the hippocampus (16). The demonstration that
central administration of PACAP-38 not only induces Fos
immunoreactivity in several brain areas, including the PVN
(17), but also increases plasma glucose levels (18) sug-
gests that central PACAP-38 may play an important role in
(glucose) metabolism.

To determine the importance of central PACAP signal-
ing in regulating glucose metabolism, we combined intra-
cerebroventricular administration of PACAP-38, VIP, and/or
their receptor-specific agonists and antagonists, with mea-
surements of plasma glucose concentration, endogenous
glucose production (EGP), metabolic clearance rate (MCR),

From the 1Hypothalamic Integration Mechanisms, Netherlands Institute for
Neuroscience, Amsterdam, the Netherlands; the 2Department of Neurobiol-
ogy, Tongji Medical College of Huazhong University of Science and
Technology, Hubei, China; the 3Department of Clinical Chemistry Lab
Endocrinology, Academic Medical Center, University of Amsterdam, Am-
sterdam, the Netherlands; the 4Department of Endocrinology and Metabo-
lism, Academic Medical Center, University of Amsterdam, Amsterdam, the
Netherlands; and 5Instituto De Investigaciones Biomedicas UNAM, Ciudad
Universitaria, Mexico City, Mexico.

Corresponding author: Chun-Xia Yi, c.yi@nin.knaw.nl.
Received 20 September 2009 and accepted 18 March 2010. Published ahead

of print at http://diabetes.diabetesjournals.org on 31 March 2010. DOI:
10.2337/db09-1398.

© 2010 by the American Diabetes Association. Readers may use this article as
long as the work is properly cited, the use is educational and not for profit,
and the work is not altered. See http://creativecommons.org/licenses/by
-nc-nd/3.0/ for details.

The costs of publication of this article were defrayed in part by the payment of page

charges. This article must therefore be hereby marked “advertisement” in accordance

with 18 U.S.C. Section 1734 solely to indicate this fact.

ORIGINAL ARTICLE

diabetes.diabetesjournals.org DIABETES, VOL. 59, JULY 2010 1591



gluconeogenesis (GNG), and glycogenolysis. To delineate
further the hypothalamic output pathway, we combined the
intracerebroventricular administration of PACAP-38 with
Fos immunohistochemistry and retrograde tracing from the
intermediolateral column (IML) of the thoracic spinal cord,
measured plasma glucose concentrations and EGP after
intranuclear PVN administration of PACAP-38, and per-
formed intracerebroventricular infusions of PACAP-38 in rats
after a specific hepatic sympathetic or parasympathetic
denervation.

RESEARCH DESIGN AND METHODS

Experiments were conducted with approval of the animal care committee of
the Royal Netherlands Academy of Arts and Sciences. Male Wistar rats
weighing 300–350 g (Harlan, Netherlands) were housed four per cage at room
temperature (21 � 1°C) with a 12/12-h light-dark schedule (lights on at
0700 h). Food and water were available ad libitum, unless stated otherwise.
Surgery preparation. Animals underwent surgery under anesthesia with 0.8
ml/kg i.m. Hypnorm (Janssen, High Wycombe, Buckinghamshire, U.K.) and 0.4
ml/kg s.c. Dormicum (Roche, Almere, Netherlands).

Silicon catheters were inserted into the right jugular vein and left carotid
artery for intravenous infusions and blood sampling, respectively. With a
standard David Kopf stereotaxic apparatus, intracerebroventricular guiding
cannulas were placed into the lateral cerebral ventricle; double intracerebro-
ventricular cannulations were applied for intracerebroventricular preinfu-
sion studies (see below). Intranuclear infusion guiding cannulas were
placed into the PVN. All coordinates were adapted from our previous study
(supplementary Table 1, available in an online appendix at http://diabetes.
diabetesjournals.org/cgi/content/full/db09-1398/DC1). Fixation, anticlot-
ting treatment, and connection of catheters and probes were applied as
described before (19) as well as the hepatic sympathetic, parasympathetic,
and sham denervation (20).

For visualizing the PVN preautonomic neurons, 0.05–0.1 �l retrograde
neuronal tracer cholera toxin subunit B (conjugated with Alexa Fluor 555,
CTB-AF555; Molecular Probes, Eugene, OR) was injected into the thoracic
IML unilaterally between T6 and T7 (where the liver-projecting sympathetic
motor neurons are found) (21).

Experiments were performed after at least 10 days of recovery and with
presurgery body weights regained. Food was restricted overnight at 20 g
before the experimental day, and experimental blood sampling was started 5 h
after light on.
Stable isotope tracer dilution, intracerebroventricular infusions, and

blood sampling schedule. To compare the effects of the different PACAP-
38/VIP receptor (ant)agonists on EGP, the isotope dilution method was
applied, using [6.6-2H2]glucose [primed (8.0 �mol/5 min) � continuous (16.6
�mol/h)] infusion (�99% enriched); Cambridge Isotopes, Andover, MA). To
dissect the separate contributions of GNG and glycogenolysis to EGP, in an
additional vehicle and PACAP-38 intracerebroventricular infusion group,
the mass isotopomer distribution analysis method was applied using
[U-13C6]glucose and [2-13C1]glycerol (22,23) (3.53 mg/ml [U-13C6]glucose, 22.8
mg/ml [2-13C1]glycerol, 2,910 �l/h bolus for 5 min, and continuous infusion).
Blood samples (0.3 ml/sample) were taken at t � �5 min for background
tracer enrichment and at t � 90, 95, and 100 min for determining basal plasma
parameters and isotope enrichment after having reached isotope equilibrium
(data are presented by averaging these three time points). After t � 100 min,
single intracerebroventricular infusions of different drugs (and vehicle at 5
�l/h) were started immediately and lasted 120 min; direct infusion of
PACAP-38 into PVN was performed with a fivefold lower concentration of
PACAP-38 than the intracerebroventricular infusions and a 2 �l/h infusion
rate. From t � 120–220 min, six blood samples were taken with 20-min
intervals for determining plasma parameters. After the last blood sample, liver
tissue was collected under deep anesthesia for quantitative real-time PCR
(RT-PCR) studies, and subsequently animals were perfusion fixed (supple-
mentary data 2, available in an online appendix) for Fos immunoreactivity
(Fos-ir) and localizing cholera toxin subunit B (CTB)-AF555 tracer. Single Fos
or double Fos/CTB and Fos/arginine-vasopressin (AVP) immunohistochemical
analysis was performed. To investigate the effect of PACAP-38 on plasma
epinephrine concentrations, an additional experiment with intracerebroven-
tricular infusions of PACAP-38 and vehicle was performed. Blood was
sampled (2.0 ml/sample) only at t � �5 and 90 min.

All drugs used for intracerebroventricular infusions were dissolved in a
fivefold stock solution in purified water containing 30% glycerol and diluted to
working solution by purified water, except for the VPAC2R antagonist, which
was dissolved in 0.5% acetic acid neutralized by NaHCO3 (this vehicle did not

differ from the common vehicle with respect to its effects on plasma glucose
concentration [P � 0.29], EGP [P � 0.30], and MCR [P � 0.10]). PACAP-38 for
the microinfusions was dissolved in 0.9% saline.

For experiments that needed preinfusion and coinfusion of receptor
antagonists, a preinfusion of the receptor antagonist was started immediately
after t � 100 min through the left intracerebroventricular cannula; 10 min
later, the PACAP-38 was started via the right intracerebroventricular cannula.
Analytical methods. Plasma samples were stored at �20°C for analysis. By
using radioimmunoassay kits, plasma insulin (t � 100, 140, 180, and 220 min),
glucagon (t � 90, 120, 160, and 200 min) (LINCO Research; St. Charles, MO),
and corticosterone concentrations (all time points) (ICN Biomedicals, Costa
Mesa, CA) were measured. Plasma isotope enrichments were measured using
gas chromatography–mass spectrometry, and GNG was calculated by mass
isotopomer distribution analysis (23–25). Plasma epinephrine and liver nor-
adrenalin were measured by high-performance liquid chromatography with
fluorescence detection after derivatization of the catecholamines with diphe-
nylethylene diamine. Glycogen content was measured by spectrophotometry.
Liver expression of phosphoenolpyruvate carboxykinase (Pepck) and glu-
cose-6-phosphatase (G6Pase) mRNA were examined by RT-PCR (supplemen-
tary data 3, available in an online appendix) (19). Fos-ir–positive cells in the
PVN from vehicle, PACAP-38, VIP (5 nmol/h), VPAC1R, VPAC2R agonist
intracerebroventricular infusion, and direct injection of PACAP-38 into the
PVN were quantified (supplementary data 4, available in as online appendix)
(26).
Calculation and statistics. Data from all experiments are presented as
means � SEM. EGP was calculated from isotope enrichment using adapted
Steele equations (27). Glucose concentration and EGP were analyzed using a
repeated-measures ANOVA to test for the effects of peptide infusions and
time. Plasma epinephrine, corticosterone, glucagon, and insulin, as well as
liver noradrenalin, glycogen content, and mRNA expression, were analyzed
using one-way ANOVA, to compare the average among experimental groups.

RESULTS

Intracerebroventricular PACAP-38 induces hypergly-
cemia by stimulating endogenous glucose production.
To investigate the possible contribution of the hypotha-
lamic PACAP/VIP systems to peripheral glucose metabo-
lism, we administered PACAP-38 and VIP, as well as a
specific VPAC1-R agonist (K15,R16,L27VIP/GRF) (28) and
VPAC2-R agonist, Hexa-His� VIP(2–27) (29), by intracere-
broventricular infusion into the lateral cerebral ventricle.
Upon intracerebroventricular infusion of PACAP-38 for
120 min (1 nmol/h, n � 6), both plasma glucose concen-
tration and EGP were increased in comparison with the
basal state at t � 100 min (�70 and �100%, respectively).
ANOVA detected a significant effect of time (difference
between time points is expressed by time effects Pt; Pt �
0.001 for both parameters). The PACAP-38 induced in-
crease was also significant compared with the vehicle
control group (n � 6) (difference between groups is
expressed by group effects Pg; Pg � 0.001 and Pg � 0.001
for plasma glucose and EGP, respectively) (Fig. 1A and B).
Intracerebroventricular infusion of VIP at the same con-
centration (1 nmol/h, n � 4) did not significantly change
plasma glucose concentrations (Pt � 0.15) but did cause a
significant increase of EGP (Pt � 0.004). This increase was
slightly higher than vehicle control (Pg � 0.049) but
significantly lower than PACAP-38 (Pg � 0.04). When a
fivefold higher concentration of VIP (5 nmol/h, n � 5) was
administered, a clear hyperglycemia was induced (�50%,
Pt � 0.001), which was significantly higher than that in the
1 nmol/h (Pg � 0.03) and vehicle (Pg � 0.001) groups and
not significantly different from PACAP-38. EGP also in-
creased significantly (Pt � 0.001) in the 5 nmol/h group; it
was significantly higher than that of the vehicle control
group (Pg � 0.02) but did not differ from 1 nmol/h VIP and
was still significantly lower than the PACAP-38 group
(Pg � 0.03). MCR increased significantly in both PACAP38-
treated (Pt � 0.007) and VIP (1 nmol/h)-treated (Pt �
0.002) animals and showed a significant decrease from t �
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FIG. 1. The effects of central administration of PACAP-38, VIP, and/or their receptor agonists and antagonists on plasma glucose concentration,
EGP, and MCR. A–C: Intracerebroventricular (i.c.v.) infusion of PACAP-38 increases both plasma glucose concentrations and EGP. Similar
responses could not be obtained with equimolar or five times higher concentrations of VIP. MCR during PACAP-38 and VIP (1 nmol/h) increased
and during VIP (5 nmol/h) decreased along the intracerebroventricular infusion. D–F: Intracerebroventricular infusion of the VPAC2R agonist
resulted in significantly higher plasma glucose levels, EGP, and MCR responses than the VPAC1R agonist. The almost similar responses induced
by the VPAC2R agonist and PACAP-38 indicate that the plasma glucose, EGP, and MCR changes induced by PACAP-38 are predominantly mediated
via the VPAC2R. G–I: Coinfusion of PACAP-38 with the PAC1R or VPAC2R antagonist shows that antagonizing VPAC2R, but not PAC1R, blocks
a large part of the plasma glucose (G), EGP (H), and MCR (I) responses evoked by PACAP-38, thus confirming that PACAP-38 mainly acts on
central VPAC2Rs to regulate plasma glucose concentrations, EGP, and MCR. Coinfusion of PACAP-38 with the MC3R/MC4R antagonist SHU9119
still induces changes in plasma glucose, EGP, and MCR. Thus, the melanocortin signaling pathway is not likely to be involved in the central
PACAP-38 effects on glucose production. Antagonist infusions were started at time point “a” through the left intracerebroventricular cannula,
and the PACAP-38 infusion was started 10 min later at time point “b” through the right intracerebroventricular cannula. The starting and end
time points for the intracerebroventricular infusion of the different drugs in all groups are illustrated in B and H, respectively, that is,
immediately after t � 100 min or t � 110 min, and end at t � 220 min or t � 230 min. The gray symbols and lines in parts (D–I) are a repeat of
the PACAP-38 and vehicle data in A–C. Data are means � SEM.
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160 min to t � 220 min in the VIP (5 nmol/h) group (Pt �
0.004) (Fig. 1C). The vehicle group showed no effects of
time for the MCR. No group effect was found, although
MCR was higher in PACAP-38 than in vehicle.
PACAP-38 induces hyperglycemia via VPAC2R. Intra-
cerebroventricular infusion of the VPAC1R agonist (1
nmol/h, n � 5) or the VPAC2R agonist (1 nmol/h, n � 6)
resulted in quite different effects on plasma glucose con-
centration and EGP (Fig. 1D and E). Intracerebroventric-
ular infusion of the VPAC2R agonist caused a significant
increase in plasma glucose concentrations (�40%, Pt �
0.001), which was higher than the effect of vehicle (Pg �
0.001) or the VPAC1R agonist (Pg � 0.001); it also signifi-
cantly increased EGP (�65%, Pt � 0.001), an effect that
was again significantly stronger than that of vehicle (Pg �
0.001) and VPAC1R agonist (Pg � 0.02). Although the
effects were shorter lasting and less pronounced than
those of PACAP-38, no significant differences were found
between the VPAC2R agonist and PACAP-38 with regard
to their effects on plasma glucose concentration and EGP.
Intracerebroventricular infusion of the VPAC1R agonist
also increased plasma glucose concentrations, especially

during later stages (Pt � 0.002) and differed significantly
from vehicle (Pg � 0.02), but this increase was signifi-
cantly lower than that of PACAP-38 (Pg � 0.01) and that of
VPAC2R agonist (Pg � 0.001). On the other hand, the
VPAC1R agonist did not significantly change EGP; its
effect did not differ significantly from the vehicle group
and was significantly lower than that of the VPAC2R
agonist (Pg � 0.001) and PACAP-38 (Pg � 0.004) (Fig. 1C
and D). MCR during VPAC1R agonist decreased (Pt �
0.001) significantly but did not differ from vehicle and
PACAP-38. During VPAC2R agonist infusion, MCR in-
creased (Pt � 0.001) significantly; it was significantly
higher than vehicle (Pg � 0.03) and not different from
PACAP-38. VPAC1R and VPAC2R are also expressed in
peripheral tissues, such as pancreas and adipose tissue
(30). To exclude the possibility that the glucoregulatory
effects of PACAP/VIP resulted from leakage of brain
infusates into the systemic circulation, we also infused the
VPAC1R and VPAC2R agonists (with the same conditions
as used for the intracerebroventricular administration)
directly into the systemic circulation. No significant
changes in either plasma glucose concentrations or EGP
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were detected (supplementary Fig. 1A and B, available in
the online appendix).

Because no specific PAC1R agonist was available, we
tested the possible involvement of the PAC1R in the
glucoregulatory effects of PACAP-38 by intracerebroven-
tricular preinfusion of the PAC1R-specific antagonist
PACAP-6-38 (31) (5 nmol/h) together with PACAP-38 (1
nmol/h) (n � 4). The coinfusion of PACAP-6-38 with
PACAP-38 still significantly increased plasma glucose con-
centrations (Pt � 0.001, Pg � 0.70 vs. PACAP-38), EGP
(Pt � 0.001, Pg � 0.80 vs. PACAP-38), and MCR (Pt � 0.049,
Pg � 0.80 vs. PACAP-38) (Fig. 1G–I).

To test further the role of the VPAC2R, the VPAC2R-
specific antagonist myristoyl-K12-VIP(�1–26)-KKGGT (32)
was preinfused (5 nmol/h) together with PACAP-38 (1
nmol/h) (n � 6). Plasma glucose levels did not rise
significantly but were still significantly higher than the
vehicle control (Pg � 0.003). EGP showed a significant
increase over time (Pt � 0.003) but was not different from
its own vehicle control. Compared with the single intrace-
rebroventricular PACAP-38 infusion group, the coinfusion
almost completely blocked the increases of plasma glucose
(Pg � 0.03) and EGP (Pg � 0.001) evoked by PACAP-38. MCR
increased as well (Pt � 0.001) but significantly less than
single PACAP-38 (Pg � 0.02) and not different from its own
vehicle control (Fig. 1G–I).

The inhibitory effect of intracerebroventricularly admin-
istered PACAP-38 on food intake involves proopiomelano-
cortin-containing neurons in the ARC and can be blocked
by the coadministration of the MC3-R/MC4-R specific
antagonist SHU9119 (18). Here, coinfusion of the MC3-R/
MC4-R antagonist SHU9119 (5 nmol/h) with PACAP-38
(1 nmol/h) still increased plasma glucose concentrations
(Pt � 0.001), EGP (Pt � 0.001), and MCR (Pt � 0.049) and
did not significantly change the hyperglycemic, EGP, and
MCR stimulatory effects of a single intracerebroventricu-
lar PACAP-38 infusion (Fig. 1G–I).

Intracerebroventricular administration of PAC1R (n �
4), VPAC2R (n � 5), or SHU9119 (n � 6) on its own did not
significantly affect plasma glucose concentrations or EGP
(supplementary Fig. 1C and D).
Contribution of glycogenolysis and GNG to the hy-
perglycemic action of PACAP-38. In animals receiving
dual-isotope tracer infusions for analyzing glycogenoly-
sis and GNG, intracerebroventricular administration of
PACAP-38 (n � 6) significantly increased plasma glucose
concentrations and EGP (Pt � 0.001 and Pt � 0.002,
respectively), that is, comparable to the previous results
with the [6.6-2H2]glucose method (compare Fig. 2A and C
and Fig. 1A and B). In the vehicle group (n � 5), EGP
decreased slightly during the study period (Pt � 0.034). In
both groups (i.e., vehicle and PACAP-38), the fractional
contribution from GNG to EGP slowly increased along the
120-min intracerebroventricular infusion (from 19 to 28%
in vehicle [Pt � 0.002] and from 18 to 23% in the PACAP
group [Pt � 0.008]), without significant differences be-
tween the two groups (Fig. 2B). The absolute rate of GNG,
however, increased significantly more in the PACAP-38
group than in the vehicle group (Pg � 0.027). Consistently,
RT-PCR showed significantly increased mRNA expression
of Pepck compared with vehicle and VPAC1R and VPAC2R
agonists (Fig. 2D); mRNA expression of G6Pase in
PACAP-38 showed a trend toward an increase in compar-
ison with vehicle (Fig. 2E). In the PACAP-38 group,
glycogenolysis significantly increased by 61% (Pt � 0.001),
whereas in the vehicle group, glycogenolysis significantly
decreased by 27% (Pt � 0.005) (Fig. 2C). In line with the
increased glycogenolysis, liver glycogen stores were sig-
nificantly lower in the PACAP-38 animals (Fig. 2F).
PACAP-38 induces Fos immunopositive nuclei in
sympathetic preautonomic PVN neurons. Intracerebro-
ventricular administration of PACAP-38, VPAC2R agonist,
or VIP (5 nmol/h), but not the VPAC1R agonist or vehicle,
induced Fos-ir in the PVN, periventricular nucleus, and
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FIG. 3. Intracerebroventricular infusion of PACAP-38, VIP, or their receptor agonists results in different Fos-ir patterns in different brain areas.
A: PACAP-38 (1 nmol/h) induced Fos-ir in PVN and the periventricular area. A similar Fos-ir pattern can be seen after VIP (5 nmol/h) (B, and Fig.
4C and D) and VPAC2R (1 nmol/h) (Fig. 4A and B) but not VIP (1 nmol/h) (not shown), VPAC1R (1 nmol/h) (C), or vehicle (D). E and F:
Intracerebroventricular administration of PACAP-38 (E), VIP (5 nmol/h), and VPAC2R agonist also induced Fos-ir in the nucleus incertus located
in the pons. No such Fos-ir was visible in the nucleus incertus with vehicle (F) or VPAC1R agonist infusion (not shown). OT, optic tract; III, third
cerebral ventricle; IV, fourth cerebral ventricle. Scale bar: A–D, 400 �m; E and F, 200 �m.
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ARC in the hypothalamus, as well as the nucleus incertus
in the pons (Figs. 3 and 4). In the PVN, the PACAP-38 and
VPAC2R-agonist induced Fos-ir nuclei mainly located in its
rostromedial part, with considerably fewer labeled nuclei
extending into the lateral magnocellular compartment of
the PVN. Fos/AVP double staining showed that few of the
VPAC2R agonist-induced Fos-ir neurons contained AVP-ir
(Fig. 4A and B). In contrast, VIP induced strong Fos-ir both
in the rostromedial and lateral magnocellular compart-
ment and colocalization with AVP (Fig. 4C and D). Count-
ing Fos-ir showed that PACAP-38, VIP, and VPAC2R
agonist similarly induced significant more Fos-ir in PVN
neurons than in vehicle and VPAC1R agonist groups (Fig.
4E). This specific Fos-ir pattern was also observed after a
90 min intracerebroventricular infusion of PACAP-38, with
similar numbers of Fos-ir nuclei in the PVN (Fig. 4E).

Among the animals with CTB-AF555 injections in the
IML, three showed clear CTB labeling in the CNS, includ-
ing the corticospinal projection neurons, lateral hypothal-
amus, PVN, locus coeruleus, parabrachial nucleus, and the

nucleus ambiguous. In the PVN, CTB-labeled neurons
were concentrated in the dorsomedial and less in the
ventrolateral subdivision. Several CTB-labeled neurons
colocalized Fos-ir induced by PACAP-38. Among the total
CTB-labeled neurons, 33 � 3% per section also contained
Fos-ir nuclei. The percentage of CTB-labeled neurons
among the total of Fos-ir nuclei in PVN per section is �3%.
This colocalization was not observed in other brain areas
(Fig. 4F).
Hepatic sympathetic denervation blocks the hyper-
glycemic action of PACAP-38. Basal plasma glucose
concentrations, EGP, and MCR were not influenced by
hepatic sympathetic denervation (HSX), parasympathetic
denervation (HPX), or sham denervation (shamX) (Figs.
5A–C). After HSX, the hyperglycemic and EGP, but not
MCR, stimulatory effects of PACAP-38 were significantly
reduced. Plasma glucose concentrations of HSX animals
no longer showed a significant increase and significantly
lower than HPX (Pg � 0.02) and shamX groups (Pg � 0.01).
Although EGP still showed a significant increase (Pt �
0.001) in the HSX group and was higher than that of
vehicle-treated nondenervated animals (Pg � 0.02), it was
also significantly lower than that of PACAP-38–treated
nondenervated (Pg � 0.005), shamX (Pg � 0.036), and HPX
(Pg � 0.036) animals. No differences were found between
HPX and shamX animals in plasma glucose concentration
and EGP nor between shamX or HPX and the PACAP-38–
treated nondenervated animals in experiment 1. The
PACAP-38–induced increase in MCR was not affected in
any of the denervated groups. The effectiveness of HSX
was validated by a significantly reduced noradrenalin
content in the liver of HSX (26.17 � 1.32 ng/g) compared
with HPX (57.93 � 5.88 ng/g) (P � 0.001) and shamX
(58.00 � 4.30 ng/g) (P � 0.001) animals. No difference in
hepatic noradrenalin content was found between HPX and
shamX groups. In addition, noradrenalin in both HPX and
shamX groups was not different from that in intact rats
without abdominal surgery (58.96 � 9.24 ng/g).
Local infusion of PACAP-38 into the PVN increases
plasma glucose concentration and EGP. To verify that
intracerebroventricular PACAP-38 induced changes in glu-
cose metabolism largely depend on its direct effects on
PVN neurons, we infused PACAP-38 locally into the PVN
(n � 5). Plasma glucose concentration and EGP (Fig. 6A
and B) increased significantly compared with vehicle
control (n � 5) (P � 0.001 and P � 0.01, respectively) and
compared with animals that had their cannulas placed
outside the boundaries of the PVN area (n � 8) (P � 0.001
and P � 0.02, respectively). MCR increased significantly
compared with vehicle control (P � 0.02) (Fig. 6C) but did
not reach significance compared with the misplaced group
(P � 0.07). The number of Fos-ir nuclei in PVN only
increased when PACAP-38 was injected into the PVN (Fig.
6D–F).
Plasma glucoregulatory hormones. Plasma epinephrine
concentrations increased significantly after intracerebro-
ventricular infusion of PACAP-38 (Fig. 7). The average
concentration of plasma glucagon increased significantly
after PACAP-38, VIP (5 nmol/h), and VPAC2R but not after
the lower concentration of VIP (1 nmol/h; not shown),
VPAC1R agonist, or vehicle infusion (Fig. 8A). Further-
more, no significant difference was found between the
glucagon responses of the VIP (5 nmol/h), PACAP-38, and
VPAC2R-agonist treated groups. Mean plasma insulin con-
centrations were mildly elevated upon intracerebroven-
tricular administration of PACAP-38 and the VPAC2R
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agonist, but neither of them reached statistical signifi-
cance (Fig. 8B). In HSX, HPX, and shamX animals,
PACAP-38 infusion increased plasma glucagon concentra-
tions to a level similar to that for PACAP-38, VIP, or
VPAC2R-agonist in nondenervated animals. After HSX,
mean plasma insulin levels were not increased during the
administration of PACAP-38. In HPX and shamX animals,
only the increase in the shamX group reached significance.
Plasma corticosterone concentrations showed a signifi-
cant increase in all groups, with all drug-induced re-
sponses significantly higher than those of the vehicle
controls. No significant differences were found between
PACAP-38, VIP, and their receptor-specific agonists, or
between HSX, HPX, and shamX groups (Fig. 8C).

DISCUSSION

The present results clearly show that hypothalamic
PACAP signaling is tightly involved in the control of
glucose metabolism. Intracerebroventricular administra-
tion of PACAP-38 causes a pronounced increase in EGP
and lasting hyperglycemia. Follow-up experiments using
intranuclear infusions, coinfusions of specific VIP/PACAP
receptor (ant)agonists, Fos immunohistochemistry, retro-
grade tracing, and specific denervations of the autonomic
liver innervation suggest a role for the hypothalamic
PACAP system in the control of glucose metabolism via a
specific central pathway involving VPAC2R and preauto-
nomic neurons in the PVN.

Although PACAP and VIP share several similar func-
tions, including stimulating the release of prolactin and
other pituitary hormones (4), they are basically distinct
peptides, with different origins and distributions in both
brain and periphery. Hypothalamic VIP-ir fibers, including
those in the PVN, almost solely derive from the SCN (33).
On the other hand, PACAP-ir fibers are widely distributed
within the hypothalamus, especially in its medial part (34).
Moreover, the hypothalamic PACAP innervation is derived
from different origins, including intrahypothalamic sources
such as the VMH and extrahypothalamic sources such as the
bed nucleus of the stria terminalis (9,35), brainstem (9,36),
and retina (10). Despite the equal affinity of PACAP and VIP
for the VPAC2R as shown by in vitro receptor binding studies
(13), we found a quite different central effect of PACAP-38

and VIP on glucose metabolism. Similar differences were
observed in other studies. In the adrenal gland, PACAP is
�100-fold more potent than VIP in evoking secretion of
catecholamine (37), and in the SCN, PACAP is 1,000-fold
more potent than VIP at altering the phasing of the circadian
rhythm (10) despite both tissues expressing VPAC2R (38,39).

Specific denervation of the sympathetic input to the
liver obliterated the EGP increase produced by intracere-
broventricular administration of PACAP-38. This indicates
that PACAP-38 stimulation of hepatic glucose production
partly depends on an intact hepatic sympathetic auto-
nomic innervation. On the other hand, the only partial
suppression of EGP in HSX indicates that PACAP-38 also
uses other pathways to stimulate liver glucose production,
such as increased corticosterone, epinephrine, and gluca-
gon release by adrenal and pancreas. PACAP activation of
the thoracic IML projecting preautonomic neurons in the
PVN strongly suggests that the EGP stimulating action
involves activation of liver projecting preautonomic neu-
rons by PACAP-38 (40). This idea is supported by the
presence of VPAC2R immunoreactivity in the dorsal and
ventral PVN (41), the stimulatory effects of focal PVN
infusions of PACAP-38 on plasma glucose concentrations
and EGP, and the effects of HSX.

PACAP-38 also has stimulatory effects on glucose up-
take, as the MCR induced by PACAP-38 was higher than in
vehicle, and this probably indicates that PVN preauto-
nomic neurons projecting to glucose-using tissues such as
muscle and adipose tissue also are stimulated. MCR was
not influenced by any of the denervation procedures; thus,
when EGP was suppressed by HSX, the plasma glucose
concentration also was lowered in the PACAP-38	HSX
group (Fig. 5A). The VPAC2R-agonist induced the highest
MCR response, and blocking VPAC2R, but not PAC1R,
suppressed the PACAP-38-induced increase of MCR, sug-
gesting that, in the CNS, PACAP-38 stimulates glucose
disposal mainly via VPAC2R. Systemically, however,
PAC1R seems to play a major role by regulating glucose
disposal via direct actions in the pancreas and by changing
insulin activity as based on data from PAC1R knockout
animals (42). Thus, different CNS and peripheral PACAP/
VIP receptors may play roles in retaining glucose
homeostasis.
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Glucose is produced in the liver by glycogenolysis and
GNG. It is largely unknown which specific signals, besides
circulating glucoregulatory hormones, control the balance
between glycogenolysis and GNG. The present study
shows that PACAP-38 increased glycogenolysis in line
with early studies on the stimulatory effects of electrically
stimulated sympathetic nerves on liver glycogenolysis
(43).

At present it is unclear which group(s) of PACAP-
containing neurons is responsible for the brain control of
glucose metabolism. PACAP knockout animals have been
shown to have an impaired counterregulatory response to
hypoglycemia (44). Recovery from hypoglycemia is be-
lieved to be mainly processed by the VMH and the sympa-
thoadrenal pathway (45). Because PACAP mRNA is highly
expressed in the VMH (34), it is possible that activation of
PACAP neurons in the VMH, and subsequently the PACAP-
containing projections to the PVN, are involved in the
hypothalamic mechanism necessary to stimulate hepatic
glucose production upon hypoglycemic challenges. PACAP
is also involved in acute and chronic stress responses via the
PVN–corticotropin-releasing hormone neurons, the hypotha-
lamic-adrenal–pituitary axis, and the sympathetic nervous
system (46–49). The PACAP system could thus be an impor-
tant gateway to control hepatic glucose production during
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stress (46–49). Finally, as PACAP expression in the VMH is
also under the influence of estrogen (50) and leptin (51), the
currently revealed glucoregulatory effects of PACAP might
also be part of a brain circuit that connects the reproductive
and adiposity systems with energy metabolism.

In summary, we present a neuronal pathway by which
PACAP-38 activates hypothalamic preautonomic neurons
that control sympathetic nerves innervating the liver,
resulting in a hyperglycemia almost entirely due to an
increase in hepatic glycogenolysis. Future experiments
should reveal the specific physiological stimuli and PACAP
neurons responsible for activation of these glucoregula-
tory neurons.
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