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Slower growth of Escherichia coli leads to longer
survival in carbon starvation due to a decrease in
the maintenance rate
Elena Biselli1,† , Severin Josef Schink1,2,† & Ulrich Gerland1,*

Abstract

Fitness of bacteria is determined both by how fast cells grow when
nutrients are abundant and by how well they survive when condi-
tions worsen. Here, we study how prior growth conditions affect
the death rate of Escherichia coli during carbon starvation. We
control the growth rate prior to starvation either via the carbon
source or via a carbon-limited chemostat. We find a consistent
dependence where death rate depends on the prior growth condi-
tions only via the growth rate, with slower growth leading to expo-
nentially slower death. Breaking down the observed death rate
into two factors, maintenance rate and recycling yield, reveals that
slower growing cells display a decreased maintenance rate per cell
volume during starvation, thereby decreasing their death rate. In
contrast, the ability to scavenge nutrients from carcasses of dead
cells (recycling yield) remains constant. Our results suggest a phys-
iological trade-off between rapid proliferation and long survival.
We explore the implications of this trade-off within a mathemati-
cal model, which can rationalize the observation that bacteria
outside of lab environments are not optimized for fast growth.
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Introduction

Bacteria are exposed to a variety of environments, from stressful

and nutrient-poor to ideal and nutrient-abundant. The average

proliferation of bacteria through cycles of famine and feast, i.e.,

their fitness, depends not only on the ability to grow rapidly, but

also on the ability to survive when conditions worsen. While some

bacteria can produce dormant endospores that can survive for

thousands of years (Vreeland et al, 2000; Setlow, 2007), vegetative

bacteria cannot. These bacteria require continuous maintenance to

sustain basic cellular functions and prevent cell death. It is clear that

the ability to reduce and optimize the maintenance rate is crucial for

maximizing survival in limited environments. But how cells could

achieve this feat is still largely unclear.

Measurements of the maintenance rate are usually performed

during exponential growth (Pirt, 1965), when nutrients are still

abundant. Such measurements overestimate the basic maintenance

of non-growing cells (Hoehler & Jørgensen, 2013) and hence do not

characterize the state of starved cells. The maintenance rate during

carbon starvation was recently measured for Escherichia coli and

shown to be a key determinant of the death rate of the cell popula-

tion (Schink et al, 2019). Which factors determine the maintenance

rate and to which extent a bacterial species can adapt its mainte-

nance rate to increase its fitness during starvation are still unclear

(Hoehler & Jørgensen, 2013). Here, we focus on these questions,

using E. coli as a model organism.

A key signal for upcoming starvation is a decrease in growth

rate: When a cell culture approaches starvation, nutrient concentra-

tions fall below the substrate affinity, such that nutrient uptake

decreases and growth slows down (Monod, 1949). Many physiologi-

cal properties of a cell depend on growth rate, e.g., cell size and

ribosome content (Schaechter et al, 1958), but also the detailed

composition of the proteome (Scott et al, 2010; Hui et al, 2015;

Schmidt et al, 2016). Therefore, one may expect that the ability of

cells to survive also depends on the growth conditions prior to star-

vation. A priori, it is not clear whether slow growth or fast growth

prior to starvation would be beneficial for survival. In slow growth,

the general stress response is upregulated (Kolter & Siegele, 1993;

Hengge, 2011), which could help E. coli to survive. On the other

hand, in fast growth, more nutrients are available, e.g., for glycogen

storage (Fung et al, 2013).

In order to study how the growth conditions affect the subse-

quent survival of cells, we vary the bacterial growth rate in two dif-

ferent ways: either by culturing E. coli in media with different

carbon substrates, where each substrate supports a certain growth

rate, or by varying the dilution rate in a carbon-limited chemostat.
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We then rapidly deprive each culture of its carbon substrate (i.e., its

energy source) and measure its survival kinetics, i.e., the remaining

density of viable cells at different time points. This approach allows

us to measure quantitative changes in death rate as a function of the

steady-state growth conditions, as opposed to the classical “entry

into stationary phase” of the bacterial life cycle, where bacteria

continuously adapt as the nutrient quality of the medium worsens

(Monod, 1949; Hengge, 2011).

During starvation, the resource which bacteria use for mainte-

nance is nutrients recycled from dead bacteria. As a result, both

changes in maintenance rate or recycling yield can alter the survival

kinetics. To dissect the individual contributions of maintenance rate

and recycling yield to death rate, we use the quantitative approach

of Schink et al (2019).

Results

Death rate of starved culture depends exponentially on rate of
growth prior to starvation

We grow E. coli in media with different carbon substrates (Fig 1A),

obtaining exponential growth at a rate (slope of the lines in Fig 1A)

that depends on the carbon substrate. Between rich medium and

minimal medium supplemented with a poor carbon substrate, the

data display a 15-fold change in growth rate (see Table EV1 for all

values). Once the cultures have reached an optical density (OD600)

of about 0.5, we wash and resuspend the cells in carbon-free

medium (see Methods). This step removes left-over nutrients from

complex media like LB or fermentative by-products such as acetate

and ensures that bacteria are starved of all external carbon

substrates. We then follow the survival kinetics by measuring bacte-

rial viability via plate counting at different time points after carbon

starvation (Fig 1B). Bacterial viability measurements by live/dead

staining yield survival kinetics comparable to plate counting (Schink

et al, 2019). The number of “colony-forming units” (CFU) per ml

decreases exponentially for all cultures. The death rate (slope of the

lines in Fig 1B) depends on the carbon substrate used for growth,

with cultures grown on LB dying more than 5 times faster than

those on mannose (see Table EV1 for all values).

Figure 1C plots the death rates c of the five cultures in Fig 1B

and of other cultures against their growth rates l, revealing a clear

trend of slower growing cultures dying more slowly than faster

growing cultures. The quantitative dependence, c(l), is well

described by an exponential fit, c = (0.23 � 0.01) h�1 exp (l
(0.87 � 0.13) h), with a goodness-of-fit parameter Q = 1.0 (proba-

bility that a chi-square value of this magnitude did not arise by

chance, see Methods for details of fitting procedure). This depen-

dence is remarkable for two reasons: First, the death rate appears

not to depend in a specific way on the carbon used for growth, but

instead only on the growth rate supported by the carbon substrate.

This is consistent with Schaechter, Maaløe, and Kjeldgaard’s semi-

nal finding that the cellular composition does not depend on the

specifics of the nutrient composition, but rather on the resulting

growth rate (Schaechter et al, 1958). Second, other bacterial proper-

ties also scale exponentially with growth rate. Cell volume during

growth, in particular, increases exponentially with growth rate

(Schaechter et al, 1958).

Next, we aim to narrow down the origin of the death rate depen-

dence on growth rate. It was previously established that death rate

in batch culture is quantitatively determined by the ratio of mainte-

nance rate to recycling yield (Schink et al, 2019). Figure 2 explicitly

shows this relation (Fig 2A) and illustrates the assays for both quan-

tities (Fig 2C and G). To investigate whether the death rate depen-

dence in Fig 1C is due to a change in the maintenance rate, the

recycling yield, or both, we perform a set of experiments where we

measure death rate, recycling yield, and maintenance rate in varying

growth conditions.

Varying growth rate on a single carbon substrate in a chemostat

Maintenance rate is measured by quantifying how long cell death

halts after a small concentration of a carbon source is supplied

during starvation (Fig 2G). In order for maintenance measurements

of different cultures to be quantitatively comparable, this carbon

source needs to be the same for all experiments. For this reason, we

turn to a chemostat setup to change growth rate on the same carbon
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Figure 1. Growth–death dependence.

A Exponential growth of Escherichia coli K-12, measured using optical density
(OD600), in lysogenic broth (LB, white circles) or minimal medium
supplemented with different carbon sources, listed in the legend on the
bottom right in a grayscale. All the cultures are grown in batch mode, see
Methods. Growth rates (slope of the exponential fits) are listed in
Table EV1.

B Bacterial viability in colony-forming units (CFU) per ml of cultures from
panel (A), grown until OD600 0.5, washed, and re-suspended in carbon-free
minimal medium. Death rates (slopes of the exponential fits) are listed in
Table EV1. Initial density for fast growth (lighter shades) is lower than for
slow growth (darker shades), due to larger cell sizes that lead to lower cell
densities per OD600. Note that after the exponential decay shown here,
mutants gradually take over and long-term survival can last months to
years (Steinhaus and Birkeland, 1939, Zambrano et al, 1993, Finkel, 2006).

C Death rates of panel (B) plotted against growth rates of panel (A) shown as
circles in a grayscale. Squares show data obtained using eight other carbon
substrates, also listed in Table EV1. Color circles show data obtained by
varying growth rate in a chemostat. The black line shows a linear weighted
least square fit to log-transformed data that takes uncertainty in data
points into account (see Methods). Data shown as mean � (standard
deviation) SD. Two or three replicates per condition.
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substrate. We choose glycerol as the limiting nutrient in the medium

and let the bacterial culture grow in steady state at fixed dilution

rate, such that dilution rate equals growth rate (see Methods). In

this setup, glycerol concentration will be constant and low enough

to reduce growth rate (< 5 lM), but bacterial density can be kept

comparable to batch experiments (5�108 CFU ml�1). We use the

chemostat to vary growth rate from 0.1 to 0.7 h�1. For faster

growth, we use a GlpK22 (NQ898) mutant without catabolic repres-

sion of the GlpK enzyme (Pettigrew et al, 1996) that grows 30%

faster than wild type in batch culture in minimal medium supple-

mented with glycerol (lGlpK22 = 0.89 h�1). As a control, wild-type

cells (WT) are grown in batch culture in glycerol minimal medium

(lWT = 0.70 h�1). After at least six generations in steady-state

growth, samples of cells in the chemostat are extracted, washed,

and starved in carbon-free minimal medium (see Methods). GlpK22

and wild type are grown in batch cultures, and then also washed

and starved in carbon-free medium. During starvation, we observe

that viability decreases exponentially, with death rates ranging from
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Figure 2.
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0.25 to 0.59 day�1 (Fig EV1 and Table EV1). The dependence of the

death rate on the growth rate (Fig 2B) is again well described by an

exponential fit (black line, c = (0.21 � 0.02) h�1 exp (l (1.1 � 0.4)

h), Q = 0.99). These findings confirm that the growth–death corre-

lation is independent of specific medium composition, but instead

dependent only on growth rate.

Change in recycling yield with pre-starvation growth rate

Next, we determined the recycling yield, which is defined as the

fraction of nutrients that a viable cell can scavenge from a dead cell.

The recycling yield can be quantified by measuring to what density

bacteria grow when dead bacteria are provided as nutrients (Schink

et al, 2019). The assay is sketched in Fig 2C and described in Meth-

ods. Briefly, at different times during starvation, we (i) extract a

sample of a starved culture, (ii) UV-kill all cells in the sample, (iii)

add 1% of the original starved culture with viable cells, and (iv)

measure regrowth by plating. Figure 2D shows one exemplary

measurement for bacteria previously grown at 0.3 h�1 in the

chemostat (green symbols). The difference between the maximal

regrowth and the initial viability in the sample is the “absolute

yield”, see symbol (iv) in Fig 2D. In Fig 2E, we show three

measurements of the absolute yield plotted against the viability at

extraction six of the growth experiments from Fig 2B. In this plot,

the recycling yield is the slope of the linear fit, i.e., the ratio of

absolute yield and viability at extraction. It ranges from 12% for

the slowest growth to 23% for the fastest growth (see Table EV2).

This value represents the number of cells that can grow on one

dead cell, i.e., a recycling yield of 12% means that about eight dead

cells are needed to produce one new cell. The recycling yield

displays a dependence on growth rate that is well described by an

exponential behavior, a = (0.11 � 0.01) exp (l (0.78 � 0.35)h),

Q = 0.997 (Fig 2E).

Change in maintenance rate with pre-starvation growth rate

The maintenance rate is the second determining factor of the death

rate (Fig 2A). The lower the maintenance rate, the fewer nutrients

per unit time a cell has to consume to remain viable. The mainte-

nance rate can be quantified by adding a small amount of nutrient

to a starved culture and measuring the resulting time delay in the

decay of cell viability (Schink et al, 2019). The assay is sketched in

Fig 2G and described in Methods. Briefly, at one point during star-

vation, we (i) extract several samples, (ii) add different concentra-

tions of glycerol, and (iii) compare viability between samples.

Figure 2H shows an exemplary experiment for cells previously

grown at a rate of 0.3 h�1 in the chemostat, where the addition of

40 lM glycerol allows a culture (black symbols) to survive more

than 1 day longer than the control culture (green symbols). The

delay in the survival curves between the two experiments is the “lag

time”, see symbol (3) in Fig 2H. In Fig 2I, we show the lag time for

different growth experiments and different glycerol concentrations.

In this plot, the maintenance rate is the inverse of the slope of the

linear fits. It ranges from 0.16 fmol day�1 CFU�1 for the slowest

growth to 0.81 fmol day�1 CFU�1 for the fastest growth. The value

of the maintenance rate represents the number of glycerol molecules

a single cell needs to survive 1 day. Just as volume and recycling

yield, also the maintenance rate b displays an apparent exponential

dependence on growth rate, see Fig 2J, but with a slope of about

twice that of either (b = (0.14 � 0.02) exp (l (1.88 � 0.56)h),

Q = 0.99).

We can compare our measurement of maintenance rate to litera-

ture values. Using a conversion of 15 ATP per molecule glycerol

(Kaleta et al, 2013), a dry mass per OD of 509 lg ml�1 OD600
�1

(Erickson et al, 2017), and 109 CFU ml�1 OD600
�1, we calculate that

a maintenance rate of 0.5 fmmol (glycerol) day�1 CFU�1 corre-

sponds to 0.61 mmole of ATP per ((g dry weight) h). In comparison,

◀ Figure 2. Quantification of maintenance rate and recycling yield of Escherichia coli.

A In carbon starvation, death rate, c, is determined by ratio of maintenance rate b to the recycling yield a (Schink et al, 2019).
B Death rates of wild-type and GlpK22 mutants plotted versus growth rates. Wild type is grown in glycerol minimal medium in batch cultures (black circle) and in

“chemostat” continuous cultures with growth rates coded in colors, see legend on the center right. GlpK22 mutants (white circle) are grown in glycerol minimal
medium in batch culture. Data shown as mean � (standard deviation) SD. Two replicates per condition. The black line shows the fit of Fig 1C.

C Graphical synopsis of the assay to measure recycling yield: At different times during starvation, a sample is (1) extracted from a starved culture, (2) sterilized with UV-
light, (3) inoculated with 1% of the original starved culture, and (4) growth is measured using plate counting.

D Example experiment of the assay sketched in panel (C). Cells previously grown at 0.3 h�1 in continuous culture are starved (green circles). After 2 days of starvation, a
sample is (1) extracted and (2) UV-sterilized, see dashed line, followed by (3) inoculation of 1% of starved and (4) growth of the culture. The difference between the
maximum viability after growth and the initial viability at point (3) is the absolute yield.

E The absolute yield measured at three different time points for each of the growth conditions shown in panel (B) is plotted against the viability of the starvation
culture at the extraction time. The recycling yield is extracted as the slope of the linear fits.

F Recycling yield from panel (E) plotted versus growth rate. Data shown as mean � SD. Two replicates per condition.
G Graphical synopsis of the assay to measure the maintenance rate. At one point during starvation, a sample (1) extracted from a starvation culture, and split into

several tubes. (2) Different concentrations of glycerol are added to each tube, small enough to support survival, but not growth and (3) viability are measured.
H Example experiment from a starved culture previously grown at a rate of 0.3 h�1 with a viability of 1.21�108 CFU ml�1 after 5 days of starvation. After (1) extraction

and (2) addition of 40 lM of glycerol, the decay of viability is delayed (black circles) compared to a control without glycerol (green symbols). Per viable cell, the
glycerol addition in this experiment is 0.33 fmol CFU�1. After an initial period of survival, the culture with added glycerol (black) dies at the same rate as the control
(green). The “lag time” fitted to these data is 1 day.

I Lag time of the experiments of panel (B) for different glycerol concentrations. Lag increases linearly with glycerol concentration, and maintenance rate is extracted as
the inverse of the slope of the linear fits.

J Maintenance rate values extracted from panel (I) plotted versus growth rate. Data shown as mean � SD. Two replicates per condition.
K Consistency check of the equation in panel (A). Fold changes in maintenance rate, FC(b), divided by the fold changes in the recycling yield, FC(a), plotted versus the

fold changes in death rate, FC(c). All fold changes are relative to wild type in batch, growing at 0.7 h�1. The dashed line shows the unity line FC(c) = FC(b)/FC(a).

Data information: Symbol color is identical in all panels and depicted in the legend on the right. Table EV2 shows growth rate, yield, and maintenance rate for all
experiments. Solid black lines show linear fits (on log transformed data, if necessary), using weighted least square fits. Slopes are reported with standard error and take
uncertainty in data into account when necessary (see Methods).
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estimates for non-growth-associated maintenance energy during

exponential growth for E. coli are about 10-fold higher at 7.6 (Varma

& Palsson 1994) and 8.4 mmole of ATP per ((g dry weight) h) (Feist

et al 2007). This shows that maintenance rate measurements during

nutrient abundance are not readily convertible to starvation.

Changes in maintenance rate and recycling yield explain change
in death rate

Next, we test if the changes in maintenance rate and recycling yield

are consistent with the changes observed in the death rates. Accord-

ing to the relation in Fig 2A, death rate c is set by maintenance rate b
divided by recycling yield a. In Fig 2K, we thus plot the fold change

in the death rate, FC(c), against the fold change in maintenance rate,

FC(b), divided by the fold change in the recycling yield, FC(a). Each
change is relative to the death rate, maintenance rate, and recycling

yield of the control culture: wild type previously grown in batch with

glycerol (black symbols throughout Fig 2). The dotted line indicates

the unity line, FC(c) = FC(b)/FC(a), corresponding to the prediction

by the relation in Fig 2A. The data are well described by the

predicted line, indicating that our measured maintenance rates and

recycling yields indeed capture the change in death rate.

Change in cell volume with pre-starvation growth rate

One challenge with interpreting the measured recycling yields and

maintenance rates is that both parameters can depend on cell size.

The bigger a dead cell is, the more recyclable nutrient it could

contain. The bigger a viable cell is, the more nutrients it might

consume for maintenance. Since the average cell size during starva-

tion is generally smaller than during growth, we perform cell size

measurements during starvation conditions (Fig 3). We determine

length and width of individual starved bacteria from phase-contrast

images (see Methods). The average length and width increase expo-

nentially with growth rate, with slopes of (0.23 � 0.18) h and

(0.32 � 0.21) h, respectively (Fig 3A and Table EV3). From the

individual cell lengths and width, we calculate the volume of each

cell by assuming cells have a perfect rod shape (top of Fig 3B). The

average cell volume then increases exponentially with growth rate

according to V = (0.43 � 0.04) exp (l (0.88 � 0.33)h), Q = 0.99,

see Fig 3B and Table EV3.

It is noteworthy that the logarithmic slopes of the volume depen-

dence on growth rate (Fig 3B) and the recycling yield dependence

on growth rate (Fig 2F) are indistinguishable within our experimen-

tal uncertainty. Consequently, normalizing recycling yield to cell

volume results in a constant normalized yield, independent of

growth rate within the statistical error (Fig 3C). Maintenance rate,

on the other hand, still increases significantly when normalized to

cell volume (Fig. 3D), with a logarithmic slope of (1.0 � 0.5) h.

This means that while bigger cells contain proportionally more

nutrients, they use more than one would expect from their size for

maintenance. This implies that there are factors involved beyond

cell size that modulate the maintenance requirement of E. coli.

Growth–death dependence does not hinge on RpoS

A sigma factor that is often implicated in the regulation of the main-

tenance rate of E. coli is the general stress response regulator RpoS

(Hengge-Aronis, 1993; Hengge, 2011; Franchini et al, 2015). RpoS is

up-regulated during slow growth, and the expression of almost 500

genes is correlated with its abundance (Hengge, 2011). To test

whether RpoS plays a key role in the growth–death dependence, we

grow rpoS gene knock-out mutants (DrpoS) in batch cultures using

the same carbon substrates we used in Fig. 1C. If rpoS was responsi-

ble for the growth–death relation, its knock-out should abolish this
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Figure 3. Normalization of maintenance rate and recycling yield with
cell volume of Escherichia coli.

A, B Cell size during starvation. Length and width of the cells are measured
with phase-contrast microscopy, and the volume is computed
considering cell shape as a cylinder with two semi-spheres, as described
in the graphical synopsis at the top (see also Table EV3 and Methods).
Each measurement is an average of 200 cells. (A) Measured length and
width of wild-type cells starved in batch cultures and previously grown
in the chemostat at different steady-state growth rates and of GlpK22
cells starved and previously grown in batch culture at l = 0.9 h�1 (see
upper color legend). Note that, as shown in Schink et al (2019), cell
widths do not change from steady-state growth to starvation, while
lengths decrease. Both length and width increase exponentially with
growth rate. (B) Starvation volume of the cells described in panel (A),
computed as explained in the graphical synopsis (see also Methods). In
agreement with literature (Schaechter et al, 1958), it increases
exponentially with growth rate (black line).

C, D Recycling yield and maintenance rate per cell volume. (C) Recycling
yields and (D) maintenance rate measured as described in Fig 2 are
normalized per cell volume and plotted versus the previous growth rate
of the cultures they refer to (see color legend at the top and Table EV3).
The normalized yield is constant within the uncertainty. Maintenance
rate increases significantly with a slope of (0.99 � 0.55) h, matching the
increase in the death rate, (1.1 � 0.4) h, shown in Fig 2B. Solid black
lines show linear fits on log-transformed data, using weighted least
square fits.

Data information: Slopes are reported with standard error and take
uncertainty in data into account (see Methods). Data shown as mean � SD.
Two replicates per condition.
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relationship. Figure 4 plots death rates against growth rates for

DrpoS (gray symbols), together with the wild-type data from Fig. 1

for reference (white symbols). The individual death rates for DrpoS
are shown in Table EV4. We find that the correlation between death

rate and growth rate persists for DrpoS, but the logarithmic slope

decreases (DrpoS: 0.57 � 0.13 h, Q = 0.96, compared to WT:

0.87 � 0.13 h). Because death rate still increases with growth rate,

we conclude that RpoS cannot be solely responsible for modulating

maintenance rate during starvation.

Mathematical model of a proteome-based growth–death
coupling

The observation that the RpoS regulon, which by itself includes

dozens of genes, accounts for only a fraction of the observed main-

tenance rate variation suggests that it is only part of a major

proteome remodeling that affects the maintenance rate of cells.

Proteome remodeling, with the abundance of major portions of the

cellular proteome modulated depending on the growth state, is well

characterized in E. coli. For instance, ribosomal and ribosome-

affiliated proteins can take up somewhere between 10 and 40% of

the proteome, depending on growth rate (Scott et al, 2010). As this

“R-sector” of the proteome increases, other parts of the proteome

decrease in relative abundance (Scott et al, 2010; Hui et al, 2015).

This coupling of proteome fractions implies a trade-off, whereby the

proteome composition can either favor fast growth or long survival.

The signature of this trade-off is the growth–death correlation of

Fig 1. To understand the evolutionary implications of this trade-off,

we turn to a mathematical model for a proteome-based growth–

death coupling.

We consider a minimal ecological scenario of periodic phases of

feast and famine, as depicted in Fig 5A. In this scenario, bacteria

grow for a limited time T+, followed by starvation for a time T�.
We regard the durations of growth and starvation as ecological

parameters and ask how bacterial fitness depends on these parame-

ters as well as their growth rate. We assume that bacteria cannot

independently optimize growth and death rate, but are instead

forced to trade-off growth and death rates according to the exponen-

tial relation of Figs 1 and 2, c(l) = 0.21 day�1 exp (1.0 h l). In this

case, they will first grow exponentially during feast, starting from

the initial density N(0), to reach a density N(0) exp (lT+). They will

then die exponentially, at a rate that depends on the growth rate

during feast, c(l). After a full cycle of famine and feast, the density

of viable cells has changed from N(0) to N(0) exp (lT+ � c(l)T�).
Together, growth and death are therefore associated with the fitness

f Tþ;T�;lð Þ ¼ log N Tþ þ T�ð Þ=N 0ð Þð Þ ¼ lTþ � c lð ÞT�: (1)

The growth rate l* that maximizes fitness depends on the rela-

tive duration of famine and feast and can be calculated by taking

the derivative of equation (1) with respect to the growth rate, 0 = df

(T+, T�,l)⁄dl = T+ � 0.21 day�1�1.0 h exp (1.0 h l*) T�. Solving
for l*, we find l* = 1.0 h�1 ln (114�T+/T�), which is indicated as a

dashed line in Fig 5B. For instance, given a T+ = 3 h growth period

and a T� = 3 days starvation, maximal fitness is achieved with a

growth rate l = 0.86 h�1 and the associated death rate of

c = 0.5 day�1. Even for longer growth periods, the optimal growth

rate remains well below the maximal growth rate of E. coli in rich

medium (~ 2.2 h�1), suggesting a high selective pressure to reduce

growth rate in anticipation of starvation.

Global remodeling of proteome upon entry into starvation
permits only partial adaptation

A salient question arising from the trade-off between growth and

death in Fig 5B is to what extent bacteria can avoid the trade-off

altogether, by adapting their proteome composition in the final

phase of growth. In principle, E. coli could quickly grow to high cell

density and then prepare for starvation by gradually slowing

growth, exploiting its global regulation that adjusts proteome

composition as a function of growth rate (Scott et al, 2010).

However, global remodeling of the proteome is a slow process, since

protein degradation does not contribute significantly, such that

proteome composition adapts by dilution of the inherited proteome
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growth and death (Figs 1 and 2), we assume that bacteria cannot
independently choose growth and death rate, but are forced to trade-off
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(l) = 0.21 day�1 exp (1.0 hl).
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long periods of feast interrupted by short periods of famine, the optimal
strategy is to grow fast. For long periods of starvation intermitted by short
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For the scenario of panels (A, B), T�/T+ = 48, the optimum is l = 0.86 h�1

and c = 0.5 day�1, see dashed line.
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with newly synthesized proteins (Erickson et al, 2017). It is there-

fore essential to clarify whether global remodeling of the proteome

during the final phase of growth is sufficient to significantly alter

the death rate during starvation.

To address this question, we describe the dynamics of proteome

remodeling using the flux-controlled regulation (FCR) model estab-

lished by Erickson et al (2017). This model uses metabolite fluxes to

set regulatory functions and allows predictive modeling of growth

and proteome composition without free parameters. We add to the

FCR model our assumption that maintenance rate (and thus death

rate) depends on the proteome composition (Fig 6A). Exploiting the

observation that for most proteins, the proteome fraction /X

depends linearly on the steady-state growth rate l during exponen-

tial growth, /X ¼ /X;0 þ l/0
X (Hui et al, 2015), we define an instan-

taneous adaptation state ð/XðtÞ � /X;0Þ=/0
X for each proteome

sector. The value of this state variable corresponds to the steady-

state growth rate l that would yield a proteome sector of the current

size /X. Because of the global regulation of the proteome composi-

tion, most proteins adapt on the same time-scale (Erickson et al,

2017), and hence, a single state variable can capture the adaptation

state of the proteome. The adaptation state must then also deter-

mine the maintenance rate b, and thus, the death rate via c = b/a,
in a way consistent with our growth–death relation c
(l) = 0.21 day�1 exp (1.0 h l)established above. This yields an

expression for the death rate as a function of the proteome adapta-

tion state at the end of the growth phase,

c tð Þ ¼ 0:21 day�1 exp 1:0 hð/X � /X;0Þ=/0
X

� �
: (2)

Together with the FCR model, which describes the dynamics of

/X (t) during growth, we thus obtain a complete description of the

adaptation dynamics.

Using this mathematical model, we first investigate how much

bacteria can adapt when the external nutrient concentration

drops below the nutrient uptake affinity, see Fig 6B. The

decrease in the nutrient concentration at the end of growth will

slow down nutrient uptake and lead to a gradual entry to starva-

tion. We model the uptake of a single nutrient to be dependent

on the concentration of an external nutrient according to a

Michaelis–Menten type function. To explore the range of possible

behaviors, we compute the adaptation dynamics for three dif-

ferent Michaelis constants KM (10 lM, 100 lM, and 1 mM),

which are in the range of typical uptake affinities (~ 5–200 lM).

Lower affinities lead to a more gradual decrease in growth rate

compared to higher affinities (Fig 6B, left). During this decrease

in growth rate, the proteome can partially adapt (Fig 6B, center),

and as a result, death rates are slightly smaller (Fig 6B, right).

The inability of the bacteria to fully adapt arises because they

grow by only a small amount during the slow growth period

(small part of total protein per cell is synthesized after the exter-

nal nutrient concentration is below KM). For example, for an

affinity of 1 mM and an initial nutrient concentration of 5 mM,

cells only grow 1/5 doubling when the nutrient concentration is

below the uptake affinity. This is insufficient to dilute the inher-

ited proteome composition, and as a result, bacteria can only

adapt slightly during the depletion of a single nutrient.

Compared to a single nutrient, a mixture of nutrients running out

sequentially could allow better adaptation, because the growth rate

can decrease more gradually. Entry of stationary phase and starva-

tion by depletion of a mixture of nutrients is indeed also a typical

scenario in studies of bacterial adaptation to starvation (Finkel,

2006; Hengge, 2011; Gefen et al, 2014) and leads to a substantial

change in the proteome composition (Schmidt et al, 2016). To

explore the effect of nutrient mixtures, we model a varying number

of nutrients that gradually decrease the growth rate as they are

sequentially depleted (Fig 6C, left). During this sequential depletion,

bacteria can adapt their proteome better (Fig 6C, center) and reach

noticeably lower death rates (Fig 6C, right). The reason for the

improved adaptation compared to a single nutrient is that bacteria

in complex environments produce a more substantial amount of

biomass after the first nutrients have run out. This biomass is

produced at slow growth and leads to a more thoroughly remodeled

proteome.

An example for the sequential depletion of nutrients is the

fermentation–respiration growth cycle, where microorganisms first

ferment a carbon substrate and excrete a waste product such as

acetate or ethanol, followed by respiration of the waste product and

finally starvation. Because typically cells grow slower during respi-

ration (Basan et al, 2017), this growth cycle leads to bi-phasic

growth, similar to Fig 6C (green). In a recent paper, Li et al (2019)

showed a trade-off for Saccharomyces cerevisiae during such a

fermentation–respiration growth cycle between growth rate during

respiration (the 2nd phase) and survival, but not between growth

rate during fermentation (1st phase) and survival, indicating that

microorganisms indeed can lose their proteomic “memory” during

entry to stationary phase if they are allowed to adapt.

Discussion

In this work, we reported a quantitative relation between the

death rate of E. coli in carbon starvation and its growth rate prior

to starvation. Environments that support slow growth lead to

longer survival in starvation. After considering that the prior

growth rate also affects cell size during starvation, we found that

the effect on the death rate is primarily due to a change in the

maintenance rate. This maintenance cost for a cell to preserve its

viability during starvation increases exponentially with l, leading

to the observed exponential increase in death rate c with the pre-

starvation growth rate l. We explored the implications of the

growth–death relation using a mathematical model, which predicts

a strong selective pressure for E. coli to limit its growth rate. To

some degree, cells can circumvent the trade-off between growth

and death rate by adapting their proteome toward the end of

growth phases, prior to entering starvation. However, our model

illustrates that realistic scenarios for the adaptation process allow

for only partial adaptation, and that growth on complex mixtures

of nutrients leads to significantly better adaptation than growth on

a single carbon source.

Maintenance rate modulation as a survival strategy in energy-
limited environments

A large proportion of bacteria on Earth live in energy-limited envi-

ronments, such as the deep biosphere, where bacteria grow very

slowly, with doubling times estimated between 1 and 3,000 years
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(Parkes et al, 1990; D’Hondt et al, 2002; Lomstein et al, 2012), or

become dormant (Lennon and Jones, 2011). Their apparent ability

to reduce the maintenance requirement to a bare minimum to

survive these extreme energy-limited environments is not under-

stood. An interesting observation by van Bodegom (van Bodegom,

2007) showed that maintenance rate (measured during growth)

correlates with growth rate over a wide range of growth rates across

different bacterial species, suggesting that different species have

adapted to different levels of energy limitation. Our finding that

E. coli has the ability to adapt its maintenance requirement then

suggests that studying carbon starvation in single bacterial species

under variable prior growth conditions is a promising approach to

study the mechanisms of maintenance rate modulation. We hope

that our approach will be transferable to slow-growing bacterial

species, in order to establish a quantitative basis for characterizing

how vegetative bacteria survive environments with extreme energy

limitation.

Resource allocation during slow growth

In environments that support only slow growth, bacteria remodel

their proteome and increase the expression of “starvation”

proteins. Several of these “starvation inducible” proteins were

described, from those driven by global regulators like CRP-cAMP,

Lrp, and ppGpp to the general stress response regulated by RpoS

(Hengge, 2011). In particular, RpoS is involved in improving
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Figure 6. Adaptability during entry to stationary phase.

A Mathematical modeling of death rate changes as bacteria adapt during entry to stationary phase, see Methods for details. The key assumption is that changes in
maintenance rate b are due to changes in the proteome. To understand adaption, we thus need to understand how much bacteria can remodel their proteome when
nutrients run out (A – left). We combine our key assumption with the following quantitative laws: (i) Death rate is set by maintenance rate; (ii) Proteome sectors
depend linearly on growth rate (Hui et al, 2015), and (iii) Adapt at the same time-scale during nutrient shifts (Erickson et al, 2017). Combined, these relations allow us
to compute how death rate depends on the proteome adaptation (A – right). We use the flux-controlled regulation (FCR) model (Erickson et al), to calculate the
relative adaptation ð/X � /X;0Þ=/0

X in various scenarios.
B Adaptation at the end of growth. When the nutrient concentration decreases, the nutrient uptake rate slows down with a Michaelis–Menten type kinetics (top).

Depending on the uptake affinity, bacteria will experience either a sharp or smooth decrease in growth rate (bottom left, bright orange: 10 lM, dark orange: 1 mM).
During this slow down, the proteome adapts (bottom center), with lower affinities (dark orange) showing a slight improvement of proteome adaptation, which results
in a slightly lower death rate (bottom right).

C Adaptation in complex media. A medium supplemented with multiple nutrients (one – red, two – green, ten – blue) leads to a step-wise decrease in growth rate
during nutrient depletion (bottom left). Due to the extended periods of slow growth after exhaustion of primary nutrients, bacteria can adapt their proteome
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nutrient scavenging abilities (Franchini et al, 2015; Houser et al,

2015; Schmidt et al, 2016), improving cellular protection against

potential harm such as heat shock, osmotic shock, oxidative

damage, and acid stress (Hengge-Aronis, 1993; Hengge, 2011) and

improved energy storage of glycogen or carbon residues (Hengge-

Aronis & Fischer, 1992; Phaiboun et al, 2015). The growth–death

relationship found in this work, however, appears not to hinge on

RpoS, as slower growth of a knock-out of rpoS still leads to slower

death.

In accordance with this result, RpoS was previously found to

decrease cell maintenance rate by only 15% (Schink et al, 2019),

much less than the 2.5-fold modulation of maintenance rate by

growth rate observed in this work (Fig 3D). This does not mean that

RpoS and the general stress response are generally dispensable in

starvation. RpoS is responsible for the increase in biomass recycling

(Schink et al, 2019), which manifests itself in the increase in the

death rate displayed by the rpoS knock-out strain (Fig 4). Taken

together, our results suggest that the molecular adaptation of cells

to starvation is multifaceted, with RpoS-mediated regulation

supported by a major proteome remodeling that decreases the cellu-

lar maintenance rate.

Trade-off between survival and growth may shape bacterial
fitness

As the cell adjusts its physiology toward growth, it becomes less

adapted for survival. A conceivable origin of this trade-off is the

proteome allocation problem of bacteria (Scott et al, 2010).

Synthesizing proteins that protect cells and increase their survival

chances comes at the expense of synthesizing proteins needed for

growth. The result is a trade-off between a fitness benefit in star-

vation and a fitness cost during growth. Because fitness is the

average proliferation across cycles of growth and death, fitness

costs in one environment can be compensated by fitness benefits

in others. As a result, investments in anticipation of changing

environments can become a favorable strategy. This occurs, for

example, for the overproduction of ribosomes that allows E. coli

to quickly adapt to improved nutrient conditions (Koch, 1971; Li

et al, 2018; Mori et al, 2017), the preparation of E. coli to chal-

lenging environments (Ghoul and Mitri, 2016) or antibiotic persis-

tence (Balaban et al, 2004). Our finding that environments

supporting only slow growth lead to longer survival thus suggests

that E. coli is increasing its investment into survival by modulating

the maintenance rate when growth is decreasing, i.e., when cells

anticipate an approaching starvation. This trade-off between main-

tenance rate and the biosynthesis capacity may shed light on the

long-standing questions why E. coli has not maximized its growth

rate during evolution (Lenski et al, 1991; Basan et al, 2017;

Towbin et al, 2017).

Methods

Contact for reagent and resource sharing

Further information and requests for resources and reagents should

be directed to and will be fulfilled by the lead contact, Ulrich

Gerland (gerland@tum.de).

Experimental model and subject details

All strains used in this study are derived from wild-type E. coli K-12

strain NCM3722 (Soupene et al, 2003). The rpoS knock-out was

transferred from JW5437-1 (Baba et al, 2006) to NCM3722 via P1

transduction to yield strain NQ1191. Glycerol kinase mutant GlpK22

(Pettigrew et al, 1996) was transferred via P1 transduction to yield

strain NQ898.

Culture medium

The culture medium used in this study is based on N�C� minimal

medium (Csonka et al, 1994), containing K2SO4 (1 g), K2HPO4�3H2O

(17.7 g), KH2PO4 (4.7 g), MgSO4�7H2O (0.1 g), and NaCl (2.5 g) per

liter. The medium was supplemented with 20 mM NH4Cl, as nitro-

gen source, and 5 mM glycerol, as the sole carbon source. One

millimolar IPTG was added to media when necessary to fully induce

the native lac operon. All chemicals were purchased from Carl Roth,

Karlsruhe, Germany.

Growth protocol

Before each experiment, cells were taken from �80°C glycerol stock

and streaked out on an LB Agar plate. For growth in batch cultures,

the same protocol described in Schink et al, 2019 was applied.

However, due to acetate excretion in the medium in the presence of

carbon sources different from glycerol and at growth rates higher

than 0.7 h�1 (e.g., growth of NQ898) (Basan et al, 2015), before

entry into starvation, cells were centrifuged (3,000 RCF for 3 min),

washed, and re-supplemented with medium free of carbon to avoid

survival on waste products such as acetate. When no leftover nutri-

ents are available, this washing step does not alter the physiology

(Schink et al, 2019).

For the chemostat experiments, growth was carried out in three

steps: seed culture and pre-culture in batch mode and continuous

culture in chemostat. The first two steps were performed at 37°C in a

water bath shaker at 250 rpm (WSB-30, Witeg, Wertheim, Germany)

with water bath preservative (Akasolv, Akadia, Mannheim,

Germany). The seed culture was prepared with fresh LB medium

and inoculated with a single colony from the LB Agar plate. The pre-

culture was performed in medium identical to the continuous

culture, inoculated with a small amount of seed culture previously

washed by centrifugation. The size of the inoculum was chosen such

that the pre-culture grown overnight was still growing exponentially

in the morning of the experiment. The seed culture was performed in

20 mm × 150 mm glass test tubes (Fisher Scientific, Hampton, NH,

USA) with disposable, polypropylene Kim-Kap closures (Kimble

Chase, Vineland, NJ, USA). The pre-culture had a volume of 200 ml

and was performed in 500-ml baffled Erlenmeyer flasks (Carl Roth)

and Kim-Kap closures. Once cells in the pre-culture have performed

at least ten doublings and the optical density of the culture had

reached the value OD600 � 2, 100 ml of the pre-culture was inocu-

lated in 1 l of culture medium (see above) in the chemostat. Cells

grew in such medium for � 2 h in batch mode, reaching

OD600 � 0.5 at the time of glycerol depletion. Then, continuous

culture mode was applied and cells were grown in a constant volume

of 1 l at 37°C with air-pressured spilling out the effluent at this

volume, while the flow rate was controlled by the pump speed of the
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incoming feed. The bioreactor used was a Infors HT, Labfors 5 with

2.0-l glass vessel, controlled by its intrinsic Control-Software. Air

flow at 2 vvm and stirrer speed of 500 rpm were applied to keep the

dissolved oxygen concentration with the relative pO2 greater than

90% for all experiments, to avoid limiting in oxygen. pH was kept at

7.0 � 0.2 by a pH probe and automatic addition of a solution of 2%

H3PO4. Optical cell density was kept constant between 0.35 and 0.55.

Different dilution rates were established by changing the pump

speed, and the cultivations were performed from low to high growth

rates (0.1, 0.2, 0.3, 0.4, 0.5, 0.7 h�1). For each growth rate, steady-

state growth was reached within few minutes after setting the growth

rate. However, to obtain a complete turn-over of the cells in the

culture, for each growth rate chosen, six generations were performed

before extracting the sample for starvation. It has been reported that

glucose-limited chemostat cultivations strongly select for loss or

attenuation of RpoS function in E. coli so that mutations occur in

rpoS after 30 generations (Notley & Ferenci, 1996). To avoid this

possibility in our glycerol case, we did not run an experiment for

more than 30 generations.

Starvation protocol

For each growth rate in batch culture and chemostat, cells were

centrifuged (3,000 RCF for 3 min), washed, and re-suspended in

minimal medium free of carbon in 20 mm × 150 mm glass test

tubes (Fisher Scientific, Hampton, NH, USA) with disposable,

polypropylene Kim-Kap closures (Kimble Chase, Vineland, NJ,

USA). The tubes were placed in the water bath shaker at 250 rpm as

the seed and pre-cultures and viability was measured by plating on

LB Agar and counting the CFU after an incubation period of 12 h at

37 degrees. For each growth rate, three tubes of starved cultures

were monitored in order to have three experimental repeats of cell

behavior during starvation.

For each growth rate in the chemostat, after six generations,

samples of the culture were extracted from the chemostat, using a SI

Sample Syringe (20 ml, with 3-Way valve and check valve, C-Flex

inlet) to avoid contaminations and to flush the line prior to sampling.

In this way, the line being sampled did not have residual fluid left in

it from an earlier sample. At the extraction time, a sample of the

chemostat culture was immediately plated on LB Agar plates through

dilution steps to check for contaminations/mutations in the chemo-

stat. Then, cells were washed and starved as described above.

For growth rates 0.3 and 0.7 h�1, two independent chemostat and

starvation runs were performed. Samples were diluted in fresh N�C�

minimal medium without carbon substrate and spread on LB Agar

using Rattler Plating Beads (Zymo Research, Irvine, CA, USA). LB

Agar was supplemented with 25 lg ml�1 of 2,3,5-triphenyltetrazo-

lium chloride to stain colonies and increase contrast for automated

colony counting (Scan 1200, Interscience, Saint-Nom-la-Bret_che,

France) of 100–200 colonies per petri dish (92 × 16 mm, Sarstedt,

Numbrecht, Germany). Staining or automation of counting had no

significant effect on viability measurements or accuracy, compared

to un-stained, manually counted samples (< 1% systematic error).

Quantification of maintenance rate and yield

Maintenance rate and yield were measured as described in Schink

et al (2019). Measurements were performed for starved cultures of

wild-type E. coli K-12 NCM3722 previously grown in the chemostat

at growth rates of 0.1, 0.3, 0.5, and 0.7 h�1, respectively, and for

the starved culture of NQ898 previously grown in batch mode at

growth rate of 0.9 h�1.

In order to quantify changes in the yield a, the growth yield

during starvation was measured both for WT and ΔrpoS strains: At

different times during starvation (from 0 to 7 days), 3–15 ml of the

control culture was extracted, UV-sterilized, and mixed in a 99% to

1% ratio with untreated, starved culture. Viability of the growth

curve NG was then measured every 12–24 h by plate counting. The

recycling yield, a, was calculated as the ratio of the absolute growth

yield, max (NG) � min(NG), where min(NG) is the inoculation

viability and max (NG) the maximal viability reached at the end of

growth, to the viability in the control starved culture at the extrac-

tion point before killing (Fig 2E and F).

Uncertainty in recycling yield is estimated by assuming that

“absolute yield” and “viability at extraction” can both only be

measured up to 10%, due to errors in plate counting. Using the

assumption that plating uncertainties in both quantities are uncorre-

lated, we propagate them to individual measurements of the recy-

cling yield, i.e., individual data points in Fig 2E. Uncertainties in

individual recycling yield measurements are propagated to the recy-

cling yield shown in Fig 2F using the weighted least square fit

described in the “Linear regression analysis” part of this Method

section.

In order to quantify the maintenance b during starvation, at dif-

ferent times during starvation, samples of at least 3 ml were

extracted from an exponentially decaying culture and a small

amount of glycerol was added in each of them. The amount of glyc-

erol was chosen in such a way that cells could not grow substan-

tially using the supplied carbon substrate. In particular, at each

time-point, in different samples, 10, 20, 30, and 40 lM of glycerol

were added to cultures of ~ 108 CFU ml�1. After glycerol addition,

cell viability was measured at least every 24 h by plate counting

both in the control culture N(t) and in the samples with glycerol

added Ngly(t). The lag time was then calculated as T = ln (⟨Ngly/

N⟩)/c, where the brackets denote an average over all time points

after the initial lag, when all cultures are in exponential decay.

Using the theoretical expression of T, derived in Schink et al (2019),

for each day, b was extracted from the inverse of the slope of the

linear fit of the experimental lag times plotted versus the amount of

glycerol added per cell (Fig 2I and J). Uncertainties in maintenance

rate are calculated by assuming that the underlying lag times can

only be measured with 10% accuracy due to plating errors. Uncer-

tainties in lag times are propagated to maintenance rate measure-

ments.

Live/dead stain

Established commercial BacLight�LIVE/DEAD (Thermo Fisher

Scientific Inc., Waltham, Massachusetts, USA) staining was used

when cells were microscopically imaged, according to manufactur-

ing specifications.

Measurements of cell size

To measure cell size, samples from batch or continuous cultures

were extracted, stained with BacLight�LIVE/DEAD (Thermo Fisher
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Scientific Inc., Waltham, Massachusetts, USA), placed on a cover

slide, and imaged with phase-contrast microscopy, using a Nikon Ti

microscope with a Plan Apo 100× oil objective (numerical aperture

of 1.45 and a refractive index of 1.515). The used camera was an

Andor Zyla VSC-02357, with a binning of 1 × 1, a readout rate of

200 MHz, and an exposure time of 200 ms. Conversion gain was set

on 1/3 Dual gain, and the spurious noise filter was activated. The

calibration from length units to pixel was defined as 0.07 lm px�1.

Measurements were performed with an activated perfect focus

system, taking 10 × 10 image frames and moving the sample with a

PriorScan III drive stage after each acquisition step. Cell areas were

then manually determined using the Nikon software. For each

growth rate, at least 300 cells were analyzed to determine averaged

length and width. Cell volume was computed as V = p(w/2)2

(l � w) + 4/3 p (w/2)3 where w and l are width and length of each

cell, whose shape was considered as a cylinder [with base ray equal

to w/2 and height equal to (l � w)] with two semi-spheres at the

ends (with ray equal to w/2).

Statistical analysis

Growth rates l in the chemostat are reported with an error of 5%,

estimated from pump accuracy. Growth rates l in batch cultures

and death rates c are the averages of at least three experimental

repeats, reported with one standard deviation. Values of cell

lengths, widths, and volume are the averages of 200 microscopy

measurements. Recycling yield a and maintenance rate b are the

slopes of the fits (see “Linear regression analysis” in Methods)

reported with standard error. Recycling yield a and maintenance

rate b normalized per cell volume are reported with error propaga-

tion, where the instrument error for the volume measurements was

estimated as 5%.

Linear regression analysis

To account for the uncertainties of the data points in linear regres-

sion analyses, we used weighted least squares fitting of linear

regressions to log-transformed data (Press et al, 1986); i.e., we fitted

a linear regression y(x) = a + bx using weights wi ¼ 1=ðr2a;i þ br2b;iÞ
that depend on the standard deviation of the experimental data ra,i
and rb,i of data points i in x and y direction so that the resulting

v2 ¼ PN
i¼1 wiðyi � a� bxiÞ2 is minimized. Standard errors are calcu-

lated as the interval where v2 takes a value that is 1 greater than at

its minimum, Δv2 = 1. The goodness-of-fit Q is calculated as the

probability that a value of v2 as poor as found in the fitting proce-

dure did not occur by chance.

Modeling nutrient depletion

In order to describe the proteome remodeling of E. coli when nutri-

ents run out, we use the FCR model described in Erickson et al

(2017). The FCR model uses qualitative knowledge of the mechanis-

tic regulation of catabolic and ribosomal proteins by cAMP and

ppGpp, respectively, to construct regulation functions that yield

predictive descriptions of growth and proteome composition during

nutrient shifts. It was shown to accurately describe nutrient down-

shifts, including the bacterium’s response to the gradual depletion of

nutrients toward the end of growth. Here, we model carbon uptake

flux as the product of catabolic protein abundance /cat times an

uptake rate k. This uptake rate depends on the external nutrient

concentration with a Michaelis–Menten type function, k(c) = kmaxc/

((c + KM)), where the nutrient affinity KM is typically on order of 5–

200 lM (Erickson et al, 2017). The total amount of carbon influx is

the sum of all catabolic proteins Mcat,j times their respective uptake

rate kj (cj), J(t) = ΣJ kj (cj) Mcat,j (t). In Fig 6C, we chose the uptake

rates kj of different nutrients, such that growth rate on the remaining

m to N nutrients decreases linearly, km ? N = kmax�(N � m � 1)/N.

Uptake rates kj are then calculated as

km ¼ km!N

1� kðm!NÞ=kC
�

XN

j¼mþ1

kj;

where kC = 1.17 h�1 is the intercept of the C-line (You et al, 2013).

The total carbon uptake determines growth of the biomass

MðtÞ ¼ R t
�1 Jðt0Þdt0. Growth rate l(t) = J(t)/M(t) is plotted in Fig 6.

In order to get the dynamics of J(t), we calculate the change in

abundance Mcat,j from the FCR model. First, we calculate the trans-

lation activity as r = J/R, where R is the total ribosome abundance.

We then use the translational activity r to determine the regulatory

functions defined in Erickson et al (2017), vR (r) = /Rb,0/(1 � r/c)

and vCatðrÞ ¼ 1� rv̂RbðrÞk�1
C ; where /Rb,0 is the ribosome abun-

dance interpolated to zero growth rate, c is the maximal translation

rate, kC = 1.17 h�1 is the intercept of the C-line (You et al, 2013).

Next, we use the regulatory function to determine the synthesis of

ribosomes MRb = vR (r)J(t) and catabolic proteins MCat,j = hj vCat
(r)J(t). We solve the FCR model by integrating it numerically.

Proteome sectors typically depend linearly on growth rate,

/X ¼ /X; 0þ l/0
X, regardless of whether they increase or decrease

with growth rate. This is not only true for ribosomes or catabolic

proteins, but also true for the majority of other proteins (Hui et al,

2015). During growth shifts, the proteome composition adapts

dynamically. This adaptation is controlled globally, with proteome

sectors showing almost identical adaptation dynamics (Erickson

et al, 2017). This is because of the proteome constraint; i.e., the

sum of all proteome sectors has to equal one. This proteome

constraint leads to the proteome sectors that increase or decrease to

have matching dynamics, with only the sign and magnitude dif-

fering. As a result, we can define a relative adaptation of a proteome

sectors /X (t), as ð/XðtÞ � /X;0Þ=/0
X . In exponential growth, the

value of this “proteome adaptation” corresponds to the steady-state

growth rate. After dynamic adaptation, the “proteome adaptation”

equals the steady-state growth rate that would yield the same

proteome composition. Thus, if E. coli initially grew at 0.9 h�1 and

the proteome adaptation changes to ð/X � /X;0Þ=/0
X ¼ 0:6h�1 after

all nutrients have run out, this means that proteome has changed to

the composition typically found at a growth rate of 0.6 h�1.

If we assume that death rate is set by the proteome composition,

either by proteome sectors increasing or decreasing with growth

rate, then we can use the proteome adaptation to set death rate, by

substituting steady-state growth rate l with ð/X � /X;0Þ=/0
X , where

we take the final /X after nutrient depletion. Using the exponential

fit from Fig 2, we get c ¼ 0:21h�1 expðð/X � /X;0Þ=/0
X1:0hÞ, which

was used to generate the survival curves in Fig 6.

Expanded View for this article is available online.
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