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Abstract The outbreak of influenza A comes from a relatively stable state is a critical phenomenon on

epidemic. In this paper, influenza A varying from different states is studied in the method of dynamical

network biomarkers (DNB). Through studying DNB of influenza A virus protein, we can detect the

warning signals of outbreak for influenza A and obtain a composite index. The composite index varies

along with the state of pandemic influenza, which gives a clue showing the turn point of outbreak. The

low value (<1) steady state of the composite index means influenza A is normally in the relatively

steady stage. Meanwhile, if the composite index of a certain year increases by more than 0.8 relative

to the previous year and it is less than 1 and it increases sharply and reaches a peak being larger than

1 in next year, it means the year is normal in the critical state before outbreak and the next year is nor-

mally in the outbreak state. Therefore, we can predict the outbreak of influenza A and identify the crit-

ical state before influenza A outbreak or outbreak state by observing the variation of index value.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

It is proved that there exists a kind of common critical phe-
nomenon in many complex biological processes, i.e. a relative
stable state enters into another state quickly after a soon critical
point (Chen et al., 2012; Liu et al., 2012) There is the kind of crit-
ical phenomenon for influenza A, because it needs only a very

short period of time quickly from a relative stable state to out-
break state after a critical point. Thus in order to prevent and
control the outbreak of influenza A pandemic timely and effec-
tively, the key solution lies in predicting the critical point before

the outbreak.
At present, influenza A is studied from many aspects. Ya-

Nan Pan et al. found that the spatio-temporal network that

connects the cities with human cases along the order of out-
break timing emerges two-section-power-law edge-length dis-
tribution, using the empirical analysis and modeling studies
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(Pan et al., 2014; Zhang, 2016). Chang et al. (2009) studied the vac-
cine for influenza, so as to achieve the effect of prevention of
influenza. Banerjee et al. (2015) made full comparisons for the

structural features of all H1N1 HA gene sequences and the com-
position of global amino acid to make it possible to depict the
developing trend of influenza A. He et al. (2014) also made indepth

studies to identify HA protein epitopes of avian influenza virus.
This paper studies the different states of influenza A using

dynamical network biomarkers (DNB). Through studying

DNB of influenza A virus protein, we can detect the warning
signals of outbreak for influenza A and obtain a composite
index. The composite index varies along with the state of pan-
demic influenza, which gives a clue showing the turn point of

outbreak. Therefore, we can predict the outbreak of influenza
A and identify the critical state before influenza A outbreak or
outbreak state by observing the variation of index value. This

indicates the composite index can provide reliable and signifi-
cant warning information to detect the stage of influenza A,
which will be significantly meaningful for the warning and pre-

vention of influenza A pandemic.

2. Method

The concept of network biomarkers is set up with the develop-
ment of high-throughput genomic technologies and the sys-
tematic and multidimensional study of molecular expression

profiling (Liu et al., 2014; Wu et al., 2012). This concept refers
to a series of markers as well as their mutual relations and has
been proposed as a new marker type (Jin et al., 2008; Yao
et al., 2015). Compared with traditional biomarkers, these

markers can accurately distinguish disease states for taking
the links between the molecules into consideration (Simon,
2005; Ludwig and Weinstein, 2005). However, it is used to

diagnose the states of diseases, not for the detecting the critical
point before the outbreak of diseases.

The method of dynamic network biomarkers focuses on the

detection and assessment of different stages of the disease in
the development of disease. This is a time-dependent method
(Sun et al., 2014). It studies the location changes of the mark-

ers over time and the relationship among network markers
over time changing. Meanwhile, this method can construct
three-dimensional images showing the interaction relationship
between the markers. Therefore the study of Network markers

focuses on the molecular interactions and distinguishes normal
and disease states. The study of dynamic network markers
focusing on dynamic changes, is helpful to discover the marker

accurately, comprehensively, and further to distinguish the
state of disease before outbreak. It does not only depend on
the method of small sample excavation mode markers, but also

make it easier for clinical application. At the same time it can
be used in wide studies to find early warning signals in any bio-
logical process, such as differentiation, senescence and cell
cycle of each phase as well as key change.

3. Results

3.1. Data

Here are ten of proteins for influenza A virus hemagglutinin

(HA), matrix protein, matrix protein 2, neuraminidase, non-
structural protein 1, non-structural protein 2, nucleocapsid
protein, PA RNA polymerase, PB1 RNA polymerase and
PB2 RNA polymerase. They are composed of 20 different
amino acids link to form polymers. This paper selects influenza

A virus protein sequences from 1933 to 2015 from the NCBI
website (www.ncbi.nlm.nih.gov/), whereas some data in 1937,
1938, 1939, 1940, 1941, 1942, 1944, 1951, 1952, 1953, 1954

and 1955 years are absent.

3.2. Model

3.2.1. Defining dynamic network biomarker

Taking HA protein as an example firstly, we suppose that a

HA protein marked y is linked sequentially by t numbers of
amino acids. Its amino acid sequence is represented by
y= x1x2� � �xt, in which xi e {A, V, L, I, P, F, W, M, D, E, G,
S, T, C, Y, N, Q, K, R, H}; i= 1,2,. . .,t. We suppose s-1-th year

have m numbers of influenza virus HA proteins all over the
world and its amino acid sequence is represented by ys�1,1,
ys�1,2,. . .,ys�1,m. Meanwhile, We suppose s-th year have n num-

bers of influenza virus HA proteins all over the world and its
amino acid sequence is represented by ys,1, ys,2,. . .,ys,n. The
amino acid number of the yi,j is marked ci,j, where i= s�1,s;

j= 1,2,. . .,q; q=max{m,n}. Sequentially selecting the i-th
amino acid for ys�1,1,ys�1,2,. . .,ys�1,m to form a new amino acid
sequence is defined Zs�1,i, and then take out the largest one of
amino acids number. If the maximum number of amino acids

has two or more than two, we take the first amino acid without
loss of generality. At the same time, these amino acids are
marked xi, where i= 1,2,. . .,k; k=max{cs�1,1,cs�1,2,. . .,cs�1,m}.

We individually connect them in order to form a new amino acid
sequence (US�1 = x1x2. . .xk) and then separately compare with
corresponding amino acids of ys,1,ys,2,. . .,ys,n one by one. If they

are different, the assignment is one, on the contrary the assign-
ment is zero. Therefore, n new sequences are represented
by Es,1,Es,2,. . .,Es,n are obtained in s-th year. Then we calcu-

late their mean (M), standard deviation (SD) and coefficient
of variation (CV). Their computation formulas are as
follows:

Ms ¼
Pn

i¼1fðs; iÞ
n

ð1Þ

SDs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðfðs; iÞ �MsÞ2
n

s
ð2Þ

CVs ¼ SDS

Ms

ð3Þ

where f(s,i) represents the frequency of occurrence of one in
sequence Es,i. Similarly, we calculate M, SD and CV of the

other nine proteins. The protein that values of CVs are the
top three are defined as core protein (CP), and the others are
no-core protein (NP). CP is a set of high confidence interac-

tions of proteins, which forms a sub-network called influenza
A virus proteins of the protein dynamical network biomarkers.

3.2.2. The early warning model for influenza A

We calculate the frequencies of the 20 kinds of amino acids,
and the computation formulas are as follows:

fxiðsÞ ¼
Pn

j¼1fxiðs; jÞ
n

ð4Þ

http://www.ncbi.nlm.nih.gov/


Table 1 Composite index values from 1934 to 2015.

Year I Year I Year I

1934 0.723227 1970 0.627428 1993 1.187957

1935 0.962083 1971 0.728516 1994 1.225976

1936 0.43403 1972 2.379322 1995 0.164168

1943 0.543059 1973 0.79888 1996 0.611397

1946 0.441866 1974 0.527835 1997 0.711091

1947 0.851604 1975 0.801294 1998 0.629408

1948 0.448092 1976 2.275519 1999 0.781102

1949 0.760293 1977 2.182157 2000 0.710281

1950 0.734349 1978 0.438169 2001 0.295353

1951 1.027341 1979 0.32697 2002 0.660193

1957 0.859728 1980 0.746082 2003 0.405805

1958 0.949281 1981 0.455632 2004 0.45421

1959 0.474866 1982 0.650454 2005 0.772595

1960 0.550811 1983 0.449789 2006 1.595902

1961 0.708772 1984 0.354632 2007 0.476057

1962 0.08078 1985 0.939702 2008 0.798138

1963 0.980012 1986 1.166947 2009 1.344778

1964 0.650854 1987 0.655971 2010 0.962241

1965 0.527201 1988 1.033681 2011 0.440067

1966 0.580452 1989 0.912527 2012 0.635735

1967 0.666783 1990 1.898656 2013 0.606009

1968 2.31271 1991 1.248818 2014 0.806321

1969 1.081257 1992 1.032401 2015 2.516147
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Figure 1 Trend Chart of composite index values from 1965 to

1972.
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where fxiðs; jÞ represents the frequency of occurrence of amino

acid xi in amino acid sequence ys,j. Now, we can get a 23
dimensional characteristic value vector of HA protein. By
the same way, the fxiðsÞ of the other nine proteins can be cal-

culated in turn, so we can get a characteristic value matrix
(X = [V1(s),V2(s),. . .,V10(s)]), where Vt(s) represents the char-

acteristic value vector of the t-th influenza A protein,
t= 1,2,. . .,10. Defining the characteristic distance between
proteins:

dw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMs �MwsÞ2 þ ðrs � rwsÞ2 þ ðCVs � CVwsÞ2 þ

X20
i¼1

ðfxi ðsÞ � fwxi ðsÞÞ2
vuut

ð5Þ
where v and w represents the v-th and the w-th protein
respectively.

The core proteins are not only the universal indicators to

detect the complex outbreak signal of influenza A, but also
the dominant or driving network of the whole protein system
in the development, mutation and outbreak of the critical

stages. In fact, the dominant network breaks through the limits
of variation in the first time, first enters to the state of varia-
tion, and then affects other proteins and lead to the transfer

of the entire system. Therefore, the determination of the dom-
inant network can not only detect system in the critical state
before break out, also help to reveal the underlying mechanism
of influenza A virus proteins from the dimension of dynamic

network. By combining the above properties of the core pro-
teins, we can define a composite index:

I ¼ CVk � CPcd

NPcd

ð6Þ

where CVk represents the average value of the core proteins’

CVs, CPcd is the average value of the characteristic distance

between the core proteins, and NPcd is the average value of

the characteristic distance between the core and non-core
proteins.

When Is � Is�1 P 0:08, and Is�1 < 1, Is < 1, Isþ1 P 1, it

can be concluded that s-th year is in the critical state before
the outbreak, the s + 1 year is in the outbreak state.

Although the amino acid sequence of each protein will fluc-

tuate randomly, the composite index can provide a credible
and significant early warning when the influenza A virus is
close to the critical state before the outbreak or the outbreak
state.

3.2.3. Data processing

As shown in Table 1, we can calculate the composite index of
the 1934–2015 using the above methods. However, we can’t

figure out the composite index of some years, because some
data in 1937, 1938, 1939, 1940, 1941, 1942, 1944, 1951, 1952,
1953, 1954 and 1955 years are absent.

4. Discussion

The dynamic network markers of Pandemic influenza virus

vary in the whole process from a relatively stable state to the
critical state before outbreak as well as the outbreak state,
which results in the status transfer of the entire network and

finally results in fluctuations in the composite index. Therefore,
by observing the transformation of the composite index, we
can predict the critical state before the outbreak of pandemic
influenza and the outbreak state.

The flu broke out in Hong Kong in 1968 and continued
until 1969, 7.5 million people died during that period. In
1972, influenza broke out in Henan Province and quickly

spread to the entire province. As shown in Fig. 1, in 1965,
the composite index value is 0.527201; 1966 is 0.580452; 1967
is 0.666783; 1968 is 2.31271; 1969 is 1.081257; 1970 is

0.405805; 1971 is 0.728516 and 1972 is 2.379322. Because
I1967 � I1966 = 0.086331 > 0.08, I1966 < 1, I1967 < 1,
I1968 P 1, I1969 P 1, the state in 1967 is the critical state before
the outbreak, the state in 1968 is the outbreak state and the

state continues until 1969. Similarly, I1971 � I1972 =
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Figure 2 Trend Chart of composite index values from 1973 to

1977.
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Figure 4 Trend Chart of composite index values from 2003 to

2009.
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0.101088 > 0.08, I1970 < 1, I1971 < 1, I1972 P 1, so the state in

1971 is the critical state before the outbreak, the state in 1972 is
the outbreak state.

The influenza A broke out in The United States, Russia and
Japan in 1976 and 1977. The incidence rate was very high in

young people. As shown in Fig. 2, in 1973, the composite index
value is 0.79888; 1974 is 0.527835; 1975 is 0.801294; 1976 is
2.275519; 1977 is 2.182157. I1975 � I1974 = 0.273459 > 0.08,

I1974 < 1, I1975 < 1, I1976 P 1, I1977 P 1, so the state in 1975
is the critical state before the outbreak, the state in 1976 is
the outbreak state.

The influenza A broke out in The United States and Japan
in 1986. Meanwhile, many countries in Asia and Europe had
the outbreak of influenza A. As shown in Fig. 3, in 1983, the

composite index value is 0.449789; 1984 is 0.354632; 1985 is
0.939702; 1986 is 1.166947. I1985 � I1984 = 0.58507 > 0.08,
I1984 < 1, I1985 < 1, I1986 P 1, so the state in 1985 is the criti-
cal state before the outbreak, the state in 1986 is the outbreak

state.
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Figure 3 Trend Chart of composite index values from 1983 to

1986.
The influenza A broke out in China in 2006. Global influ-

enza pandemic caused by the new influenza A virus in 2009,
of which 0.3 million people died (Ren and Gao, 2011;
Girard et al., 2010). As shown in Fig. 4, we can observe the
composite index degree reached the peak in 2006 and 2009,

the composite index degree were slightly higher than the previ-
ous year in 2005 and 2008. I2005 � I2004 = 0.318385 > 0.08,
I2004 < 1, I2005 < 1, I2006 < 1; I2008 � I2007 = 0.322081 >

0.08, I2007 < 1, I2008 < 1, I2009 P 1, so the states in 2005 and
2008 are the critical states before the outbreak, the states in
2006 and 2009 are the outbreak states.

The influenza A broke out in India in 2015, of which 1.5
thousand people died (Parida et al., 2016). As shown in
Fig. 5, in 2012, the composite index value is 0.63573; 2013 is

0.6060092; 2014 is 0.806321; 2015 is 2.516147. The composite
index value was slightly higher than the previous year in
2005 and 2008. So we can presume the influenza a virus reach
the critical state before break out in 2005 and 2008, and run up

to the outbreak state in 2006 and 2009. I2014 � I2013 =
2012 2012.5 2013 2013.5 2014 2014.5 2015
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Figure 5 Trend Chart of composite index values from 2012 to

2015.
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0.273459 > 0.08, I2013 < 1, I2014 < 1, I2015 P 1, so the state in
2014 is the critical state before the outbreak, the state in 2015 is
the outbreak state.

In general, the composite index varies along with the state
of pandemic influenza, which gives a clue showing the turn
point of outbreak. The low value (<1) steady state of the com-

posite index means influenza A is normally in the relatively
steady stage. Meanwhile, if the composite index of a certain
year increases by more than 0.8 relative to the previous year,

and it is less than 1 and it increases sharply and reaches a peak
being larger than 1 in next year, it means the year is normally
in the critical state before outbreak and the next year is nor-
mally in the outbreak state. Therefore, we can predict the out-

break of influenza A and identify the critical state before
influenza A outbreak or outbreak state by observing the vari-
ation of index value.

5. Conclusion

We select the data of protein amino acid sequence of pandemic

influenza virus between 1933 and 2015 in which only some data
in a very few years are absent, and obtain a composite index by
using the nature of dynamic network biomarkers. The network

markers and other traditional markers cannot provide an early
warning signal of the critical state before pandemic outbreak
in comparison with dynamic network biomarker. Although

the amino acid sequence of each protein will randomly fluctu-
ate, the composite index can still provide reliable, significant
early warning information when influenza pandemic is close
to the critical state or outbreak state. This fully shows the

dynamic network biomarker is more stable and accurate to
determine the state in which the pandemic influenza virus, par-
ticularly the critical state of pandemic influenza. This will

achieve the aim of early warning and then strengthen preven-
tive measures in advance. This is of great significance for the
research and warning of pandemic influenza virus.
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