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1  |  INTRODUC TION

Following GLOBOCAN statistics 2020, breast cancer (BC) is the 
most prevalently diagnosed cancer and ranks first for mortality in 
women.1 The survival of BC survivors has been improved by early 
detection and rapid development of multimodal therapy, including 
locoregional and systemic management.2,3 Nonetheless, some BC 
patients still face with undesirable survival outcomes owing to re-
fractory therapeutic sensitivity and recurrence.4- 7 Characterized 

with biological heterogeneity, BC prognosis prediction that mainly 
relied on tumour- node- metastasis (TNM) staging and conventional 
molecular subtypes appear limitedly. In recent years, other prog-
nostic indicators emerged to achieve higher accuracy of survival 
prediction. It is known that tumour- infiltrating immune cells (TIICs) 
play a vital prognostic role in BC patients.8- 10 For instance, high 
levels of tumour- infiltrating lymphocytes generally indicated a fa-
vourable prognosis.11,12 Another breakthrough is genetic sequenc-
ing widely applied in the individualized treatment and prognosis 
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Abstract
Breast cancer (BC) prognosis and therapeutic sensitivity could not be predicted ef-
ficiently. Previous evidence have shown the vital roles of CDKN1C in BC. Therefore, 
we aimed to construct a CDKN1C- based model to accurately predicting overall sur-
vival (OS) and treatment responses in BC patients. In this study, 995 BC patients from 
The Cancer Genome Atlas database were selected. Kaplan- Meier curve, Gene set 
enrichment and immune infiltrates analyses were executed. We developed a novel 
CDKN1C- based nomogram to predict the OS, verified by the time- dependent receiver 
operating characteristic curve, calibration curve and decision curve. Therapeutic re-
sponse prediction was followed based on the low-  and high- nomogram score groups. 
Our results indicated that low- CDKN1C expression was associated with shorter OS 
and lower proportion of naïve B cells, CD8 T cells, activated NK cells. The predictive 
accuracy of the nomogram for 5- year OS was superior to the tumour- node- metastasis 
stage (area under the curve: 0.746 vs. 0.634, p < 0.001). The nomogram exhibited 
excellent predictive performance, calibration ability and clinical utility. Moreover, low- 
risk patients were identified with stronger sensitivity to therapeutic agents. This tool 
can improve BC prognosis and therapeutic responses prediction, thus guiding indi-
vidualized treatment decisions.
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of BC patients.13- 15 Genes are closely associated with cell cycle 
and apoptosis, thus playing pivotal roles in tumour progression. 
Numerous genome variants have been reported to be associ-
ated with BC survival outcomes and treatment responses.16- 18 
Antitumor medicine can decrease the risk of recurrence and BC 
mortality,19,20 but its application was limited by the uncertain ef-
fectiveness and common adverse effects.21 Although a vast ma-
jority of methods had been generated to monitor the therapeutic 
responses,22,23 they could not identify the patients who can ben-
efit from some specific drugs clinically. Hence, the construction of 
a novel tool for precise prediction of BC prognosis and therapeutic 
responses is required.

CDKN1C, encoding the Cyclin- dependent kinase inhibitor 
p57Kip2, is a paternally imprinted gene on chromosomal band 11 
p15.5. Its encoded protein blocks the substrate interaction domain 
on cyclins and prevents binding of ATP and catalytic activity, thus 
mediating cyclin/CDK complex inhibition and negatively regulating 
cell proliferation.24 It can also cause cell cycle arrest via binding 
and inhibition of PCNA.25 As a tumour suppressor gene, CDKN1C 
is implicated in various human cancers and Beckwith- Wiedemann 
Syndrome.26 Previous studies have tried to investigate the connec-
tion between CDKN1C and BC. Downregulation and hypermethyl-
ation of CDKN1C have been acknowledged prevalent in BC, which 
are related to a deterioration of prognosis.27,28 With respect to ther-
apeutic application, Y Ma et al. have revealed transcriptional upreg-
ulation of CDKN1C correlated with CDK inhibitors.29 Interestingly, 
some antioxidant agents and wellness interventions were also re-
ported to increase the expression levels in BC cells.30,31 In contrast, 
through epigenetic mechanisms, CDKN1C can be suppressed by 
methylation and histone deacetylation,32 multiple micro- RNAs and 
lncRNAs,33,34 and specifically ERα signalling in hormone- responsive 
BC cells.35 These observations all support the implication of 
CDKN1C in BC tumorigenesis.

Despite the fact that BC harbouring lower levels of CDKN1C tended 
to present with poor survival outcomes,36 its role in BC progression 
and prognostic evaluation remained largely unknown. Therefore, we 
aimed to ascertain the CDKN1C expression and its relationship with 
prognosis in BC. Besides, the association between CDKN1C expres-
sion and enriched gene sets and pathways, as well as tumour immune 
microenvironment (TIM), were investigated in BC patients.

Recently, nomogram is widely conducted as a personalized 
tool to predict prognosis intuitively and precisely in various can-
cers.37- 42 Because this tool can rapidly calculate through easy- 
to- use digital interfaces and more easily acquire prognostic 
information compared with traditional TNM staging. Moreover, 
nomograms can integrate biological and clinicopathological pa-
rameters to establish a prognostic model that generates a possi-
bility of survival outcome.

Thus, to improve the accuracy of survival and therapeutic sen-
sitivity assessment for BC patients, a novel prediction model inte-
grating the expression of CDKN1C was established. We aimed to 
build a CDKN1C- based nomogram to predict overall survival (OS) 
and therapeutic responses in BC patients.

2  |  MATERIAL S AND METHODS

2.1  |  Study samples from TCGA database

A total of 995 BC samples with specific CDKN1C expression levels 
were screened from the Cancer Genomes Atlas (TCGA) data por-
tal. Patients without complete follow- up data or whose survival 
period was shorter than 1 month were excluded. Other clinical and 
pathological characteristics included in our analysis were as follows: 
age at diagnosis, T, N and TNM stage, tumour subtype and survival 
time. In the light of the optimal cut- off value of CDKN1C expression, 
study samples were classified into two groups with 786 patients in 
the low- expression group and 209 patients in the high- expression 
group.

2.2  |  Differential expression and survival 
analysis of CDKN1C

First, differential gene expression analysis of CDKN1C was per-
formed based on TCGA database via a Sangerbox tool, including 
1098 BC and 113 normal breast tissues. In order to assess the ef-
fects of differentially expressed CDKN1C on prognosis, Kaplan- 
Meier survival analysis was utilized to estimate the OS of the TCGA 
patients. Subsequently, univariate and multivariate analyses were 
formulated to evaluate the prognostic effects of CDKN1C and other 
potential risk factors.

2.3  |  Gene set enrichment analysis (GSEA) and 
immune infiltrates analysis of CDKN1C

GSEA was executed to investigate the functions of CDKN1C. 
HALLMARK gene sets and KEGG pathways were considered as sig-
nificantly enriched function annotations (p < 0.05, enrichment score 
>2.0). Furthermore, Through Tumor Immune Estimation Resource 
(TIMER) was applied to explore the association between CDKN1C 
expression and six essential TIICs. In order to determine whether 
the TIM differs markedly in low/high CDKN1C expression group, we 
used CIBERSORT, an established computational resource, to explore 
gene expression profiles of TCGA samples above to determine the 
levels of 22 immune cell subtypes in different CDKN1C expression 
groups. Finally, the association of 22 TIICs subtypes was analysed 
by Pearson Test.

To profile the variation of CDKN1C in BC, cBioportal was used 
to analyse the BC samples in TCGA Pan- cancer Atlas. The CDKN1C 
genetic alteration in Chinese BC patients was also analysed to make 
a comparison. Acquired from patients who were diagnosed as inva-
sive BC at the GDPH, 589 BC samples underwent next- generation 
sequencing. It was approved by the Ethics Committee of GDPH and 
informed consents were obtained from all patients. Besides mRNA 
levels, differential protein expression between normal and BC tis-
sues was validated by immunohistochemistry (IHC) staining obtained 
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from the human protein atlas (HPA) database. HPA database re-
trieves transcriptomics data from TCGA and generates proteomics 
data. Therefore, using IHC analysis based on tissue microarrays, the 
transcriptomes of different human cancer types were visualized.

2.4  |  Construction and evaluation of CDKN1C- 
based prognostic nomogram

To assist in clinical decision making, an applicable and quantitative 
model is required for predicting OS for BC patients. In terms of the 
multivariate analysis above, CDKN1C, age, TNM stage and tumour 
subtype were proved to be independent prognostic factors in BC 
survival. Therefore, we introduced a prognostic model integrating 
CDKN1C expression level and other clinicopathological factors. The 
area under the curve (AUC) of the receiver operating characteristic 
(ROC) curve for OS was formulated to assess the discrimination of 
the CDKN1C- based model. As for its calibration ability, a calibration 
curve was drawn to verify. Finally, considering the potential for clini-
cal utility, decision curve analysis (DCA) was used to assess the clini-
cal practicability of the CDKN1C- based nomogram.

2.5  |  Therapeutic responses estimation in 
BC patients

In the light of the optimal cut- off value of CDKN1C- based nomo-
gram score, BC patients were divided into the high- risk and low- 
risk groups. High- risk patients were characterized with higher 
scores and, therefore, worse predicted survival outcomes. Based 
on Genomics of Drug Sensitivity in Cancer, ‘Prophetic’ package was 
used to predict the therapeutic sensitivity. 6 common therapeutic 
agents for BC treatment were included. Their IC50 was estimated 
between two groups.

2.6  |  Statistical analysis

Descriptive analysis was conducted for clinicopathological fea-
tures of included BC patients. Kaplan- Meier curve and log- rank test 
were adopted to plot and compare the survival curves. Univariate 
and multivariate analyses were used to verify the independent risk 
factors and construct a risk score formula and nomogram. Time- 
dependent ROC curve analysis was exploited to evaluate the predic-
tive accuracy of CDKN1C- based nomogram. The calibration ability 
of the CDKN1C- based nomogram was estimated using the calibra-
tion curve. Calibration plot was carried out to test the agreement 
between model- predicted and actual outcome. The appropriate cut- 
off values of CDKN1C expression level and CDKN1C- based nomo-
gram score were confirmed using X- tile software, version 3.6.1 (Yale 
University, New Haven, CT, USA).43,44 Statistical analyses were per-
formed using R (Version 4.0.5) and a p- value <0.05 was considered 
statistically significant.

3  |  RESULTS

3.1  |  Baseline characteristics

A total of 995 BC patients from TCGA database were included in our 
study. Median age of the patients selected was 58 years. The clinical 
and pathological characteristics are listed in Table 1, including T, N, 
TNM stage, ER, PR and HER2 status.

TA B L E  1  Baseline characteristics of TCGA patients

Variables Number (995) %

Age (years) 58 (48, 67)

T stage

T1 268 26.9

T2 568 57.1

T3 122 12.3

T4 37 3.7

N stage

N0 461 46.3

N1 340 34.2

N2 107 10.8

N3 70 7.0

Unknown 17 1.7

TNM Stage

I 166 16.7

II 574 57.7

III 238 23.9

IV 17 1.7

ER status

Negative 205 20.6

Positive 749 75.3

Unknown 41 4.1

PR status

Negative 294 29.6

Positive 659 66.2

Unknown 42 4.2

HER2 status

Negative 694 69.7

Positive 175 17.6

Unknown 126 12.7

Tumour subtype

HR+/Her2- 558 56.1

HR+/Her2+ 139 14.0

HR- /Her2+ 36 3.6

TNBC 135 13.6

Unknown 127 12.8

Abbreviations: ER, estrogen receptor; HER2, human epithelial 
growth factor receptor 2; PR progesterone receptor; TNM, 
tumour- node- metastasis
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3.2  |  Identification of CDKN1C signature in 
BC prognosis

On the transcriptomic level, TCGA database analysis found that 
CDKN1C was significantly overexpressed in the normal tissue, com-
pared with multiple tumours, such as BC, bladder urothelial carci-
noma, kidney carcinoma and lung adenocarcinoma (Figure 1). Since 
the aberrant low expression of CDKN1C in BC, we further explored 
its prognostic value. In accordance with previous findings, Kaplan- 
Meier survival analysis uncovered that BC patients with decreased 
levels of CDKN1C had a shortened OS (p = 0.00022, Figure 2A). The 
distribution of CDKN1C and survival status of the BC patients were 
shown in Figure 2B, indicating that its expression was positively cor-
related with the survival of BC patients. Then, CDKN1C expression 
and other clinicopathological factors were incorporated into univari-
ate Cox proportional hazards regression analysis. Age, T, N and TNM 
stage, as well as subtypes displayed significant correlation with the 
prognosis of BC. Subsequently, above parameters were subjected 
to the multivariate Cox analyses. T and N stages were excluded 
since they were related with TNM stage and could result in spuri-
ous associations and unreliable results. As shown in Table 2, multi-
variate analyses identified CDKN1C (Hazard ratios (HR) =0.972, 95% 

confidence interval (CI) =0.956– 0.988, p < 0.001) as an independent 
favourable prognostic factor for OS in BC patients. Moreover, age 
(HR =1.034, 95% CI =1.020– 1.049, p < 0.001), stage (HR =1.523, 
95% CI =0.859– 2.701 for TNM stage II, p = 0.150; HR =3.680, 95% 
CI =2.031– 6.666 for TNM stage III, p < 0.001; HR =6.756, 95% 
CI =2.831– 16.122 for TNM stage IV, p < 0.001) and tumour sub-
type (HR =1.544, 95% CI =0.873– 2.733 for HR+/HER2+, p = 0.136; 
HR =1.32, 95% CI =0.539– 3.236 for HR- /HER2+, p = 0.543; 
HR =1.962, 95% CI =1.157– 3.327 for HR- /HER2- , p = 0.012) were 
verified as independent prognostic variables in BC patients.

3.3  |  GSEA and genetic alteration 
analysis of CDKN1C

After exploring the correlation between CDKN1C expression levels 
and prognosis, GSEA was performed to clarify the biologic role of 
CDKN1C in BC progression (Figure 3). Hallmark gene sets exhibit-
ing a strong negative correlation with CDKN1C were epithelial- 
mesenchymal transition, p53 pathway and TGFβ signalling. 
Analogously, KEGG pathway analysis revealed significant enrich-
ment of ECM receptor interaction, glycerophospholipid metabolism 

F I G U R E  1  Differential expression levels of CDKN1C in multiple cancer types and normal tissues (‘∗’p < 0.05, ‘∗∗’p < 0.01, ‘∗∗∗’p < 0.001 
and ‘∗∗∗∗’p < 0.0001)
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and Notch signalling pathway in the CDKN1C low- expression group. 
These results suggested that the alteration of CDKN1C impacted BC 
tumorigenesis and development through proliferation, differentia-
tion, migration or apoptosis.

After performing the functional analysis of CDKN1C, genetic 
alterations of CDKN1C in BC patients were followed. In patients ob-
tained from TCGA portal, approximately 1.1% of the BC samples had 
mutations in CDKN1C (Figure 4A), of which 2 out of TCGA patients 
had amplification and 9 had deep deletion. As shown in Figure 4B, 
an amplification frequency of 0.2% was detected amongst the 
589 BC samples in the Department of Breast Cancer, Guangdong 
Provincial People's Hospital (GDPH) cohort. These results unveiled 
that CDKN1C is rarely seen in BC. At the translational level, BC was 
validated to have a lower level of CDKN1C compared with normal 
breast tissues based on the HPA database (Figure 4C).

3.4  |  Relationship between CDKN1C 
expression and TIICs

TIMER (Figure 5A), we observed that B cells were negatively correlated 
with CDKN1C (p = 9.47 × 10−6). Simultaneously, a positive correlation 
existed between its expression and CD4+ T cells (p = 3.16 × 10−4). It 
is noteworthy that with augmentation in CDKN1C expression, the tu-
mour purity was significantly lower, indicating higher levels of TIICs. As 
shown in Figure 5B, incremental differences of activated CD4 memory 
T cells, M0 macrophages, M2 macrophages and resting NK cells were 
assessed in the low- expression group. Inversely, the levels of naïve B 
cells, CD8 T cells, activated NK cells, resting dendritic cells, resting 
mast cells and neutrophils decreased when CDKN1C was downregu-
lated. Figure 5C presented the correlation between 22 subtypes of 
TIIC in BC. A significant positive correlation existed between M2 mac-
rophages and monocytes, CD8 T cells and activated CD4 memory T 
cells. M0 macrophages were found to be negatively associated with 
resting CD4 memory cells, CD8 T cells and monocytes.

3.5  |  Development and assessment of CDKN1C- 
based prognostic model

Now, that CDKN1C level is related with survival outcomes prob-
ably due to the biological process and immune microenvironment, 
it may assist in prognosis prediction. Consequently, we established 
a nomogram incorporating the CDKN1C expression, age, TNM stag-
ing and tumour subtype aiming to predict the OS in BC patients 
(Figure 6). After calculating the nomogram score for each variable 
on the point scale, the final total score was gained to predict the 5- 
year survival probability individually. Time- dependent ROC analysis 
was utilized to evaluate the predictive accuracy of CDKN1C- based 
prognostic model (Figure 7A). The AUC value of the nomogram for 
5- year survival rates prediction were 0.746 (95% CI: 0.677– 0.816), in 
comparison with 0.634 (95% CI: 0.568– 0.701) for the TNM staging 
system alone. A significantly better discrimination performance was 
exhibited (p < 0.001). Calibration plot displayed a strong conformity 
between the likelihoods generated by the nomogram and the actual 
results of 5- year OS, suggesting high calibration ability (Figure 7B). 
DCA, as shown in Figure 7C revealed that the CDKN1C- based model 
added more net benefit than did the traditional TNM stage, thus 
showing superior clinical practicability.

3.6  |  The role of nomogram in 
prediction of therapy sensitivity in BC patients

Finally, therapeutic response prediction was performed to compare 
BC patients in the low- risk and high- risk groups, with low and high 
nomogram scores respectively. In Figure 8, the estimated IC50 of 
methotrexate, doxorubicin, paclitaxel, cisplatin, vinorelbine were 
significantly reduced in the low- risk group, which indicated better 
response to these therapeutic agents. Oppositely, lapatinib sensitiv-
ity was moderately better, when the nomogram scores were higher 
indicating worse prognosis.

F I G U R E  2  Kaplan– Meier curves of overall survival for breast cancer patients based on CDKN1C expression levels (A). CDKN1C 
expression and survival status distribution (B)
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4  |  DISCUSSION

Identification of a novel predictive signature is urgent for survival out-
comes and therapeutic selection in BC survivors. CDKN1C, known 
as a BC suppressor, is transcriptionally and translationally expressed 
in the myoepithelial layer in BC.45 Kobatake et al. have uncovered the 
antioncogenic role of CDKN1C in BC.28 Hence, its prognostic role in 
BC has aroused interest of the subsequent researchers. For exam-
ple, Yang and colleagues discovered that CDKN1C downregulation 
is correlated with poor survival in BC,32 which was limited by a small 
amount of samples and insufficient follow- up data. Another study 
based on the TCGA and Oncomine data sets confirmed CDKN1C’s 
role in tumorigenesis and prognosis prediction.36 Our research con-
firmed the results of previous study, suggesting diminished expres-
sion of CDKN1C indicated unfavourable clinical outcomes in BC. We 
further explore the implication of CDKN1C in biological function 
and tumour immune infiltration. BC is known to be infiltrated by ex-
tensive immune cells that execute different roles to influence the 
cancer progression. Plentiful studies have verified the association 
between robust lymphocytic infiltration and favourable prognosis 

in cancers.9,46 However, no evidence has put forward the potential 
effects of differential TIICs in BC genesis, according to the CDKN1C 
expression levels. CD8 cytotoxic lymphocyte is one representative 
that displays an antitumor role via cell- mediated immune response 
and confers better clinical outcomes.47,48 Its positive association 
with CDKN1C expression level, agreed with the favourable prog-
nostic effect in the high- expression group.

Although CDKN1C was identified as prognostic marker in BC 
previously, this signature has not been utilized to improve BC prog-
nostic and therapeutic prediction. No evidence has revealed its pre-
dictive value for survival outcome. For the first time, we develop a 
novel predictive tool to unravel the prognostic significance of differ-
ential CDKN1C expression in BC. Besides traditional TNM staging 
system, molecular subtypes and age, we integrated CDKN1C levels 
aimed to achieve the sufficient survival assessment for this hetero-
geneous cancer. Satisfactorily, the nomogram yielded favourable 
discrimination and calibration in BC prognosis prediction and con-
ferred superior clinical benefit than TNM stage alone. Furthermore, 
the nomogram had better ability to predict therapeutic responses 
than previous tools, thus providing personalized treatment regimen 

Variables

Univariate analysis Multivariate analysis

Hazard ratios (95% CI) p- value Hazard ratios (95% CI) p- value

Age 1.032 (1.018– 1.047) <0.001 1.034 (1.020– 1.049) <0.001

T stage

T1 Referent - - - 

T2 1.226 (0.801– 1.876) 0.347 - - 

T3 1.250 (0.691– 2.261) 0.46 - - 

T4 2.741 (1.438– 5.226) 0.002 - - 

N stage

N0 Referent - - - 

N1 1.803 (1.188– 2.736) 0.006 - - 

N2 2.610 (1.489– 4.574) 0.001 - - 

N3 4.257 (2.254– 8.038) <0.001 - - 

Unknown 6.723 (3.244– 13.931) <0.001 - - 

TNM Stage

I Referent - Referent - 

II 1.459 (0.828– 2.571) 0.191 1.523 (0.859– 2.701) 0.15

III 3.013 (1.681– 5.400) <0.001 3.680 (2.029– 6.658) <0.001

IV 7.254 (3.166– 16.619) <0.001 6.716 (2.815– 16.025) <0.001

Tumour Subtype

HR+/HER2- Referent Referent

HR+/HER2+ 1.493 (0.848– 2.628) 0.165 1.544 (0.872– 2.731) 0.136

HR- /HER2+ 2.280 (0.974– 5.336) 0.058 1.322 (0.539– 3.239) 0.541

TNBC 1.561 (0.927– 2.626) 0.094 1.960 (1.156– 3.321) 0.012

Unknown 1.640 (1.041– 2.585) 0.033 1.225 (0.772– 1.945) 0.389

CDKN1C 0.971 (0.956– 0.988) 0.001 0.972 (0.956– 0.988) 0.001

Note: Bold values indicate the variable with statistically significance.
Abbreviations: HER2, human epithelial growth factor receptor 2; HR, hormone receptor; TNM, 
tumour- node- metastasis.

TA B L E  2  Univariate and multivariate 
Cox proportional hazards regression 
analyses in the TCGA patients
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clinically. Despite the survival outcome has been improved in re-
cent years, BC recurrence frequently occurs due to drug resistance. 
Thus, effective biomarkers to assess therapeutic responses for BC 
patients remain imperative in clinical practice. Although previous 
studies tried to find out some predictive markers for chemotherapy 

response,7,49 the scantiness of drugs variety limited its guidance for 
drug selection. It was not accurate enough to untangle the hetero-
geneity of BC treatment response by assessment of intrinsic clin-
icopathological features or genes expression solely.23,50,51 Taking 
together, our nomogram was utilized to distinguish the low- risk and 

F I G U R E  3  GSEA analyses of epithelial- mesenchymal transition, p53 pathway and TGFβ signalling HALLMARK gene sets (A), KEGG 
pathways of ECM receptor interaction, glycerophospholipid metabolism and Notch signalling pathway (B) in breast cancer from TCGA

F I G U R E  4  Genomic alteration profile of CDKN1C in breast cancer patients from TCGA database (A), GDPH patient cohort (B). 
Immunohistochemical validation of CDKN1C via HPA database (C)
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high- risk patients with different drugs sensitivities. We found that 
BC patients with high nomogram scores in high- risk groups mani-
fested stronger sensitivity to lapatinib. On the contrary, low- risk 

patients were more sensitive to methotrexate, doxorubicin, pacli-
taxel, cisplatin, vinorelbine. In the late 1990s, classic CMF (cyclo-
phosphamide, methotrexate and 5- fluorouracil) was widely used in 

F I G U R E  5  Correlation between CDKN1C expression and 6 TIICs (A). Differential proportions of 22 immune cell subtypes in low and high 
CDKN1C expression groups (B). Heatmap of 22 TIICs in breast cancer (C)
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BC treatment52 and subsequently moved to anthracycline- based 
regimens, represented by four cycles of doxorubicin and cyclo-
phosphamide.53,54 With the advent of new antimicrotubule agents, 
paclitaxel has later become the standard- of- care drug in early BC 
and significantly improved survival outcomes.52,55 Compared with 
anthracyclines and taxanes, superiority of cisplatin and vinorelbine 
was reported in some metastatic BC.56- 58 Nevertheless, adverse 
effects of chemotherapy can overshadow their acknowledged ef-
ficacy.59 Therefore, we supposed this CDKN1C- based nomogram to 

select a subset of patients most likely to benefit from lapatinib or the 
addition of these therapeutic agents. To sum up, the nomogram is 
able to improve the accuracy of prognosis prediction for BC patients 
and identifying the potential cohorts, thus providing appropriate 
systemic therapy and follow- up strategies.

In addition, there are some limitations in the present research. 
Firstly, our analysis was mainly based on online databases. The in- 
vivo and in- vitro experiments are required to explore the mechanism 
of CDKN1C on BC progression, signalling pathways and immune 

F I G U R E  6  CDKN1C- based prognostic 
model to predict 5- year overall survival in 
breast cancer patients

F I G U R E  7  Comparison of the prognostic accuracy at 5- year using time- dependent ROC curves between the models with TNM stage (A). 
Calibration curves of the model in the TCGA cohort (B). Comparison of clinical utility using decision curve between the models with TNM 
stage (B)
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regulatory function in the future. Secondly, the CDKN1C- based nomo-
gram should be verified by the prospective, large- scale cohorts before 
clinical application. Moreover, larger clinical trials to validate the role of 
CDKN1C- based nomogram in antitumor drugs selection are needed.

In summary, a novel CDKN1C- based nomogram was developed 
to estimate the survival outcome of BC patients, which reflected 
good predictive accuracy and outperformed the TNM staging alone. 
At the same time, we can find out the patients who may maximally 
benefit from specific antitumor agents, thus reducing the burden 
of overtreatment. Our study provided new insights into the role 
of CDKN1C, and facilitate prognosis and therapeutic responses 
prediction.
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