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Abstract

Patient-specific computer models have been developed representing a variety of aspects of the cardiovascular system spanning
the disciplines of electrophysiology, electromechanics, solid mechanics, and fluid dynamics. These physiological mechanistic
models predict macroscopic phenomena such as electrical impulse propagation and contraction throughout the entire heart as
well as flow and pressure dynamics occurring in the ventricular chambers, aorta, and coronary arteries during each heartbeat.
Such models have been used to study a variety of clinical scenarios including aortic aneurysms, coronary stenosis, cardiac
valvular disease, left ventricular assist devices, cardiac resynchronization therapy, ablation therapy, and risk stratification.
After decades of research, these models are beginning to be incorporated into clinical practice directly via marketed devices
and indirectly by improving our understanding of the underlying mechanisms of health and disease within a clinical context.

Keywords Computer modeling - Patient-specific - Precision
medicine

Introduction

Patient-specific cardiovascular modeling is quietly emerging
from decades of academic research and is beginning to tran-
sition to impact clinical treatment; these efforts complement
the prominent, and well-deserved, attention focused on preci-
sion medicine in the fields of genetics [1, 2], oncology [3, 4],
tissue engineering [5], and pharmaceuticals [6, 7]. In this man-
uscript, we begin with a discussion of individualized therapy
followed by a brief overview of patient-specific modeling,
then present a few examples of clinical applications in the field
of cardiovascular modeling, and conclude with a description
of some of the main challenges. We restrict our scope to mac-
roscopic (> 1 mm) personalized mechanistic models of cardio-
vascular dynamics. The clinical utilization of patient-specific
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modeling involves addressing two very complex approaches
(individualized therapy and computer modeling), and the ap-
propriate implementation(s) and evaluation(s) of these ap-
proaches remain largely unknown and a matter of ongoing
discussion.

Individualized Therapy

The goals of medicine have always been patient-centric and
include the relief of pain and suffering, curing of disease, and
the promotion of health and prevention of illness. Advances in
medicine during the twentieth century were unprecedented
and resulted from multiple revolutions (e.g., technological,
digital, genetic, information). The physician-patient relation-
ship during the twentieth century tracked these scientific ad-
vances and transformed from a qualitative sensory inspection
to an increasingly data-driven approach (see Fig. 1). Another
important transition in the practice of medicine was from an
“experienced-based” to an “evidence-based” approach [8].
Although its principles date back earlier, the first use of the
phrase “evidence-based medicine” in the literature was in the
early 1990s and was followed by an immediate “meteoric rise
in popularity” [9]. Sackett et al. define evidence-based
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medicine as “the conscientious, explicit, and judicious use of
current best evidence in making decisions about the care of
individual patients” and its practice as “integrating individual
clinical expertise with the best available external clinical evi-
dence from systematic research” [10]. Currently, there is
much discussion regarding the potential benefits of “precision
medicine,” also referred to as “patient-specific medicine” [3],
often colloquially described as providing the right treatment at
the right time to the right patient.

Precision medicine has significant appeal, in part because it
is easy to envision significant benefits by transforming some
clinical therapies from those intended for an “average patient”
to those designed for an “individual patient;” Fig. 2 illustrates
the potential benefit of such an approach. First, consider the
traditional approach in which results from a randomized con-
trolled trial (RCT) suggest a particular intervention is likely to
benefit the “average patient” who meets the eligibility criteria
of the RCT (see lower left panel of Fig. 2). The intervention
slows the progression of the disease (measured using some
variable) as indicated by the dashed black line compared to
no intervention (solid line), or standard of care, as determined
in the control group from the RCT. Second, consider an
alternative approach in which a clinical trial was conducted
using a hypothetical patient-specific approach in which individ-
ual characteristics were accounted for in the study design,
allowing for the prediction of an intervention for an “individual
patient.” In this hypothetical case (see graphs in the lower right
panel), the study results suggest that no intervention should be
applied to patient 1 (purple) because it would have no benefit,
but the intervention should be applied to patient 2 (green) who
is predicted to benefit considerably from the intervention.

The implementation of patient-specific modeling will like-
ly be varied with some approaches being similar to RCTs
(e.g., adjusting inclusion/exclusion criteria) while others may
be fundamentally different. Regardless of the particular imple-
mentation of patient-specific modeling, it seems prudent to
compare and contrast the number of individuals a treatment
is meant to benefit. At one extreme, a single treatment could
be employed for the entire population, e.g., if you have a fever,
take aspirin. This approach ignores all individual variability
and encompasses a “one size fits all” attitude. At the other
extreme, one can envision clinical treatment being tailored to a
single individual; and if enough information was collected and
understood, the “precision” treatment might include a combi-
nation of nutrition, exercise, and medicine to optimize that
specific person’s health. Obviously, almost all conceivable
medical interventions fall in between these two extremes.
Accordingly, we view clinical approaches along a continuous
spectrum of “personalization” within these extremes, and at-
tempt to address the inherent tension between generalization
and specification [11, 12]. In fact, the field of patient-specific
cardiovascular modeling illustrates this concept nicely be-
cause one can accurately identify which aspects of the model
are “personalized,” i.e., derived from the same patient for
whom treatment is envisioned (see below for examples).

Patient-Specific Cardiovascular Models
Cardiovascular modeling is a mature specialty spanning the

disciplines of electrophysiological modeling, solid mechanics,
electromechanics, and computational fluid dynamics. For

@ Springer



82

J. of Cardiovasc. Trans. Res. (2018) 11:80-88

Fig. 2 Precision medicine.
Randomized controlled trials are
the traditional approach for
evaluating new medical therapies
in which clinical advice is based
on the predicted response of an
“average” patient (black).
Precision medicine offers an
alternative approach in which it is
envisioned that clinical advice is
based on the predicted response
of an “individual” patient; the
responses of two different patients
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each, the macroscopic structure-function relationships are rep-
resented by various partial differential equations based on
conservation laws (i.e., conservation of charge, mass, momen-
tum) [13]. Our review is meant to build upon previously pub-
lished excellent reviews of cardiovascular modeling including
whole heart electrophysiology [14] and electromechanics [15,
16], as well as fluid dynamics [17-20].

Patient-specific computational fluid dynamic models are
being used to address aortic aneurysms [21], coronary stenosis
[22], cardiac valves [19], and congenital heart disease [23,
24]. Bi-ventricular patient-specific models of
electromechanics have been applied to heart failure [25-27],
left ventricular assist devices [28], and cardiac
resynchronization therapy [29-31]. Patient-specific models
of electrophysiology have shown promise in regard to genetic
mutations [32], ablation therapy [28], and clinical classifica-
tion criteria [33].

The construction of a patient-specific model typically in-
volves a “workflow” (see Fig. 3) in which patient data is
merged with equations and other “external data.” These pipe-
lines involve obtaining information from the patient such as
age, sex, survey results, and even physician diagnoses. In
addition, measurements are taken from the patient using var-
ious instruments including sophisticated imaging modalities.
Together, these streams represent the patient’s “raw data”
which together with external data and equations governing
the physical process being modeled are used to develop the
patient-specific model. External data is any data that is not
personalized, and can be obtained from a variety of sources
such as experimental results, clinical studies, and the
literature.

The amount and type of personalization in cardiovascular
patient-specific models is quite varied, but almost always
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involves a geometrical representation of some part of the pa-
tient’s anatomy which is derived from a variety of clinical
imaging modalities. These patient-specific geometrical repre-
sentations are typically finite element “meshes” that are de-
rived via the following steps: (1) imaging, (2) segmentation
and reconstruction, and (3) interpolation and discretization
(i.e., mesh generation) [18]. Other aspects of model personal-
ization are quite diverse and necessarily discipline specific.
Personalized parameters can be either directly measured from
the patient or indirectly computed from patient data. For ex-
ample, material properties such as stiffness or conductivity
(i.e., electrical diffusivity) can be personalized, but estimation
of personalized tissue material parameters can usually only be
performed indirectly, unless biopsy samples are available.
Model parameters need not be homogeneous; model devel-
opers must choose the amount (if any) of heterogeneity of
model parameters, which also increases the opportunities for
potential personalization. This choice should be well-justified
because parameter heterogeneity increases model complexity
which complicates model validation. Initial and boundary
conditions for models can also be personalized. In some cases,
this involves three-dimensional data which is difficult to ac-
quire clinically and with much lower resolution compared to
the final geometrical mesh. One- or two-dimensional clinical
data can be converted to three-dimensions for model input
using assumptions of symmetry; however, this approach
may or may not be appropriate depending on the specific
context of use for the model [34]. Below, we present the de-
tails of a few examples of patient-specific whole heart electro-
mechanical models to illustrate the variety and complexity of
model personalization.

Aguado-Sierra et al. [25] demonstrated the feasibility, and
difficulty, of generating a patient-specific electromechanics
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Fig. 3 Patient-specific modeling
workflow involves collecting and
processing data from an
individual patient and
incorporating that data into a
mathematical model represented
digitally in a computer. The
model incorporates the governing
equations and parameters as well
as mathematical representations
of the patient’s geometry and
boundary and initial conditions.
Data collected from the patient
can also be used for model
validation (see the “Challenges”
section for a discussion). Note
that data used for model
validation should be distinct to
data used for model development
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model of the failing heart with a myocardial infarction and left
bundle branch block in which anatomical representation, tis-
sue stiffness, and electrical conductivity were all personalized.
They generated a bi-ventricular mesh of a 65-year-old male
from 2D echocardiographic recordings using a small number
of manually identified landmarks. The infarct region was iden-
tified by an expert from an MRI stress test. Material stiffness
parameters were estimated from the pressure (measured from
the patient) volume (computed from the geometrical mesh)
relationship. They used three-element “windkessel” lumped
parameter models to represent the vasculature to establish
boundary conditions and incorporated a non-personalized
“cell” model (representing the detailed dynamics of the cardi-
ac action potential) [35]. The regional electrical conductivity
was personalized by reducing conductivity in the scar and
elsewhere “to obtain an adequate activation sequence at the
endocardium, and total activation time equal to the known
QRS duration”. Similarly, Crozier et al. developed patient-
specific models of bi-ventricular electromechanics from three
heart failure patients in which regions of low conductivity
were determined from non-contact mapping data [36]. In ad-
dition, passive tissue stiffness as well as windkessel and active
tension parameters were personalized directly from the patient
measurements [31].

The models described in the previous paragraph all include
electrophysiology cell models that were non-personalized. A
number of investigators have developed models by incorpo-
rating two-variable phenomenological cell models whose pa-
rameters were derived from patient data, into personalized
geometries [37—41]. Phenomenological cell models are ame-
nable to personalization because of their simplicity and the
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parameters are related to relatively easy-to-measure quantities
(i.e., the rate dependence of action potential duration and con-
duction speed) [42—44]. However, the approach of using phe-
nomenological models that do not represent the true action
potential upstroke (e.g., Mitchell-Schaeffer [44] and Aliev-
Panfilov [42] models) presents significant challenges [45].
Lombardo et al. fit parameters for both phenomenological
and complex ionic cell models from patient data to derive
personalized cell models which they incorporated into an atri-
al geometry and simulated reentry; they found that the results
of the simulations for phenomenological and complex ionic
cell models were similar for each patient, but spiral wave
dynamics varied across patients [46]. Corrado et al. also gen-
erated personalized phenomenological cell models from pa-
tient data and simulated reentry in a two-dimensional sheet;
they also found that spiral wave dynamics varied across the
models developed for each patient [40].

Patient-specific modeling of cardiac electrophysiology, in-
cluding simulation of cardiac arrhythmias, has begun to yield
success in the clinical domain. For example, both Ashikaga
et al. [47] and Arevalo et al. [48] generated personalized bi-
ventricular geometries including regions of scar tissue and the
surrounding “border zone” derived from magnetic resonance
imaging (MRI) with late gadolinium enhancement. These
workflows incorporated a non-personalized model of the elec-
trophysiology of cardiac cells [35]. Ashikaga et al. demon-
strated the feasibility of using such image-based personalized
simulations to estimate ablation target sites for ventricular
arrhythmias by simulating virtual arrhythmias in 13 patients
and predicted sites for which ablating tissue within the ar-
rhythmia circuit would terminate the arrhythmia [47].
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Arevalo et al. constructed image-based personalized models
of post-infarction hearts and simulated the propensity of 41
patient models to develop a virtual arrhythmia, and their pre-
dictions outperformed several existing clinical metrics in a
retrospective analysis [48].

Notably, two medical devices have recently been marketed
in the USA that include patient-specific cardiovascular
models. Heartflow® FFRCT (fractional flow reserve derived
from computed tomography) is a post-processing software for
the clinical quantitative and qualitative analysis of image data
for clinically stable symptomatic patients with coronary artery
disease [49]. The workflow involves generating a personal-
ized mathematical geometrical representation of the coronary
arteries and performing computational fluid dynamics (CFD)
simulations using lumped parameter models of the heart, sys-
temic circulation, and smaller downstream coronary arteries as
boundary conditions. Specifically, it provides FFRCT, a math-
ematically derived quantity, computed from simulated pres-
sure, velocity, and blood flow information obtained from a 3D
computer model generated from the patient’s static coronary
CT images. The Medtronic Cardiolnsight® Cardiac Mapping
System is a non-invasive mapping system for beat-by-beat,
multichamber, 3D mapping of the heart [50]. This device in-
cludes solving the classic electrocardiographic “inverse
problem,” i.e., computing the dipole sources on the heart sur-
face from multiple potential measurements from the body sur-
face [51]. This is accomplished by Cardiolnsight® via a
workflow that involves computing the personalized torso
and epicardial heart surfaces from CT images, and then com-
puting the virtual electrograms on the heart surface using body
surface potential signals recorded from > 200 electrodes from
a vest worn by the patient [52].

Both Heartflow® FFRCT and Cardiolnsight® Cardiac
Mapping System use CT images to generate a representation
of the patient’s anatomy, and solve the governing equations
using models with many non-personalized parameters. The
personalized geometry alone for these devices provided
unique clinical benefits (a scientific and objective measure
of coronary blood flow and non-invasive cardiac mapping,
respectively). Heartflow® FFRCT and Cardiolnsight®
followed standard regulatory pathways for medical devices
(the de novo and 510(k) pathways, respectively). The evalua-
tion of medical devices by the FDA is unique to each submis-
sion; nevertheless, regulatory strategic priorities and ongoing
activities indicate foresight in regard to patient-specific
modeling. For example, one of the strategies for the Agency
to the improve the effectiveness of the product development
process is to “improve tools and approaches needed to cata-
lyze the development of personalized medicine” [53] and one
of the Center of Devices and Radiological Health’s (CDRH)
regulatory science priorities for 2017 is to “develop computa-
tional modeling technologies to support regulatory decision-
making” [54]. CDRH has published a Guidance on the
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reporting of computational modeling [55] and is involved in
developing the American Society of Mechanical Engineering
Standard entitled “Assessing Credibility of Computational
Modeling and Simulation Results through Verification and
Validation: Application to Medical Devices” [56]. CDRH also
recently published a Guidance regarding evaluation of
“software as a medical device” (SaMD), that is, software
intended to be used for a medical purpose without being part
of a hardware medical device, as opposed to a medical device
which contains software [57]; this Guidance may cover some
future patient-specific models. Finally, we note that computa-
tional modeling can play a key role in receiving FDA clear-
ance or approval for medical devices. Faris and Shuren [58]
state “For some devices, opportunities exist for leveraging
alternative data sources, such as existing registries or model-
ing techniques, to allow regulators to have a good idea of the
risks and benefits of the device without the need for
conducting detailed trials.” As an example, Faris and Shuren
[58] discuss the Medtronic Revo MRI ® pacemaker system,
which was approved in 2011 as the first pacemaker indicated
to allow patients implanted with the device to undergo mag-
netic resonance imaging (MRI) [58].

Given that heating would be most likely to occur in rare,
worst-case conditions that would be difficult to predict
clinically, relying on a clinical trial as the primary vali-
dation of safety would have required many thousands of
participants. Instead, FDA approval rested primarily on
robust mathematical modeling that was validated with
bench studies and studies in animals. The modeling da-
ta, which simulated thousands of combinations of de-
vice and patient geometries and MRI scan conditions,
provided strong evidence that even worstcase conditions
would be very unlikely to result in detrimental lead
heating.

It should be noted that the modeling referred to here was
not patient specific, but we include the quote to demonstrate
the role modeling, in general, can play in the regulatory
process.

Challenges

There are numerous far-reaching challenges to address for the
wide-spread clinical utilization of patient-specific models. For
example, how should clinical evidence be collected for devel-
opment and evaluation such models? Here, we address the
more limited challenges of the patient-specific cardiovascular
models presented in this manuscript, which are typically de-
veloped according to the following steps: (1) define the prob-
lem to be addressed; (2) identify exactly how the model will
be used, i.e., its context of use (COU); (3) select the model
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formulation including the governing equations; (4) decide up-
on boundary and initial conditions; (5) decide which aspects
of the model will be personalized; (6) implement the model,
i.e., construct the workflow; and (7) evaluate the predictive
capability of the patient-specific simulations. There are chal-
lenges accompanying each of these steps. Perhaps, the biggest
decision in step 3 is to decide if the model will be a multi-
physics model (e.g., electromechanics or involve fluid-
structure interaction) or not. We believe that one of the most
challenging aspects of this process is to decide what level of
detail to include in the model in step 3, which will depend
heavily on the COU and the phenomena the model is meant to
reproduce. For example, we believe that the scale and shape of
resistive heterogeneities in electrical diffusivity that affect fi-
brillation [59] and defibrillation [60] dynamics are not well
understood; thus, constructing patient-specific models to pre-
dict these phenomena would be problematic. For step 4,
models that include solid or fluid dynamics tend to be more
sensitive to boundary conditions and imposed constraints so
they should be thoroughly explained and justified. We consid-
er step 5 to be another of the most challenging stages, because
the clinical settings impose unique constraints on what mea-
surements can be made from the patient. These constraints on
the level of personalization that are possible influence the
ability to investigate the level of personalization that is neces-
sary to achieve the required accuracy in model prediction. For
example, if a patient-specific model which incorporates ana-
tomical personalization has poor predictive capability, it can
be difficult to determine if this is caused by a lack of material
or functional personalization, or by other factors. However,
technological advances continue to increase the amount of
detailed and specific clinical information which will greatly
aid the development of patient-specific models. Step 6 tends
to be multifaceted and very complex involving advanced nu-
merical methods including image processing, proper data fil-
tering, and registration. The ideal workflow will be fully au-
tomated, to ensure reproducibility and remove user biases and
errors.

One similarity of these macroscopic mechanistic cardio-
vascular models is that they are complex. There is an extraor-
dinary amount of information required to fully understand
these models (Fig. 3), and we recommend providing as much
transparency as possible (perhaps in Supplementary Material
for journal publications) regarding the relevant information
such as the acquisition settings of the recording devices, sig-
nal/image/data processing, model assumptions, parameter
values, and pre-processing stages such as computing unloaded
reference geometry. A recent FDA Guidance on the reporting
of computational modeling studies provides additional recom-
mendations [55]. Numerous models have been developed
over many years and understanding their details, rationale,
and evolution becomes prohibitively difficult. Efforts to ex-
plain the scientific basis and clarify the rationale and

assumptions of specific clinical modeling approaches [22,
52, 61] not only aid transparency but also improve the under-
standing and considering the advantages and limitations of the
models. Similarly, presenting the history of model develop-
ment, including errata, is helpful [62, 63]. Information regard-
ing what part of the model is personalized, the workflow
methodology, governing equations, model assumptions, and
initial and boundary conditions are all important for evaluat-
ing patient-specific models.

Perhaps, the most significant challenge for patient-specific
modeling is developing the appropriate methodology that both
properly ensures patient safety and provides adequate evalua-
tion (step 7). Here, we highlight a few examples of how cer-
tain activities could increase confidence in a patient-specific
model. Testing accuracy and confirming assumptions at vari-
ous stages along the workflows improves confidence in the
process of model development as well as model robustness,
though not necessarily the performance of the overall model.
For example, the majority of workflows for generating bi-
ventricular geometries for simulations of cardiac electrophys-
iology or electromechanics use imaging data to construct the
heart wall boundaries, but use a variety of methods to generate
the corresponding fiber fields [25, 31, 47]. Ideally, the fiber
field for each patient would be acquired non-invasively using
sub-millimeter diffusion tensor imaging (DTI) but this is not
clinically feasible [64]. Vadakkumpadan et al. [65] assessed
the accuracy of their fiber field estimation algorithm by com-
paring results to DTI data in six normal and three failing
canine hearts. Confirmation of workflow methodology and
assumptions using independent comparators provides valu-
able information, although spatial and temporal co-
registration of data acquired from different recording devices
is a complicating factor.

Parameter sensitivity analysis (quantifying the relative im-
portance of changes in various input parameters on model
output quantities) is extremely important because its helps
refine model development and identify the parameters for
which variability is significant, and helps to assess the robust-
ness of model predictions. In fact, this process can be partic-
ular useful in the development of patient-specific models be-
cause it can help determine the level of detail to include in the
model (including which parameters should be, or need not be,
personalized). For example, Esptein et al. [66] studied the
number of arterial 1D segments required to obtain adequate
predictions of aortic flow. This is an important issue because
the CFD models discussed in this paper all use 0D lumped
parameter windkessel models as boundary conditions, and
these simplifications do not account for wave propagation
and reflection. Esptein et al. [66] systematically reduced 55
and 67 artery models by replacing a subset of segments with
lumped parameter models to preserve the net resistance and
compliance of the original model. They concluded that re-
duced models showed good agreement with the original
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models. In general, reduction of model complexity is advan-
tageous because it simplifies model evaluation and increases
computational efficiency, which may enable simulations to be
feasible in clinically relevant timescales.

Validation of the patient-specific model, or more gener-
ally of the overall workflow, requires confirmation of the
accuracy of predictions against clinical data. In the past, we
have advocated [67] that the physiological modeling com-
munity takes advantage of the engineering field of verifica-
tion, validation, and uncertainty quantification (VVUQ),
which provides well-established methods for model assess-
ment [68]. However, we also have described how the com-
plexity and variability inherent to physiological systems
introduce significant challenges to model validation; there-
fore, the relevance of engineering methods and best prac-
tices to general physiological modeling remains unclear,
although efforts to develop similar methodology have be-
gun [69-72]. Actually, VVUQ methods may be easier to
apply to patient-specific models than more general models.
One reason for this is that it is not clear what a general
human model is supposed to represent (an “average” per-
son? a “typical” person?), whereas for a patient-specific
model, the model needs only to represent the patient from
whom personalized data was obtained. Therefore, the pro-
cess of performing model validation is conceptually simpler
with a patient-specific model as compared to a generic hu-
man model. Moreover, patient-specific models decrease the
challenges associated with uncertainty quantification (UQ).
UQ involves quantifying the impact on model predictions
caused by uncertainty in model parameters. Uncertainty in
model parameters can originate from factors such as mea-
surement error or physiological variability in the parameter.
Using personalized parameter values removes the need to
consider the potential impact, on predictions, of variability
in (only) that parameter across individuals. For example,
consider a hypothetical heart model that incorporates a ge-
neric non-personalized heart geometry, and whose simula-
tions predict a clinical relevant quantity. Rigorous UQ re-
quires evaluation of robustness of predictions given the
range of heart shapes and sizes expected in the patient pop-
ulation. However, if the heart geometry is personalized, UQ
only requires evaluation of robustness to heart geometry
uncertainty arising from measurement (imaging) error and
the mesh generation process.

On the other hand, patient-specific modeling introduces
some subtleties in model validation that do not apply to ge-
neric models. Patient-specific modeling validation is typically
carried out by testing the workflow in a clinical study cohort
that is believed to be a representative of the indicated patient
population, and if the study results are within acceptance
criteria, the workflow is deemed sufficiently reliable for use
in the greater patient population (e.g., supporting clinical ev-
idence for Heartflow® and Cardiolnsight®). However,
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another distinct form of validation is also possible with
patient-specific models. As illustrated in Fig. 3, one can en-
visage that every time the model is personalized to a new
patient, some patient data is set aside to evaluate the model.
This is somewhat analogous in machine learning to separating
data into that used in the training phase and that used in the
testing phase. For patient-specific models, it amounts to in-
cluding validation as part of the overall workflow. For exam-
ple, consider the following hypothetical workflow. Cardiac
images and other data is used to generate a patient-specific
heart model, which is then immediately tested by confirming
that it successfully predicts that patient’s clinically measured
pressure-volume loop. If the pressure-volume loop is success-
fully predicted, the model is used to predict a long-term clin-
ical outcome; if not, the model is not used for this patient, or
only used with caution. Regardless, the ability of this
workflow to accurately predict the clinical outcome would
still need to be evaluated using a clinical study. With this
approach, however, confidence in predictions for any new
patient would be supported by both the underlying clinical
study results and the ability of the model to predict the new
patient’s pressure-volume loop.

Summary

The two FDA-cleared devices (Heartflow ® FFRCT and the
Medtronic Cardiolnsight® Cardiac Mapping System) based
on patient-specific cardiovascular modeling are based on well-
established governing equations and conservation laws, but
nevertheless represent a culmination of decades of basic re-
search including the development of their workflows [65,
73-76]. The majority of previously published patient-
specific cardiovascular models fall under the mission of the
“Virtual Physiological Human” project which is to capture
numerous and varied fragments of knowledge into predictive
and personalized models that will make possible the investi-
gation of the human body as a whole [77], although it should
be appreciated that patient-specific cardiovascular models
have long been used for surgical planning [23, 24]. The pa-
rameters and variables for these patient-specific models rarely
have a direct correlate with clinically relevant quantities, and
while this fact complicates the validation process, it provides
unique opportunities to improve our understanding of the un-
derlying mechanisms of health and disease within a clinical
context [29, 31, 78].

The cardiovascular patient-specific models discussed here
are inherently complex because of the difficulty in character-
izing the underlying biology and their multiscale nature. As
these models become more integrated in the clinical environ-
ment, we argue for the need for model transparency and robust
evaluation frameworks that consider the risk to the patient and
limitations in acquiring clinical data.
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