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ABSTRACT: Electron-transfer kinetics have been measured in
four conjugates of cytochrome P450 with surface-bound Ru-
photosensitizers. The conjugates are constructed with enzymes
from Bacillus megaterium (CYP102A1) and Sulfolobus acid-
ocaldarius (CYP119). A W96 residue lies in the path between
Ru and the heme in CYP102A1, whereas H76 is present at the
analogous location in CYP119. Two additional conjugates have
been prepared with (CYP102A1)W96H and (CYP119)H76W
mutant enzymes. Heme oxidation by photochemically generated
Ru** leads to P450 compound II formation when a tryptophan
residue is in the path between Ru and the heme; no heme
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oxidation is observed when histidine occupies this position. The data indicate that heme oxidation proceeds via two-step
tunneling through a tryptophan radical intermediate. In contrast, heme reduction by photochemically generated Ru" proceeds in
a single electron tunneling step with closely similar rate constants for all four conjugates.

Most biological redox transformations involve reagents
with formal potentials in the +1 V vs NHE range. At the
periphery of this potential window proteins present a decidedly
unsymmetrical medium for electron transfer (ET). Whereas
reduction of peptides and small aromatic groups only proceeds
at potentials more negative than —2.5 V vs NHE,' ™ one-
electron oxidations of aromatic and sulfur-containing amino-
acids, as well as the peptide backbone itself, can occur at
potentials in the 1.0—1.5 V vs NHE range.*”"" We anticipate,
then, that proteins are superexchange mediators of ET in
reactions of low-potential redox couples. In contrast, oxidized
amino acid radicals are known to be essential participants in
many high-potential enzymatic redox reactions,"* > and
structural evidence suggests that they may play a far greater
role than previously recognized.”

Elucidating the roles of protein radicals, particularly those of
the aromatic amino acids tryptophan (W) and tyrosine (Y), in
functional and protective pathways of hi§h—potential enzymes
continues to be an active area of research.””~>* The appearance
of dioxygen in Earth’s atmosphere promoted the evolution of a
vast array of O,-utilizing enzymes that generate high-potential
reactive intermediates capable of oxidizing tryptophan and
tyrosine. The cytochromes P450 (CYP) are prominent
representatives of this enzyme class, responsible for a broad
spectrum of vital metabolic functions.”® The accepted
enzymatic reaction cycle of cytochrome P450 involves two
high-potential reactive intermediates (compounds I and II) that
participate directly in reactions with substrates.”” > In prior
work, we demonstrated that compound II can be prepared in
the heme domain of Bacillus megaterium P450 (CYP102A1) by
oxidation of the Fe’*-heme with a surface-attached Ru-
(diimine);** complex (E°(Ru®**”/?") ~ 12 V vs NHE>»**).*°
We have extended this work to the archaeal Sulfolobus
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acidocaldarius P450 (CYP119).>° A key structural difference
between the two enzymes is an aromatic side chain hydrogen
bonded to one of the heme proprionates (W96 in CYP102A1;
H76 in CYP119) (Figure 1).***” We find that an intervening

Figure 1. Overlay of the heme environments of CYP102A1 (gray
carbon atoms) and CYP119 (green carbon atoms) illustrating the
relative positions of W96 in CYP102A1 and H76 in CYP119. Atomic
coordinates were taken from PDB IDs 2IJ2 (CYP102A1)** and 1107
(CYP119).%°

tryptophan residue (CYP102A1, W96; CYP119, H76W) is
essential for promoting Fe**(OH,)—heme oxidation by Ru-
(diimine);** in both CYP102A1 and CYP119 but that these
residues appear to play no analogous role in the reduction of
Fe**(OH,)-heme by Ru(diimine);" (E°(Ru*"/*) & —1.3 V vs
NHE™*).
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B EXPERIMENTAL PROCEDURES

Materials. Buffer salts were obtained from J.T. Baker. S-
Aminolevulenic acid and dithiothreitol were obtained from
Sigma-Aldrich. [Ru(NH,)¢]Cl; was obtained from Strem
Chemicals. All chemicals were used as received with no further
purification. The ruthenium labeling reagent ([Ru(2,2’-
bipyridine),(5-iodoacetamido 1,10-phenanthroline)]**, [Ru-
(bpy),(IAphen)]**),*® model complex ([Ru(2,2'-bipyri-
dine),(S-acetamido 1,10-phenanthroline)]**, [Ru-
(bpy),(Aphen)]**),** and p-methoxydimethylaniline (pMeOD-
MA)*” were synthesized according to published procedures.
Solutions were prepared using 18 MQ-cm water unless
otherwise noted. Mutagenesis primers were obtained from
Operon.

Plasmid Preparation. The recombinant CYP102Al
(UniProt accession number P14779) heme domain, consisting
of the first 463 residues with an N-terminal 6-histidine tag, was
obtained courtesy of Professor Andrew Udit (Occidental
College, Los Angeles California), within the pCWori* vector.
Recombinant CYP119 (UniProt accession number QS55080)
with an N-terminal 6-histidine tag was obtained courtesy of
Professor Paul Ortiz de Montellano (University of California,
San Francisco), also within the pCWori* vector. Qiagen Quik-
Change site-directed mutagenesis was used to generate the
desired P4S0 mutants. Mutagenesis primers (forward, 5'—3")
were CTAATTAAGAAGCAGCCGATGAATCACG
(CYP102A1 C62A), CGATTGGTCTTAGCGGCTTTAAC
(CYP102A1 C156S), GCTGGACGCATCAAAAAA-
ATTGGTGCAAAGCGC (CYP102A1 K97C); GGACGC-
ATGAAAAAAATCATTGCAAAGCGCATAATATC
(CYP102A1 W96H); GATCCCCCTCTCCATTGT-
GAGTTAAGATCAATGTCAGC (CYP119 D77C), and
CCTCAGATCCCCCTCTCTGGTGTGAGTTAAGATCAA-
TGTC (CYP119 H76W).

Overexpression in E. coli. The P450 mutants CYP102A1-
C62A/C156S/K97C (coy(CYP102A1)W96), CYP102A1-
C62A/C156S/K97C/W96H (co-(CYP102A1)WI6H),
CYP119-D77C (qr,(CYP119)H76), and CYP119-D77C/
H76W (c7,(CYP119)H76W) were overexpressed in the
BL21-DE3 strain of E. coli. Overnight cultures of Luria—
Bertani broth (25 mL) containing 100 y#g/mL ampicillin and a
single respective E. coli colony were incubated at 37 °C
overnight, shaking at 180—200 rpm. Induction cultures of TB
(Ix TB for CYP102A1, 2X TB for CYP119) containing 200
pug/mL ampicillin, 1 #M thiamine, 0.4% glycerol, and 250 uL of
mineral supplements (stock solution 100 mM FeCl;, 10 mM
ZnCl,, 8.5 mM CoCl,, 8.5 mM Na,MoO,, 7 mM CaCl,, 7.5
mM CuCl,, 8 mM H;BO;) were inoculated with the overnight
culture and incubated at 37 °C until reaching an optical density
of ~1 at 600 nm. Cultures were induced by addition of 1 mM
IPTG, and 0.5 mM a-aminolevulenic acid, a heme precursor,
was added. The temperature was lowered to 30 °C for 24
(CYP102A1) or 48 h (CYP119). Following expression, cells
were harvested by centrifugation, and cell pellets were stored at
—80 °C until needed.

Cell pellets were resuspended in cold wash buffer (S0 mM
Tris pH 8, 300 mM sodium chloride, 20 mM imidazole). A
small spatula tip of each of two protease inhibitors
(benzamidine hydrochloride and Pefabloc SC) was added,
and cells were lysed by two to three cycles of probe-tip
sonication (0.5 s on, 0.5 s off, for S min), cooled by an ice—
water bath. After centrifugation (15000 rpm, 1 h, 8 °C) to
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pellet cellular debris, the supernatant was loaded directly onto a
Ni batch column. After thorough washing with wash buffer
(1.5-2 L), protein was eluted (200 mM imidazole in wash
buffer), and the colored (red/orange) fractions were collected
and concentrated in 30 kDa centrifugal filters. Gel filtration
chromatography was used to remove fragmented proteins,
followed by buffer exchange into 20 mM Tris, pH 8, with 20
mM dithiothreitol (DTT) added to reduce intermolecular
disulfide bonds. Purity was determined by UV—vis absorption
(Ap0/Azs0), SDS-PAGE, and mass spectrometry. Protein not
intended for immediate use was flash-frozen in liquid nitrogen
(with 40% glycerol added to solution as cryoprotectant) and
stored at —80 °C.

Conjugation to Ru-Photosensitizer. An approximately 3-
fold excess of [Ru(bpy),(IA-phen)]** was added to a ~10 uM
solution of P450 mutant in 20 mM Tris buffer (pH 8) and
shaken in the dark at 4 °C. Labeling progress can be monitored
by MALDI mass spectrometry; no further increase in the peak
corresponding to the predicted mass of Ru**—P450 was
observed after 2 h. Excess [Ru(bpy),(IA-phen)]*" was removed
during concentration in 30 kDa filters, followed by desalting on
an FPLC HiPrep column.

To separate photosensitizer-labeled and unlabeled enzymes,
protein samples were loaded onto an anion exchange MonoQ
or HiPrep Q column equilibrated with 20 mM Tris buffer, pH 8
(Q wash buffer). The column was washed with Q wash buffer
until UV—visible absorbance returned to baseline. The gradient
was ramped quickly to 59% Q_elution buffer (Q wash buffer +
250 mM sodium chloride), followed by a slow gradient of 59—
65% Q_elution buffer over 60 min. Successful conjugation and
separation of Ru—P450 was verified by UV—vis, mass
spectrometry, and fluorometry.

Laser Spectroscopy Sample Preparation. Laser samples
were composed of ~10 yM Ru—P450 conjugate, with and
without oxidative quencher (17 mM [Ru(NH;)¢]Cl;) or
reductive quencher (10 mM pMeODMA) in buffered solution
(pH 8, SO0 mM sodium borate or SO mM Tris); additionally,
each buffer contained sodium chloride to prevent precipitation.
pMeODMA is only sparingly soluble in water; aqueous stock
solutions were prepared by dropwise addition of concentrated
pMeODMA/DMSO solution into aqueous buffer (50 mM
sodium borate, pH 8). Fresh pMeODMA solutions were
prepared immediately prior to use and protected from light, as
oxygenated solutions change from clear to pinkish/purple in
ambient light. Laser samples were placed in a high-vacaum
four-sided quartz fluorescence cuvette with high-vacuum Teflon
valve, equipped with a small stir bar. Deoxygenation was
achieved via 3 X 10—1S5 gentle pump-backfill cycles with argon
on a Schlenk line, with 15 min of equilibration between each set
of cycles. Additional details provided in Supporting Informa-
tion.

For nanosecond-to-millisecond transient luminescence and
absorption experiments, excitation was provided by 480 nm
pulses from a tunable optical parametric oscillator (Spectra
Physics, Quanta-Ray MOPO-700) pumped by the third
harmonic from a Spectra Physics Q-switched Nd:YAG laser
(Spectra-Physics, Quanta-Ray PRO-Series, 8 ns pulse width)
operated at 10 Hz. Probe light was provided by a 75-W arc
lamp (PTI model A 1010) that could be operated in
continuous or pulsed mode and passed through the sample
collinearly with the excitation pulse. After rejection of scattered
light by appropriate long- and short-pass filters, and intensity
modulation by a neutral density filter, probe wavelengths were
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Table 1. Luminescence Decay Times of Four Ru—P450 Conjugates in the Absence and Presence of Quenchers”

enzyme quencher
Rucy;(CYP102A1)W96 none
[Ru(NH,)e]**
pMeODMA
Rucy;(CYP102A1)W96H none
[Ru(NH;)]*
pMeODMA
Ruc,,(CYP119)H76 none
[Ru(NH,)]**
PMeODMA
Ruc;,(CYP119)H76W none
[Ru(NH,)¢]**
pMeODMA

Ty 18 ()
52 (0.35)

7, 18 (p,)
190 (0.65)

Tmonor ns

140
30
62

180
33
65

200
91
54

130
48
NY

160 (0.80) 310 (0.20)

220 (0.85)

45 (0.15)

91 (0.75) 320 (0.25)

“Quenchers: [Ru(NH;)¢]**, 17 mM; pMeODMA, 10 mM. The relative amplitudes of major (p,) and minor (p,) components in biexponential fits to
the unquenched decays also are listed. Samples were excited at 480 nm, and luminescence was detected at 630 nm. Uncertainties in the decay times
are +10%, except for the single-exponential fits to the unquenched decays.

selected by a double monochromator (Instruments SA DH-10)
with 1 mm slits. Transmitted light was detected by a
photomultiplier tube (PMT, Hamamatsu R928) and amplified
by a 200 MHz wideband voltage amplifier DHPVA-200
(FEMTO).

Luminescence decays were monitored at 630 nm. Single
wavelength transient absorption kinetics were monitored every
10 nm from 390 to 440 nm, averaging ~500 shots per
wavelength. Data from five separate time scales (2 us, 40 us,
400 ps, 10 ms, and S00 ms) were collected, log-compressed,
and spliced together to produce full kinetics traces using Matlab
software (Mathworks).

B RESULTS

Ru—P450 Conjugates. Electron-transfer kinetics measure-
ments were performed on four Ru—P450 conjugates: two
mutants of CYP102A1 and two of CYP119. The Ru—P450
from our previous work is a triple mutant of CYP102Al:
C62A/C156S/K97C with [Ru(2,2'-bipyridine),(5-acetamido-
1,10-phenanthroline)]** ([Ru(bpy),(APhen)]**) covalently
bound to C97 via a thioether linkage (Ruco,(CYP102A1)W96).
To investigate the importance of W96 in photochemical ET, we
generated the analogous conjugate with a W96H mutation
(Rucy,(CYP102A1)W96H). The W96H mutation should
preserve hydrogen-bonding with the heme propionates, which
is thought to provide structural stability to the heme.”” But,
unlike tryptophan, this side chain should not be susceptible to
oxidation by photochemically generated Ru*.""

We have prepared analogous Ru—P450 conjugates with an
intervening histidine or tryptophan residue in thermophilic
CYP119. The residue corresponding to CYP102A1-W96 is
H76 in CYP119 (Figure 1); a cysteine mutation at residue 77
serves as the photosensitizer attachment point. The two Ru—
CYP119 conjugates are referred to as Ruc,,(CYP119)H76 and
Ruc.,(CYP119)H76W.

Luminescence Quenching Measurements. The Ru-
(diimine); photosensitizer luminesces upon 480 nm excitation.
The luminescence decay of all four Ru—P450 conjugates is
nonexponential, attributable to multiple photosensitizer con-
formations that do not exchange on the luminescence decay
time scale. The nonexponential decay kinetics are most
pronounced for mutants containing a tryptophan residue
adjacent to the Ru-tethering point (Rugce,(CYP102A1)W96,
Ruc,,(CYP119)H76W). The mild oxidant [Ru(NH,)4]** is an
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efficient quencher of excited Ru(diimine);** complexes
(*Ru*"),” producing powerfully oxidizing Ru(diimine);*" in
high yield. In the presence of [Ru(NH,;)s]*" (17 mM),
luminescence is strongly quenched, and the decay kinetics
can be fit to a single exponential function (Table 1). There are
small differences in quenched decay times; in particular, the
decay time of quenched Ruc,,(CYP119)H76 is approximately
two to three times longer than that found in the three other
proteins (90 ns vs 30—50 ns). The origin of this difference is
not readily apparent.

In prior work, we demonstrated that para-methoxy-N,N-
dimethylaniline (pMeODMA) quenches *Ru*" complexes to
produce one-electron reduced forms (Ru*).”” In the presence
of 10 mM pMeODMA, *Ru’* luminescence is efficiently
quenched, and the decay kinetics are monoexponential. In
contrast to the oxidative quenching with [Ru(NH,),]*, there is
very little difference in the quenched decay times among the
four Ru—P450 conjugates (Table 1).

Transient Absorption Measurements. In the absence of
electron-transfer quenchers, the transient absorption features of
the Ru—P450 conjugates are characterized by a loss of
Ru(diimine);** metal-to-ligand charge transfer (MLCT)
absorbance in the 400—440 nm region due to depopulation
of the ground-state photosensitizer. The spectral and temporal
profiles of these transients are essentially identical for the free
photosensitizer and all four Ru—P450 conjugates: the features
return to baseline with the same time constants as the
luminescence decay.

Oxidative Quenching. Transient absorption measure-
ments demonstrate that [Ru(NH;)s]** quenches the *Ru’* to
produce electron-transfer products (Figure 2). The ligand field
absorption bands of [Ru(NH;)]>/** are too weak to make any
detectable contribution to the transient spectra. Photo-
generated [Ru(bpy),(Aphen)]** (Ru*) is characterized by a
bleach of [Ru(bpy),(Aphen)]* MLCT absorption between
390 and 440 nm, and time-resolved absorption measurements
reveal that it persists for several microseconds before reacting
with [Ru(NH;)¢]*" to regenerate the Ru®" sensitizer and
oxidized quencher (Figure 2).

We reported previously that when [Ru(bpy),(IAphen)]** is
conjugated to C97 in CYP102Al, photogenerated
Rucy,** (CYP102A1)W96 sequentially generates ferric-porphyr-
in radical cation (Fe**por®*) and Fe*'-hydroxide (Fe*'—OH,
CII) intermediates. These oxidation processes are characterized
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Figure 2. Transient absorption kinetics following 480 nm laser
excitation of [Ru(bpy),(Aphen)]** in the presence of [Ru(NH;)¢]**
(17 mM). The purple curve is a luminescence decay trace.

by loss of absorbance at 420 nm (the peak of the Fe**—OH,
heme Soret absorption) that persists for hundreds of
milliseconds; formation of CII is characterized by the
appearance of transient absorption at 440 nm on the
millisecond time scale (Figure 3).

We subjected the other three Ru—P450 conjugates to
identical oxidative flash-quench irradiation and recorded the
transient kinetics (Figure 3). The CYP119 mutant with an
intervening tryptophan, Ruc,,(CYP119)H76W, displays tran-
sient absorption spectra and kinetics similar to those of
Rucg;(CYP102A1)W96, albeit with smaller signal amplitudes
(<5 mOD) (Figure 3). The lower ET yield in this variant may
be a consequence of nonproductive oxidation of other nearby

aromatic residues or less efficient competition with back
electron transfer from reduced quencher. The results with
Rucy,(CYP102A1)W96 and Ruc,,(CYP119)H76W are in
striking contrast to those of the Ru—P450 constructs with an
intervening histidine residue (Ruco,(CYP102A1)W96H and
Ruc,,(CYP119)H76). Neither of the latter constructs reveals
any evidence indicative of heme oxidation following photo-
chemical generation of the Ru(diimine),*" complex. In both
cases, we observe only a bleach of the ground-state MLCT
absorption features (390—440 nm) that returns to baseline
within 200 ps. The spectral profiles and kinetics of these
transients are nearly identical to that of the free photosensitizer
([Ru(bpy),(Aphen)]**) quenched with [Ru(NH,),]*" (Figure
2). These observations suggest that Ru(diimine);** oxidizes the
P450 heme only in structures with an intervening tryptophan
residue.

Reductive Quenching. Photochemical reduction of Ru—
P450 conjugates was performed using pMeODMA as quencher.
The resulting Ru” species has nearly 1 eV of driving force for
reduction of the ferric P450 heme: E°(Ru(bpy);*"* = —1.3 V
vs NHE;**** E°(P450 Fe**/**) = —0.43 V vs NHE."" All four
Ru—P450 conjugates exhibit similar transient absorption
features under flash-quench conditions (Figure 4). Three
distinct kinetics phases appear on the nanosecond, micro-
second, and millisecond time scales following pulsed laser
excitation of the photosensitizer. All transient absorption
features decay back to baseline within a few hundred
milliseconds, suggesting that the overall photochemical process
is reversible. The fastest kinetics phase (7 &~ 60 ns) is assigned
to decay of *Ru(diimine);>*; transient absorption features
associated with this state decay with the same time constant as
the luminescence. Transient absorption at 510 nm, attributable

o0ks AN}
| ‘W q\
Ruc,;(CYP102A1)W96 Ruc;,(CYP119)H76
Y
©
a -1.0
O
<
0.0 2 I ——r—
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Figure 3. Transient kinetics following oxidative quenching ([Ru(NH;)¢]**, 17 mM) in four Ru—P450 conjugates: Ao, = 480 nm; Apq = 420 nm
(green), 440 nm (red). Signals normalized to the magnitude of the 440 nm prompt bleach.
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Figure 4. Transient kinetics following reductive quenching (pMeODMA, 10 mM) of four Ru—P450 conjugates: 4., = 480 nm; Ag,q = 420 nm
(green), 440 nm (red). Signals normalized to the magnitude of the 440 nm prompt bleach.

to Ru(diimine);" and pMeODMA®*, develops with the same
time constant. The subsequent microsecond kinetics phase is
characterized by a bleach at 420 nm and increased absorbance
at 440 nm, indicative of a red-shift in the heme Soret band. In
the resting state of Fe**-P450, the Fe center is axially ligated by
cysteine thiolate and water ligands, producing a low-spin
electronic configuration. Chemical reduction of Fe**-P450
produces a five-coordinate high-spin ferrous heme with a blue-
shifted Soret band.*' The red-shifted Soret observed following
reductive quenching of the Ru—P450 conjugates is indicative of
a low-spin ferrous heme.*” The microsecond heme reduction
by Ru' is likely faster than aquo ligand loss, resulting in a
transient low-spin, six-coordinate ferrous species. This con-
clusion is consistent with the absorption profiles of Fe**(CO)—
CYP101 (P450,,, from Pseudomonas putida), Fe**(imidazole)—
CYP101, and cryoreduced CYP101.**** The millisecond
kinetics phase corresponds to reoxidation of the reduced
heme by pMeODMA®", resulting in a return to baseline of all
transient absorption features and regeneration of Fe*"(OH,)—
P450 and pMeODMA.

We performed a global least-squares analysis of the Ru—P450
reductive quenching kinetics recorded at 420 and 440 nm (and,
for select mutants, 400, 410, 430 nm) to a three-exponential
function with amplitude coefficients p;_;(1) and rate constants
713 (eq 1). We fixed the first observed rate constant to the
value obtained from single-exponential fits to the quenched
luminescence decay kinetics recorded at 630 nm. The
remaining two rate constants, which were extracted from the
global fitting, are listed in Table 2.

AOD(4, 1) = pl()“) e 4 pz(’{) e B+ p3(i) e (1)

The second rate constant corresponds to heme reduction. All
four mutants exhibit very similar reduction rates, with
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Table 2. Rate Constants for Ru-Sensitizer Quenching (7,),
Heme Reduction (7,), and Heme Oxidation (y;) Extracted
from Global Fitting of Transient Absorption Data

enzyme n (™) 7 (s7Y) V3 (s™
Rucg,(CYP102A1)W96 1.6 X 107 3.6 x 10* L1 x 10*
Ruc,;(CYP102A1)W96H 1.6 X 107 6.0 X 10* 1.9 x 10
Ruc,,(CYP119)H76 1.9 x 107 5.7 x 10* 14 x 107
Ruc,,(CYP119)H76W 1.9 x 107 8.1 x 10* 1.3 x 107

maximum heme reduction complete at approximately 100 us.
Interestingly, after normalizing by the magnitude of the prompt
*Ru’* excited state bleach (440 nm), the magnitudes of the
transient features associated with heme reduction (e.g,
absorption at 440 nm) differ greatly among the four Ru—
P450 conjugates. In particular, both CYP119 mutants exhibit
absorption features that are greater by a factor of 2—3 than
either of the CYP102A1 mutants (Figure 4).

All transient absorption features decay to baseline within 100
ms; this return rate is extremely sensitive to small amounts of
oxygen. In our proposed flash-quench scheme, reoxidation of
the ferrous center occurs via bimolecular recombination with
pMeODMA®*. This recombination is expected to be a second-
order process; however, the disappearance of the transient
features is better modeled as a first-order process, possibly
owing to reaction with oxygen or minor impurities.

B DISCUSSION

In a prior report on the kinetics of heme oxidation by Ru*" in
Rucy,(CYP102A1)W96, we found spectroscopic evidence for
stepwise oxidation of Fe**(OH,)—heme to Fe**(OH)—heme
via an intermediate porphyrin radical cation. Electron transfer
from the porphyrin to Ru**y, was remarkably rapid (8.5 X 10°
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s, pH 8), given the 20.8-A distance from the Ru-center to the
nearest aromatic carbon atom on the porphyrin ring (Figure
5).>> This result conflicts with the semiclassical ET theory

11.88 A

7.15A

W96

e 20.76 A

Figure S. Structural model of Rugy,—CYP102A1 (PDB ID 3NPL)
highlighting the electron-transfer distances from Rucy; to the
porphryin (20.76 A), Rucy, to W96 (11.88 A), and W96 to the
porphyrin (7.15 A).

prediction that the rate constant for this reaction should be 3
orders of magnitude smaller (4 X 10 s75 —AG° = 02 €V;
reorganization energy A = 0.8 eV; distance decay factor f = 1.1
A7, see Supporting Information). Indeed, the failure to observe
flash-quench induced heme oxidation in Ruc,,(CYP119)H76 is
in better agreement with the slower predicted rate since
porphyrin oxidation by Ru®" apparently does not compete
effectively with Ru** reduction by reduced quencher (complete
in 100 us).

The fact that we observe flash-quench heme oxidation only
in Ru—P450s with intervening tryptophan residues strongly
implicates the tryptophan radical cation as a reaction
intermediate. Kinetics modeling of a stepwise hole-transfer
reaction from Ru’* to W96*" to por®’, using distances taken
from the Rucy,(CYP102A1)W96 structure (PDB ID 3NPL)*
(Figure S), predicts an apparent rate constant for porphyrin

oxidation of 1.4 X 10% s™* (Supporting Information), a value in

remarkably good agreement with the experimentally derived

quantity. The rate constant for hole transfer from W96°" to
por®* is predicted to be more than 2 orders of magnitude
greater, suggesting that a negligibly small concentration of

W96** will build up during the porphyrin oxidation process

(Figure 6).

The kinetics of the high-potential heme oxidation reaction
are in striking contrast to those of the low-potential heme
reduction reaction. The estimated driving force for the Ru" to
Fe’*(OH,)—heme ET is 0.9 eV, close to the reorganization
energy estimate of 0.8 eV. The ET distance is somewhat
ambiguous for this reaction because the transferring electron
could be localized on any one of the three diimine ligands. On
the basis of the Rucy,(CYP102A1) crystal structure,” the
shortest distances from any diimine ligand to the Fe center
range from 19.5 to 23.8 A. Semiclassical ET theory predicts that
the rate constant for reactions over this distance range will be
10°-10° s7', in accord with the y, values listed in Table 2.
Moreover, the rate constants for heme reduction vary by no
more than a factor of 2 among the four conjugates. We
conclude from this analysis that reduction of Fe**(OH,)—heme
by Rucy," in CYP102A1 and by Ruc,," in CYP119 involves
single step electron tunneling and that the intervening
tryptophan (W96, W76) and histidine (H96, H76) residues
serve only to mediate the superexchange coupling between the
two redox sites (Figure 6).

The heme oxidation and reduction kinetics in
Ruce;(CYP102A1) and Ruc;,(CYP119) highlight the asym-
metry between high and low potential ET reactions in proteins.
The electron-tunneling timetables extracted from our studies of
ET in Ru-modified proteins provide benchmarks for single-step
electron tunneling in which the reduction potential of the
oxidant is <1 V vs NHE. Our studies of Ru—P450 clearly
demonstrate that multistep tunneling reactions via tryptophan
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Figure 6. Photochemical ET reaction scheme in Rucy,;(CYP102A1) and Ruc;,(CYP119). Blue arrows indicate excitation processes, solid green
arrows indicate bimolecular quenching reactions, dashed green arrows indicate bimolecular charge-recombination processes with quencher redox
products, and red arrows indicate intraprotein ET reactions. With an intervening W residue (a, CYP102A, W96; CYP119 H76W), oxidative
quenching of *Ru** by Qg (left path) leads to heme oxidation via an intermediate Trp radical; reductive quenching by Qg (right path) leads to heme
reduction in a single-step tunneling reaction. With an intervening H residue (b, CYP1024, W96H; CYP119 H76), oxidative quenching of *Ru’* by
Qo produces Ru** but not heme oxidation, whereas reductive quenching again leads to single-step electron transfer from Ru to the heme.
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(and tyrosine) radicals come into play when oxidants have
potentials >1 V. In addition, the radicals of the sulfur-
containing amino acids also might be participants in reactions
with particularly high potential oxidants. For enzymes
functioning with intermediates at potentials greater than 1V,
protein structure and composition are critically important
factors that ensure oxidizing equivalents are delivered to
intended targets rather than diffusing to low potential sinks via
multistep tunneling. The obvious corollary is that strategic
placement of tryptophan and tyrosine residues in enzymes can
direct the flow of oxidizing equivalents over long distances with
little loss of potential.
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