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Abstract

Background: MicroRNAs have emerged as an important class of modulators of gene expression. These molecules
influence protein synthesis through translational repression or degradation of mMRNA transcripts. Herein, we investigated
the potential role of miR-142a isoforms, miR-142a-3p and miR-142a-5p, in the context of autoimmune neuroinflammation.

Methods: The expression levels of two mature isoforms of miR-142 were measured in the brains of patients with multiple
sclerosis (MS) and the CNS tissues from mice with experimental autoimmune encephalomyelitis (EAE), an animal model
of MS. Expression analyses were also performed in mitogen and antigen-stimulated splenocytes, as well as macrophages
and astrocytes using real-time RT-PCR. The role of the mature miRNAs was then investigated in T cell differentiation by
transfection of CD4" T cells, followed by flow cytometric analysis of intracellular cytokines. Luciferase assays using vectors
containing the 3'UTR of predicted targets were performed to confirm the interaction of miRNA sequences with transcripts.
Expression of targets were then analyzed in activated splenocytes and MS/EAE tissues.

Results: Expression of miR-142-5p was significantly increased in the frontal white matter from MS patients
compared with white matter from non-MS controls. Likewise, expression levels of miR-142a-5p and miR-142a-3p showed
significant upregulation in the spinal cords of EAE mice at days 15 and 25 post disease induction. Splenocytes stimulated
with myelin oligodendrocyte glycoprotein (MOG) peptide or anti-CD3/anti-CD28 antibodies showed upregulation
of miR-142a-5p and miR-142a-3p isoforms, whereas stimulated bone marrow-derived macrophages and primary
astrocytes did not show any significant changes in miRNA expression levels. miR-142a-5p overexpression in activated
lymphocytes shifted the pattern of T cell differentiation towards Th1 cells. Luciferase assays revealed SOCS1 and
TGFBR1 as direct targets of miR-142a-5p and miR-142a-3p, respectively, and overexpression of miRNA mimic sequences
suppressed the expression of these target transcripts in lymphocytes. SOCS1 levels were also diminished in MS white
matter and EAE spinal cords.

Conclusions: Our findings suggest that increased expression of miR-142 isoforms might be involved in the pathogenesis
of autoimmune neuroinflammation by influencing T cell differentiation, and this effect could be mediated by interaction
of miR-142 isoforms with SOCS1 and TGFBR-1 transcripts.
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Background

MicroRNAs (miRNAs) are a family of small noncoding
RNAs that function as negative regulators of gene
expression through sequence-specific binding to the
3’-untranslated region (3'-UTR) of their target mes-
senger RNAs (mRNAs) [1, 2]. Numerous studies have
demonstrated the role of miRNAs in different cell
biological processes including cell proliferation, differ-
entiation, apoptosis, and migration by targeting and
downregulating the expression of various protein-coding
genes [3]. Moreover, dysregulation of specific miRNAs
have been associated with human disease, including
cancers, infectious diseases, and inflammatory and immune-
related disorders. In the context of immunological disorders,
miRNAs have been shown to influence the activity and
function of both innate and adaptive arms of the immune
system [4], which makes them important pathogenic players
as well as potential therapeutic targets in these disorders.
Autoimmune diseases have been of particular interest to
miRNA researchers over the last decade and various
miRNAs have been shown to exert critical effects in major
autoimmune disorders including diabetes, rheumatoid arth-
ritis, systemic lupus erythematosus, and multiple sclerosis
(MS) [5]. In the case of MS, studies on peripheral blood
leukocytes and brain tissue have shown altered expression
of various miRNAs [6-8]. In one of the first studies
performed on peripheral blood leukocytes from MS
patients, Otaegui et al. reported an association between
miR-18b and miR-599 with disease relapses and miR-96
with remissions [6]. In another miRNA study on blood
cells, Keller et al. identified a set of 48 miRNAs which
could differentiate relapsing-remitting multiple sclerosis
(RR-MS) patients from healthy controls with high specifi-
city and sensitivity [9]. Studies focusing on miRNA expres-
sion in T cells have revealed altered expression of miRNAs
which target genes with known role in T cell activation
[10-12]. In addition to association with disease, studies
have also shown direct involvement of miRNAs in MS
disease pathogenesis. In a seminal work by Du et al., miR-
326 was reported to regulate the differentiation of T cell
towards the pathogenic Th17 phenotype in MS patients
and experimental autoimmune encephalomyelitis (EAE)
mice [13]. Investigating the expression of miRNAs in
autopsy brain tissue derived from MS patients also sup-
ports the role of these molecules in disease process.
miRNA profiling on active and inactive brain lesion by
Junker et al. has revealed dysregulation of multiple miRNAs
including miR-34a, miR-155, and miR-326, which target
CD47 regulatory protein, in MS brains [14]. Other miRNA-
profiling studies on brain tissue derived from MS patients
have also shown dysregulation of multiple miRNA species
in MS brain including normal-appearing white matter [15].
In addition to their role in pathogenesis, miRNAs might
also be important as therapeutic targets in MS. In the study
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by Du et al, in vivo silencing of miR-326 resulted in fewer
Th17 cells and milder EAE, and its overexpression led to
more severe EAE disease [13]. Likewise, treatment of EAE
mice with anti-miR-155 sequences have been reported to
decrease the clinical severity of EAE, a finding which is
consistent with the role of miR-155 in development of Thl
and Th17 cells [16].

In the current study, we focused on the role of miR-142
in autoimmune neuroinflammation that takes place in MS
and the EAE. mir-142 is broadly conserved between differ-
ent species, including human and mouse (Additional file 1:
Figure S1). Immature mir-142 generates two mature iso-
forms; miR-142-3p and miR-142-5p which have both been
implicated in regulation of leukocyte activity and also in
inflammatory diseases [17-20]. In the context of auto-
immune neuroinflammation, upregulation of miR-142-5p
have been reported in MS brain tissue in miRNA-profiling
studies [5, 8, 14]. Moreover, high expression of miR-142-3P
in EAE brain tissue and CSF of patients with multiple
sclerosis during active inflammation has been illustrated
[21]. Nonetheless, the potential pathogenic or protective
role that this miRNA might have in disease process is not
fully known.

In this study, we first used human brain autopsy samples
as well as central nervous system (CNS) tissue derived from
EAE animals at different time points after disease induction
to investigate the expression of miR-142-5p and miR-142-
3p isoforms in disease tissues. Expression of miRNA iso-
forms were next measured in cultures of cells with potential
roles in MS/EAE pathogenesis. Overexpression experiments
in CD4" T cells were performed to examine the effect of
miR-142 on T cell differentiation. 3'UTR cloning and
luciferase assays were then carried out to identify direct
mRNA targets of miR-142, followed by quantifying the
expression of targets in CNS tissue and cultured cells.

Methods

Human brain studies

The use of autopsied brain tissues was approved by the
University of Alberta Human Research Ethics Board
(Biomedical, protocol number 2291), and written informed
consent was obtained for all samples collected from age-
and sex-matched subjects including non-MS patients (n =
6; mean age = 61 + 4.0 years; male:female, 3:3; diagnoses at
death: sepsis, cancer, myocardial infarction, stroke, HIV-
AIDS, Parkinson’s disease) and patients with MS (n = 6;
mean age =56+ 3.2 years; male:female, 2:4; diagnoses at
death: secondary progressive MS (n =4), primary progres-
sive MS (n=1) and relapsing-remitting MS (n=1). All
tissue samples were stored at —-80 °C as previously re-
ported [22, 23]. In order to detect demyelinated lesions,
luxol fast blue (LFB) staining was performed on brain
sections and parts of the tissues which did not show
evident demyelination were used for RNA preparation.
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Mice and EAE induction

C57BL/6 wild-type (WT) female mice (8 weeks old)
were purchased from The Pasteur Institute of Iran and
maintained in the animal facility of Tehran University of
Medical Sciences. After 4 weeks, EAE was induced in
12-week-old mice by using MOG35-55 peptide. While
both recombinant myelin oligodendrocyte glycoprotein
(MOG) protein and MOG35-55 have been used for EAE
induction in C57BL/6 mice, in this study, MOG35-55
was used considering its role in inducing EAE by stimu-
lating neuroantigen-reactive T cells [24, 25]. MOG35-55
peptide emulsified in complete Freund’s adjuvant (CFA)
was injected subcutaneously at two sites on the back
(0.1 ml of emulsion/site) (EK-2110, Hooke Kit™ MOG35-55/
CFA Emulsion PTX). On the same day, and on the follow-
ing day, mice received intraperitoneal injections of pertussis
toxin in PBS, at 200 ng/mouse/dose (0.1 ml). Control mice
received subcutaneous CFA and intraperitoneal pertussis
toxin injections with the same dose as the EAE mice.
Animals were assessed daily for disease severity for up
to 30 days following immunization using a 0—15-point
scoring scale [15]. All experiments conformed to guidelines
from the Research Ethics Committee of Tehran University
of Medical Sciences. CNS tissues were removed from EAE
and control mice at three different time points after disease
induction (pre-onset, peak of disease, and post peak phase)
and were stored at —80 freezers. Previous analyses of CNS
tissue in this model of EAE have revealed that lumbar
spinal cord is the location which shows higher levels of
inflammation and demyelination more consistently [26, 27].
Hence, in this study, we focused on lumbar spinal cord
tissue for further expression analysis.

Immunohistochemistry

To detect T cell infiltration and demyelination in EAE
spinal cords, immunohistochemical staining for CD3 T cell
marker and myelin basic protein (MBP) was performed on
lumbar spinal cord sections, as previously described [22].
Briefly, formalin-fixed paraffin-embedded spinal cord sec-
tions were deparaffinized in xylene and rehydrated in
decreasing concentrations of ethanol. Antigen retrieval was
performed by boiling the sections in 0.01 M trisodium
citrate buffer (pH = 6). Sections were next blocked in 10%
normal goat serum containing 0.1% triton X-100 and then
incubated overnight at 4° with antibodies against CD3
(1:100; Santa Cruz Biotechnology Inc.) and myelin basic
protein (1:500; Sternberger Monoclonal) followed by wash-
ing. Sections were then incubated with HRP-conjugated
secondary antibodies (1:500, Abcam) followed by color
development using DAB substrate solution.

Splenocytes culture and treatment
Spleens were removed from MOG-immunized mice
7 days after EAE induction; tissues were homogenized;
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and splenocytes were isolated using Ficoll centrifugation
(Inno-Train). 2 x 10° cells were cultured in the presence
or absence of different concentrations of MOG-35-55
(MOGs35.55, Hooke labs) in 24-well plates in a final
volume of 1 ml RPMI 1640 medium supplemented with
5% FBS. Treated cells were harvested after 12, 24, and
48 h of incubation at 37 °C. Mouse splenocytes were also
cultured in 24-well plates and treated with mouse anti-CD3
(0.5 pg/ml) and anti-CD28 (0.2 pg/ ml) (eBioscience) for
different durations from 1 to 72 h at 37 °C in a humidified
CO, incubator.

Macrophage and astrocyte cell cultures and treatment
Bone marrow-derived macrophages and primary mouse
astrocyte cultures were prepared, as previously described
[28]. Briefly, femur and tibia were removed from eutha-
nized C57BL/6 mice under sterile conditions. The two ends
of bones were cut, and bone marrow was expelled with a
syringe filled with culture medium. Cells from bone
marrow were cultured for 7 days in the presence of
50 ng/ml recombinant macrophage colony-stimulating
factor (M-CSF) (eBioscience) [28]. Differentiated mac-
rophages were treated with lipopolysaccharide (LPS)
(10 and 100 ng/ml) for 12 h at 37 °C before RNA ex-
traction. For astrocyte cultures, neonatal mouse brain
tissue was used. Brains were removed and placed in
DMEM medium under sterile conditions. Brain tissues
were dissected, and astrocyte cells were cultured in
DMEM medium supplemented with 20% FBS. Astrocytes
were stimulated with 10 and 100 ng/ml LPS (Sigma
Aldrich) for 12 h at 37 °C [29]. To confirm the identity
of the cells, we performed immunofluorescent staining
using an anti-GFAP antibody (1:250, mouse polyclonal,
Abcam).

RNA extraction and ¢cDNA synthesis

Total RNA, containing microRNAs, was extracted from
human brain tissue samples, EAE lumbar spinal cord
tissues, stimulated splenocytes, cultured macrophages,
and astrocytes using miRNeasy Mini Kit (Qiagen). RNA
concentration was determined with a Nanodrop. First-
strand cDNA synthesis was performed from 1 pg total
RNA using miScript II RT Kit (Qiagen) for microRNA
analyses and TAKARA kit for gene expression analyses,
according to the manufacturers’ instructions.

Real-time RT-PCR

MicroRNAs (miR-142-3p and miR-142-5p) and their
predicted target levels were measured by real-time reverse
transcription-PCR using SYBR Green dye on a Bio-Rad
CEX96 system in cells and tissues. MicroRNA expression
data were normalized against snord 68 and snord 72
expression levels (Qiagen). Expression of the other
genes were normalized against B-actin mRNA levels.



Talebi et al. Journal of Neuroinflammation (2017) 14:55

Primer sequences used for mRNA expression analysis
are shown in Additional file 1: Table S1.

Cell transfections with miRNA mimics

To analyze the effect of microRNA overexpression on
endogenous levels of TGFBR-1, TGFBR-2, and SOCS-1
in cells, mouse splenocyte were transfected with miR-
142a-3p and miR-142a-5p mimic sequences at 50nM/ml
(Qiagen) using Hiperfect transfection reagent (Qiagen)
according to the manufacturer’s protocol. After 4 h, the
transfected cells were treated with anti-CD3 (0.5 pg/ml)
and anti-CD28 (0.2 pg/ml) (eBioscience) for 48 h at 37 °C.
For transfection experiments, AllStars negative control
siRNA sequence (Qiagen) was used as a control. Total
RNA was extracted from transfected cells using miRNeasy
Mini Kit (Qiagen), and the levels of predicted gene targets
expression were measured by real-time RT-PCR.

Luciferase assays and miRNA target verification analyses
In order to verify the interaction of TGFBR1 transcripts
with miR-142a-3p as well as TGFBR2 and suppressor of
cytokine signaling 1 (SOCS1) transcripts with miR-142a-5p,
we used luciferase-3'-UTR reporter system. TGFBR-1,
TGFBR-2, and SOCS-1 3" UTR entire fragments were
cloned downstream of the Renilla luciferase coding
sequence (Notl/Xhol sites) in the psiCheck-2 plasmid
(Promega). 25 x 10®> HEK293T cells were cultured in
each well of 96-well plates, and the reporter plasmids
psiCHECK 3" UTR (100 ng) were co-transfected along
with miR-142a-3p and miR-142a-5p mimic sequences
(50 ng) into cultured cells using Attractene transfection
reagent (Qiagen) according to the manufacturer’s protocol.
For each gene relevant psiCHECK 3" UTR plus negative
control siRNA (Qiagen), co-transfection was used as a
control. Following 48 h of incubation at 37 °C, cells
were harvested and both Firefly and Renilla luciferase
activity were measured using the Dual-Glo dual luciferase
assay system (Promega) according to the manufacturer’s
protocols. Firefly luciferase activity was normalized to
Renilla luciferase expression for each sample [15].

T cell differentiation

Mouse naive CD4" T cells were isolated from C57/BL6
mice spleens using Ficoll followed by naive CD4" T cell
isolation by negative selection kit (mouse CD4" T cell
isolation kit, Miltenyi Biotec). 1 x 10° cells were cultured
in each well of 96-well plates and were then transfected
with miR-142a-3p and miR-142a-5p mimic 50nM/ml
(Qiagen) using Hiperfect transfection reagent (Qiagen)
according to the manufacturer’s protocol. After 4 h, the
transfected cells were transferred to anti-CD3-coated
wells (1 pg/ml) and were treated with soluble anti-CD28
(0.2 pg/ml) (eBioscience). AllStars negative control siRNA
sequence (Qiagen) was used as a control. Transfected cells
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were differentiated to three subtypes of T cells, i.e., T regu-
latory cells, Thl, and Th17, using three different cytokine
regimens. For regulatory T (Treg) cells, transfected cells
were cultured in complete RPMI, plate-bound CD3
antibody, and soluble CD28 antibody (0.2 pg/ml), IL-2
(20 ng/ml), and TGF-Bf1 (50 ng/ml) (BioLegend) for
96 h. For Thl cells, transfected cells were cultured in
complete RPMI, plate-bound CD3 antibody, and sol-
uble CD28 antibody (0.2 pg/ml), IL-2 (20 ng/ml), IL-12
(50 ng/ml), and anti-IL-4 antibody (10 ng/ml) (BioLegend)
for 96 h. To differentiate the cells into Th17 cells, trans-
fected cells were cultured in complete RPMI, plate-bound
CD3 antibody, and soluble CD28 antibody (0.2 pg/ml),
TGE-B (5 ng/ml), IL-6 (100 ng/ml), anti-IFN-y (10 ng/ml),
anti-IL-4 (10 ng/ml), and IL-23 (50 ng/ml) (BioLegend)
for 96 h.

Intracellular staining and flow cytometry

To detect intracellular expression of interferon (IFN)-y,
interleukin (IL)-17A, and FoxP3 in transfected CD4* T
cells, cells were surface-stained with anti-CD4 and
anti-CD3 antibodies and then fixed with 1 ml/tube
BioLegend’s Fixation Buffer, at room temperature in
the dark for 20 min. Cells were permeabilized with
1 ml BioLegend’s Permeabilization Buffer (1x) and then
stained with flurochrome-conjugated anti- IFN-y, IL-17A,
and Foxp3 antibodies (Biolegend). Stained cells were
assayed with a BD FACSCalibur flow cytometer, and re-
sults were analyzed with FlowJo software. APC Rat IgG2b,
K Isotype Ctrl antibody, PerCP Rat IgG2b, « Isotype Ctrl
antibody, PE Rat IgG1, and « Isotype Ctrl antibody were
used as isotype controls.

Statistical analysis

Statistical analyses were performed using SPSS software,
Version 20. Student’s ¢ and Mann—Whitney U tests were
used for parametric and non-parametric mean compari-
sons between the two groups. One-way ANOVA or
Kruskal-Wallis tests were performed for parametric and
non-parametric mean comparisons between multiple
groups. Data are shown as mean + SEM.

Results

miR-142 isoforms are upregulated in the CNS of MS
patients and animals with EAE

To confirm altered expression of miR-142 in MS white
matter, we analyzed the expression of miR-142-3p and
miR-142-5p isoforms in normal-appearing cerebral white
matter from MS and non-MS cases by real-time PCR.
These studies showed that miR-142-5p expression levels
were significantly increased in MS brains compared with
non-MS brain tissues (Fig. 1a), as previously reported in
miRNA-profiling studies [2, 14, 15]. Given these find-
ings, we then investigated the expression of miRNAs in
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Fig. 1 miR-142-3p and miR-142-5p levels in human brain tissue
samples and EAE spinal cords. Expression of microRNAs was
measured in CNS tissues by real-time RT-PCR. The level of miR-142-5p
was significantly increased in human MS samples compared with
non-MS controls (a) (n =6, Mann-Whitney U test, *p <0.05). EAE was
induced in C57BL6 mice and spinal cord tissues were extracted at three
time points after disease induction (b). Expression levels of
miR-142a-3p and miR-142a-5p were significantly increased in
spinal cord during the peak of disease and post peak phases of EAE (c).
Data are shown as mean + SEM. Number of mice in each group = 10,

*p <005, **p < 001, Kruskal-Wallis tests

the MS animal model, EAE at different phases of dis-
ease. EAE was induced in 30 animals which were divided
into three groups for tissue extraction at three time
points after the induction of disease. The first time point
was day 10 post-induction before the development of
any neurological signs (pre-onset); the second time-
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point was at the peak of the disease that varied
between days 18 and 20 for mice in the group (“peak
of disease phase”); and the third time point was at day
25 post-induction (“post peak phase”) (Fig. 1b). Immu-
nohistochemical analysis of lumbar spinal cord tissue
isolated from mice at the peak of disease showed infil-
tration of CD3 immunopositive T cells as well as
reduced staining for myelin basic protein in EAE mice
compared with CFA control animals (Additional file 1:
Figure S2). Expression analysis for two miR-142 ma-
ture isoforms on the RNA extracted from spinal cord
tissue showed substantial upregulation of miR-142a-5p
and miR-142a-3p in the lumbar spinal cord in peak of
disease and post peak phases of EAE compared with
control mice (Fig. 1c).

miR-142a-3p and miR-142a-5p are induced in activated
splenocytes

Different cell types are involved in the neuroinflammatory
process in MS/EAE, with autoreactive T cells and
monocytoid cells, i.e., infiltrating monocytes and locally
activated microglia, being key players. Astrocytes have
also been implicated in disease process by producing
various inflammatory mediators. To examine the potential
contribution of these cells to miR-142a upregulation during
inflammation, different in vitro systems were used. First,
the expression of miR-142a isoforms were analyzed in sple-
nocytes isolated from mice immunized with MOG35-55.
Cells were restimulated in culture with three concentra-
tions of MOG peptide for different time points before lysis
and RNA extraction. RT-PCR data showed that miR-
142a-5p levels were significantly increased in MOG-treated
splenocytes after 12 h at 20 and 40 ng/ml and after 24 and
48 h at 40 ng/ml concentrations of peptide. A significant
upregulation was also detected for miR-142a-3p at 10 ng/ml
concentration of peptide at 12 h of treatment (Fig. 2a, b).
We next studied the expression of miRNAs in T cells poly-
clonally activated by anti-CD3 and anti-CD28 antibodies.
To this end, RNA was extracted from the cells at a range of
time points after activation. The analyses revealed a substan-
tial increase in miR-142a-3p and miR-142a-5p levels in stim-
ulated splenocytes after 48 and 72 h (Fig. 2¢, d). Indeed, the
miRNA upregulation was much stronger in anti-CD3/
CD28-stimulated T cells compared with MOG-stimulated
cells, an effect that was expected considering that only a
small fraction of splenocytes in MOG-immunized animals is
MOG-reactive. Primary cultures of bone marrow-derived
macrophages (BMDM) and astrocytes were then established
to study miRNA expression in these cell types. LPS stimula-
tion of cells was used as a model that could recapitulate
some of the features of monocyte/glial cell activation during
disease [30, 31]. A mild increase in miR-142a-3p and miR-
142a-5p levels was seen in LPS-stimulated macrophages,
but it did not reach statistical significance (Fig. 2e). Likewise,
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activated primary astrocytes did not show any change in
miR-142a-3p or miR-142a-5p levels following stimulation
with LPS (Fig. 2f). Overall, these data indicate that spleno-
cytes are able to enhance their expression of miR-142
isoforms after antigen-specific or polyclonal activation, and
hence, they might be responsible for higher levels of miRNA
transcripts identified in MS and EAE CNS tissues.

miR-142a-5p induces differentiation of naive CD4" T cells
towards Th1 subset

Considering the upregulation of miR-142 isoforms in
antigen-stimulated or anti-CD3/CD28 activated splenocytes,

we next investigated the effect of miR-142a isoforms on
CD4 T cell differentiation. Naive CD4" T cells were purified
from the splenocytes of C57/BL6 mice, with a purity of
more than 95% (Fig. 3a). Purified CD4" cells were trans-
fected with miR-142a-3p and miR-142a-5p mimics and were
then cultured in the presence of anti-CD3 and anti-CD28 in
the presence of the required cytokines for differentiation to
Thl, Thl7, and Treg cells, as described in the “Methods”
section. Intracellular cytokine staining and flow cytometric
analysis after 4 days showed increased differentiation of
miR-142a-5p-transfected cells towards IFN-y producing
Thl subtype, compared with T cells transfected with a
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(See figure on previous page.)

experiments.(*p < 0.05, one-way ANOVA)

Fig. 3 Overexpression of miR-142a-5p affects the differentiation of CD4" T cells. Naive CD4" T cells were isolated from mouse splenocytes to a
purity of approximately 95% (a). miR-142a-3p, miR-142a-5p, and negative control sequences were transfected into CD4" T cells which were activated
and polarized under relevant cytokine regimens. The frequencies of Th1, Th17, and Treg cells in CD4™ T cells were determined by intracellular staining
and flow cytometry after 4 days. Representative dot plots and the percentages of IFN-y, IL-17, and FoxP3 immunopositive cells within the CD4" T cells
(b). Average cell frequencies (c). Data are shown as mean + SEM, n = 3. Data are from a single experiment representative of three independent

control miRNA sequence (Fig. 3b). There was also a
mild increase in the frequency of IL-17-producing Th17
cells, but the increase did not reach statistical significance
(Fig. 3c). The frequency of Treg cells did not reveal any
difference following miR-142a-5p transfection. Similar
experiments were performed for miR-142a-3p isoform. In
contrast to miR-142a-5p, miR-142a-3p-transfected cells
did not show any shifts in their differentiation towards
Thl, Th17, or T regulatory cells, compared with T cells
transfected with a scrambled miRNA control sequence.
These data indicate that miR-142 isoforms can be upregu-
lated in T cells following exposure to the antigen and acti-
vation of TCR signaling and their upregulation, at least for
the 5p isoform, might be able to influence CD4 T cell sta-
tus towards the more pathogenic Th1 phenotype (Fig. 3c).

Expression of inflammation-related transcripts are regulated
by miR-142 isoforms
miRNAs exert their effects by targeting protein-coding
transcripts. To investigate the potential mRNA transcripts
which might be targeted by each of miR-142 isoforms, we
extracted a list of predicted mRNA targets from TargetS-
can and miRDB databases. Considering the high number
of potential targets, we focused on targets with known
roles in cytokine signaling which also show conserved
miRNA binding sites between human and mouse. We
selected TGFBR-1 as a predicted target for miR-142a-3p
and TGFBR-2 and SOCS-1 as predicted targets for mir-
142a-5p. Adenylate cyclase 9 (ADCY9) was also selected
as a confirmed target for miR-142a-5p (Additional file 1:
Table S2). In addition to the mature miRNA sequences,
the mRNA binding sites on the 3" UTR of these genes
(TGFBR1, ADCY9, TGFBR2, and SOCS1) are conserved
between human and mouse (Additional file 1: Figure S1).
We first transfected miR-142a mimic sequences into
mouse splenocytes and measured the target expression
levels by real-time RT-PCR. TGFBR1 and ADCY9 tran-
script levels showed a significant reduction in miR-
142a-3p-transfected cells in comparison with CD4" T
cells transfected with a negative control sequence (Fig. 4a).
Likewise, in cells transfected with miR-142a-5p sequences
the levels of TGFBR2 and SOCS1 were decreased signifi-
cantly in comparison with negative control transfected
cells (Fig. 4b).

Expression of miR-142a isoform targets is dysregulated in
activated splenocytes

As shown in Fig. 2, the expression of miR-142a isoforms
increased in stimulated splenocytes after 48 and 72 h.
Hence, to investigate whether altered miRNA expression
is associated with any changes in the expression levels of
potential targets, we analyzed the expression levels of
miR-142a-3p predicted targets, TGFBR1, and ADCY?9, as
well as miR-142a-5p predicted targets, TGFBR2, and
SOCS1 in stimulated splenocytes. TGFBR1 mRNA levels
showed an initial upregulation after 1 h of stimulation
compared with untreated cells; however, the expression
quickly decreased in subsequent time points, to levels
significantly below control cells after 24 h of stimulation
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Fig. 4 Overexpression of miRNA sequences affects target gene
expression in stimulated splenocytes. The expression of potential
target genes was examined in cells transfected with miRNA sequences
by real-time RT-PCR. TGFBR1 and ADCY9 transcripts were significantly
suppressed in cells overexpressing miR-142a-3p compared with miRNA
negative control transfected cells (a). SOCST and TGFBR2 transcripts
were also significantly suppressed in cells overexpressing miR-142a-5p
compared with miRNA negative control overexpressing cells (b). Data
are shown as mean £ SEM, n = 3. Experiment was repeated twice.
**p < 0.01, *p < 0.05, Student’s t test
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(Fig. 5a). ADCY9 levels also displayed a similar down-
regulation after 24 h (Fig. 5b). TGFBR2 and SOCS1
showed an initial induction but were substantially down-
regulated at time points after 24 h (Fig. 5¢, d). Overall,
these data show changes in expression of the targets
which are “anti-parallel” with miRNA levels in the cells,
further supporting their potential regulation by miRNAs.

Luciferase assays show direct interaction between miR-142a

isoforms and mRNA transcripts

To examine whether miR-142a directly interacts with
TGFBR1, TGFBR2, and SOCS]1 transcripts, we used a
luciferase reporter system. The 3'-UTR region of TGFBR1
mRNA was PCR amplified and cloned into psiCHECK-2
vector, downstream of firefly luciferase coding sequence.
HEK293T cells were co-transfected with luciferase-3"UTR
construct and miR-142a-3p mimics or a negative miRNA
control. Quantification of luciferase activity after co-
transfection revealed significant suppression of luciferase
activity in cells co-transfected with miR-142a-3p mimics
in comparison with cells transfected with the negative
control miRNA (Fig. 6a). Similar experiments were per-
formed for miR-142a-5p. The 3'-UTR region of TGFBR2
and SOCS1 mRNAs were cloned into psiCHECK-2 vector,
separately. HEK293T cells were then co-transfected with
vectors encoding the firefly luciferase open reading frame
fused to the 3'-UTR region of TGFBR2 or SOCSI and
mimics of miR-142a-5p or negative control miRNA.
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Quantification of luciferase activity after co-transfection re-
vealed significant reduction in luciferase activity in
cells co-transfected with SOCS1-3'-UTR region and
miR-142a-5p in comparison with cells transfected with a
negative control miRNA (Fig. 6¢). Nonetheless, in cells co-
transfected with miR-142a-5p mimics and TGFBR2-3'-
UTR constructs, luciferase activity did not show any signifi-
cant suppression (Fig. 6b). Altogether, these data indicate
that miR-142a-3p and miR-142a-5p isoforms directly target
TGFBR1 and SOCSI transcripts, respectively. In the case
of TGEBR?2 our data did not reveal evidence of direct inter-
actions, however, considering the results of T cells transfec-
tion experiments, it seems that miR-142-3p might be able
to affect TGFBR?2 levels, perhaps by indirect means.

miR-142a isoforms target genes show dysregulation in
the CNS of patients with multiple sclerosis and animals
with EAE

Given the increased expression of miR-142 isoforms in
human and miR-142a isoforms in EAE CNS tissues we
next investigated the expression levels of each target
transcript in MS and EAE tissues. We analyzed the tran-
script levels of TGFBR1 and ADCY9 as targets of miR-
142a-3p, as well as SOCSI as a target of miR-142a-5p in
the human brain samples and in the lumbar spinal cord
tissue from EAE mice in three phases of disease (pre-onset,
peak of disease and post peak) using real-time PCR. Data in
EAE tissue showed that the expression of TGFBR1 was
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Fig. 5 miR-142a-3p and miR-142a-5p predicted target genes expression in activated splenocytes. Expression of miR-142 isoforms target genes in
stimulated splenocytes was determined by real-time RT-PCR. The levels of TGFBR1 and ADCY9 genes in 24, 48, and 72 h (a, b). TGFBR2 in 24 and
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upregulated followed by a significant reduction (d). Data are shown as mean + SEM, n = 3. Experiment was repeated twice. *p < 0.05, one-way ANOVA) )
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transcripts were assessed using luciferase assay system. Co-transfection
of HEK293T cells containing luciferase-3'UTR construct from TGFBR1
together with miR-142a-3p mimics showed significant suppression of
luciferase activity in comparison with cells transfected with a control
miRNA sequence (a). miR-142a-5p transfection did not lead to
significant suppression of luciferase activity in cells co-transfected
with TGFBR2 3'UTR constructs (b). Similar experiments with luciferase-3"
UTR from SOCS1T and miR-142a-5p mimics showed suppression of
luciferase activity compared with cells transfected a control sequence
(c). Firefly luciferase levels were normalized against renilla luciferase,
expressed as an internal control in the vector. Data are shown as
mean + SEM, n=5. Data are from a single experiment representative of
three independent experiments. *p < 0.05, **p < 0.01, Student’s t test

increased in peak of disease and post peak phases of disease
(Fig. 7a), whereas the expression levels of ADCY9 was
lower in peak of disease and post peak stages of disease
compared with controls or the pre-onset phase (Fig. 7a).
SOCS1 expression showed a significant upregulation
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Fig. 7 miR-142a-3p and miR-142a-5p target gene expression in EAE
tissue and human MS brain samples. miR-142a-3p target gene, TGFBRT,
was significantly increased in peak of disease and post peak phase of
EAE in spinal cord (a). SOCST and TGFBR2 were significantly decreased in
peak of disease and post peak phases of EAE in comparison with
pre-onset phase (b). In human autopsy samples, SOCS1 showed
significant reduction in MS samples but the levels of TGFBR1 and
TGFBR2 did not differ between MS and control tissues (c). Data are
shown as mean + SEM, **p < 0.01, *p < 0.05, one-way ANOVA

before the onset of neurological signs but it was downreg-
ulated at later stages of the disease (Fig. 7b). Expression of
TGEFBR2, an indirect target of miR-142a-5p also showed a
similar pattern (Fig. 7b). Analysis of the human white
matter showed significant reduction in SOCS1 transcript
levels in comparison with non-MS samples but TGFBR1
and TGFBR2 expression levels were similar between
patient groups with a trend towards reduced TGFBR1
expression in MS white matter (Fig. 7c).

Discussion

In this study, we investigated the role of miR-142a
isoforms (miR-142a-3p and miR-142a-5p) in autoimmune
neuroinflammation. Using human brain autopsy samples
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and EAE CNS tissues, as well as different cell culture
systems and molecular analyses, we show that miR-142
isoforms might be involved in the neuroinflammatory pro-
cesses underlying MS/EAE. Our gene expression studies
showed increased levels of both miR-142-5p and miR-
142-3p isoforms in EAE spinal cord, and in MS brains
miR-142-5p showed statistically significant increase. Con-
sistent with previous reports [32], our in vitro gene ex-
pression studies showed expression of miR-142 mature
isoforms in both T cells and primary macrophages. Both
cell types contribute to neuroinflammation in MS/EAE.
MS tissues used in this study were derived from the so-
called normal-appearing white matter (NAWM) around
lesions. It should be noted that while inflammation is
most severe in classical MS lesions, studies on NAWM
have shown diffuse axonal injury together with microglial
activation and T cell infiltration in these areas [33—35]. Of
note, T cell receptor expression analysis in different brain
regions has shown that the same T cell clones that are
present in lesions are also present in NAWM indicating
that similar antigens are recognized by T cells in lesions
and NAWM [36]. While the current study is chiefly fo-
cused on miR-142 expression in T cells, we believe that
both T cells and activated microglia in the NAWM con-
tribute to enhanced miRNA expression in the tissues from
MS patients.

Some very recent studies have pointed to the role of
miR-142 isoforms in MS pathogenesis. Mandolesi et al.
have reported increased levels of miR-142-3p in the CSF
of patients with active MS as well as brain tissue from
EAE mice [21]. miR-142-3p was shown to regulate
IL-1beta-dependent synaptic abnormalities that occur
during neuroinflammation. Interestingly, inhibition of
miR-142-3p prevented an increase in glutamergic
transmission caused by exposure of cerebellar slices to CSF
from MS patients [21]. Studies on blood cells have also
linked miR-142-3p with MS disease process. Arruda et al.
have recently reported enhanced miR-142-3p expression
in CD4" and CD8" T cells from MS patients [37]. Con-
versely, some T cell studies have reported downregulation
of miR-142-3p. In a study by Sanders et al., researchers
performed next generation sequencing on CD4" T cells
from secondary progressive multiple sclerosis (SP-MS)
patients. The results revealed downregulation of multiple
miRNAs including miR-142-3p in T cells derived from
MS patients [38]. These discrepancies could likely be a re-
flection of disease heterogeneity as well as highly dynamic
nature of miRNA expression during different phases of
disease.

Our data suggest that the miR-142 isoforms could target
transcripts which are involved in cytokine signaling and T
cell differentiation, thereby affecting the phenotype of
neuroantigen-reactive T cells infiltrating the nervous
system during disease. We show that “suppressor of
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cytokine signaling 1”7, SOCS], is a direct target of miR-
142a-5p. SOCS1 is a member of the SOCS family of pro-
teins which are negative regulators of cytokine signaling.
Multiple cytokines recruit the Janus kinase (JAK)-signal
transducers and activators of the transcription (STAT) mol-
ecules to exert their effects [39, 40]. The proteins of SOCS
family which are induced by different cytokines including
IL-2 and IFN-y can impede the signal transduction by these
and other cytokines through inhibition of JAKs or blockade
of their recruitment to the cytokine receptors [41]. SOCS1,
one the most widely studied members of the SOCS family,
has been shown to be involved in regulating the differenti-
ation of T cells, making the molecule a key player in T cell-
mediated immunopathologies [42]. It is known that STAT1
and STAT5 contribute to Thl differentiation by enhan-
cing T-bet and IFN-y expression [43, 44]. SOCS1 sup-
presses STAT1 [41] and blocks IFN-y-mediated STAT1
activation by targeting JAK2 and IFN-cRa chain [45]. In
addition to its role in Thl development, SOCS1 is neces-
sary for Treg stability and suppressor function through
stabilizing Foxp3 expression [46] and by preventing the
production of inflammatory cytokines by Tregs [47]. Nor-
mally, Tregs do not secret inflammatory cytokines but in
the absence of SOCSI, these cells secret IFN-y and IL-17
likely due to hyperactivation of STAT1 and STAT3 [48].
This phenomenon can lead to the loss of Foxp3 expression
and the conversion of regulatory cells to a Th1/Th17
phenotype [49]. Indeed, studies of SOCS1 KO mice
have shown that most SOCS1-deficient CD4 naive T cells
differentiate into Thl [50, 51] and SOCS1-deficient mice
develop autoimmune inflammatory diseases with age [31].
All these findings point to SOCS1 as a guardian of Tregs
and a controller of Thl development. In this study, we
show that SOCSI levels are diminished in MS tissues, and
that it could be targeted by miR-142-5p, a finding that
can be viewed important both from the perspectives of
understanding MS pathogenesis and potential thera-
peutic interventions.

The other isoform of miR-142, i.e., miR-142-3p, has
also been implicated in regulating T cell activity. Indeed,
it has been reported that miR-142-3p reduces the produc-
tion of cyclic 3'5'-adenosine monophosphate (cAMP), a
molecule required for regulatory function of Tregs, by
suppressing adenylyl cyclase (AC) 9 mRNA in T cells
and macrophages. Apparently, miR-142-3p does not in-
fluence the expression of Foxp3, but Foxp3 regulates,
directly or indirectly, the expression of miR-142-3p [19]. In
this study, using overexpression experiments and luciferase
assays, we showed that TGFBRI is a target of miR-142a-3p.
TGEF-B is a cytokine with pleiotropic functions including
regulation of inflammation as well as survival, growth and
differentiation of many cell types [32]. TGE-p signaling is
initiated by the binding of TGF-f to heteromeric complexes
of type I (TGFbRI) and type II (TGFbRII) receptors on the
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cell membrane [52]. Several studies have shown the en-
hanced expression of TGF-P1 in the CNS in MS and EAE
[53-57]. The effects of TGFB1 in the context of MS/EAE
are diverse and chiefly protective. These effects could be
roughly categorized to two types: effects on neural cells and
on leukocytes. TGF-B1’s promotion of oligodendrocyte
differentiation leading to enhanced remyelination in MS
lesions is an example of the effects on neural cells [58, 59].
TGEFP1 also suppresses autoantigen-induced activation of
lymphocytes, activation of monocytoid cells, and the pro-
duction of pro-inflammatory cytokines [60]. This latter
function is believed to be chiefly mediated by increasing
Treg activity. The finding that miR-142a-3p can target
TGFBR1 and thereby diminish TGEpP signaling might
point to a novel pathogenic pathway that diminishes both
neuroprotective and immunomodulatory effects of the
cytokine simultaneously. Indeed, it has been demonstrated
that the expression of miR-142a-3p in Treg cells is lower
compared with non Treg CD4" T cells. While we did not
observe a shift in T cell differentiation following miR-
142a-3p transfection of these cells, the possibility still
remains that miRNA-mediated reduction in TGFBR1
expression in T cells, monocytoid cells, or neural cells
might play a role in neuroinflammation/degeneration.

Conclusions

Results of this study suggest that miR-142 isoforms are up-
regulated in the CNS of MS patients and animals with EAE.
Increased expression of these microRNAs might be involved
in the autoimmune neuroinflammation and pathogenesis of
multiple sclerosis through changing the pattern of T cells
differentiation towards IFN-y-producing Th1 cells; an effect
which might be mediated through targeting and suppression
of protective genes such as TGFBR1 and SOCSI.
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