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Background. Adenine is involved in a variety of cell biological processes and has been explored for pharmacological uses. Its
therapeutic use for managing cancer is of great interest. In the present study, we investigated the anticancer effects of adenine and
the underlying mechanism in colon cancer cells. Methods. Cell viability was measured using the MTT assay. Levels of phos-
phorylation and protein expression were determined using western blotting. qPCR was carried out to determine the changes in
mRNA expression of genes of interest. Results. Adenine significantly inhibited the viability of colon cancer cells, HT29 and Caco-
2 cells, in a dose-dependent manner. Adenine induced significant apoptosis in HT29 cells, whereas Caco-2 cells exhibited less
apoptotic responses. +e data showed that adenine activated AMP-activated protein kinase (AMPK) signaling contributing to
autophagic cell death through mTOR in both colon cancer cell lines. Conclusions. Our findings suggest that adenine inhibits the
growth of colon cancer cells. Anticancer activity of adenine in colon cancer cells is attributable to the activation of apoptotic
signaling and in turn the AMPK/mTOR pathway. Adenine represents a natural compound with anticancer potency.

1. Introduction

Colorectal cancer (CRC) is one of the leading malignancies,
which is expected to account for 2.2 million new cases and
1.1 million deaths worldwide in 2030 [1]. Approximately,
40% of patients with CRC present localized-stage disease at
diagnosis, which is curable with surgical modality. 20% of
CRC patients have metastasis at diagnosis. For patients with
advanced CRC, treatment options include chemotherapy,
radiation therapy, and biological therapy in combination
with surgical modalities. Although these therapeutic regi-
mens achieve somewhat satisfactory local disease control,
effective regimens for metastatic CRC patients with liver
metastases from colorectal cancer are limited.

Adenine is a purine derivative which is synthesized in the
liver in humans. It also exists in foods such as brewer’s yeast
and vegetables. Adenine forms several biological com-
pounds involved in a variety of cellular physiological pro-
cesses such as adenosine triphosphate (ATP) in cellular
respiration and deoxyribonucleic acid (DNA) in protein
synthesis. Adenine also forms as a component of nicotin-
amide adenine dinucleotide (NAD) and flavin adenine di-
nucleotide (FAD), which are involved in metabolism. In
addition to its physiological functions, adenine has also been
demonstrated for its pharmacological properties. Recent
studies have shown that adenine attenuates allergic re-
sponses [2, 3]. Adenine has been reported to exert anti-
inflammatory activity in different experimental settings
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[4, 5]. Adenine improves the survival of rat Purkinje cells
and enhances the storage of erythrocyte in whole blood
[6–8]. Recently, adenine has been explored for its anticancer
property in several types of cancer cell lines. Adenine has
been suggested to induce cell cycle arrest in cancer cells,
leading to cell death [9, 10]. However, the mechanism by
which adenine inhibits the proliferation of cancer cells is
sketchy. It is of interest to explore the inhibitory effect of
adenine on the growth of colorectal cancer cells and to
determine the underlying mechanism.

In this study, we investigated the effects of adenine
against the proliferation of colon cancer cells. We explored
the possible mechanisms underlying the anticancer activity
of adenine in colorectal cancer cells. Inhibition of cell via-
bility was assessed with focus on apoptosis transcriptionally
and translationally. Involvement of AMP-activated protein
kinase (AMPK) in anticancer property of adenine was also
investigated.

2. Materials and Methods

2.1. Cell Culture. Human colon adenocarcinoma cell lines,
HT29 (ATCC HTB-38) and Caco-2 (ATCC HTB37), were
maintained and cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM, Gibco-BRL) supplemented with 10% fetal
calf serum (FCS; Gibco-BRL) and 100 μg/mL penicillin/
streptomycin at 37°C. For treatment with adenine (Sigma-
Aldrich, St. Louis, MO, USA), cells were initially seeded in 6-
well culture plates at a density of 1× 105 cells/mL in a total
volume of 2mL and cultured overnight to reach approxi-
mately 80% confluence. Adenine treatments were carried
out by incubating cells with adenine at designated con-
centrations (0, 0.1, 1, 5, and 10mM) for 24 h or 48 h. +e
resulting cells were washed with phosphate-buffered saline
(PBS) and collected for subsequent experiments.

2.2. Cytotoxicity Assay. +e MTT assay was conducted to
evaluate the cytotoxicity of adenine. In brief, cells were
treated with adenine for 24 hours, and culture medium was
subsequently aspirated, followed by incubation with MTT
(0.5mg/mL) at 37°C for 4 h. Removing the supernatant,
formazan in culture was dissolved in isopropanol and an-
alyzed spectrophotometrically at a wavelength of 563 nm.
+e number of viable cells was directly proportional to the
concentration of formazan and was calculated in compar-
ison with untreated cells.

2.3. Western Blotting. Cells were lysed using a lysis buffer
containing 50mM Tris-HCl, pH 7.5, 1% Nonidet P-40,
1mM phenylmethylsulfonyl fluoride, and 1mM NaF sup-
plemented with protease inhibitor cocktail (Roche, Ger-
many). +e resulting cell lysate was centrifuged at 20,000 g
for 15min. Resulting supernatants were collected and
assessed for protein concentration using the BCA method.
20 μg of the crude protein was subjected to a 12.5% SDS-
polyacrylamide gel and subsequently transferred onto a
nitrocellulose membrane (Millipore, MA, USA). +e
resulting membranes were blocked with 5% (w/v) skimmed

milk in PBS followed by incubation with primary antibodies
(Cell Signaling Technology, MA, USA) at a ratio of 1 :1000,
which were against human cleaved caspase-3, cleaved cas-
pase-8, poly (ADP-ribose) polymerase (PARP), phosphate-
AMPK, AMPK, mammalian target of rapamycin (mTOR),
phosphate-mTOR (p-mTOR), and glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH), respectively. Blots were
incubated with peroxidase-conjugated secondary antibodies,
and antigen-antibody complexes were displayed using ECL
chemiluminescence (Millipore, MA, USA).

2.4. Quantitative Real-Time PCR. Total RNA was extracted
using TRIzol reagent (Ambion, CA) in accordance with the
manufacture’s instruction. RNA levels were measured using
the Qubit® RNA Assay Kit (Invitrogen, CA). Reverse
transcription was conducted in a 20 μL reaction containing
200 ng of total RNA using cDNA reverse transcription kits
(Applied Biosystems, CA), and quantification of genes of
interest were evaluated using the ABI 7900HT system
(Applied Biosystems) (Table 1).

2.5. Statistical Analysis. Student’s t-test was performed to
calculate the statistical significance between treatment
groups and controls. Data were presented as mean± SD of
the three independent experiments using SigmaPlot 10
(Systat Software, San Jose, CA). p values less than 0.05 were
considered statistically significant.

3. Results

3.1. Adenine-Inhibited Growth of Colorectal Cancer Cells.
Effects of adenine on the growth of colorectal cancer cells
were determined in HT29 and Caco-2 cells using the MTT
assay. HT29 and Caco-2 cells were treated with adenine at
different concentrations and analyzed for viability. We
found that adenine inhibited the growth of two colorectal
cell lines in a dose-dependent manner, showing a significant
decrease in viability to 58.4± 3.8% and 59.4± 2.6%, of the
controls in presence of 10mM of adenine for 24 hours,
respectively (Figure 1). +e prolonged treatment for
48 hours with adenine resulted in a greater inhibition of cell
viability, which was 48.1± 2.5% and 56.1± 2.7% of the
controls in presence of 10mM of adenine, respectively. +e
50% inhibitory concentration (IC50) was calculated for
HT29 and Caco-2 cells, resulting as 2.838mM and
22.198mM, respectively.

3.2. Adenine-Induced Apoptosis in Colon Cancer Cells.
We next investigated the possible underlying mechanism of
growth inhibition in both colorectal cancer cell lines in
response to adenine treatment. We evaluated the induction
of apoptosis based on the changes in levels of apoptotic
biomarkers. As shown in Figure 2(a), a significantly in-
creased level of cleaved caspase-3 was found in HT29 cells
treated with 5 and 10mM of adenine compared with that of
controls. +e results also showed that adenine treatment led
to increased cleaved caspase-8 levels and significant
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cleavages of PARP in HT29 cells dose-dependently. Un-
expectedly, Caco-2 cells were found to have relatively less
induction of apoptosis in response to adenine treatment
(Figure 2(b)). Given the activation of caspase cascades, we
next investigated whether adenine treatment alters the ex-
pressions of apoptosis-related genes such as antiapoptotic
protein Bcl-2 and the proapoptotic proteins. As shown in
Figure 2(c), the ratio of Bax to Bcl-2 mRNA was remarkably
increased in the cells treated with adenine at high concen-
trations in comparison with that of controls. Interestingly,
HT29 cells were relatively more affected by adenine at high
concentrations in comparison to Caco-2 cells (Figure 2(c)).

3.3. Adenine-Activated AMPK and -Regulated Autophagic
Signaling in Colon Cancer Cells. Adenine has been reported
to upregulate AMPK signaling and in turn activate the
biological activity [11, 12]. We hypothesized that adenine
inhibits the growth of colon cancer cells through acti-
vating AMPK signaling. HT29 and Caco-2 cells were
treated with adenine at serial concentrations, and degree
of phosphorylation of AMPK and mTOR was analyzed.
We found that treatment with adenine resulted in in-
creased levels of AMPK phosphorylation in HT29 and
Caco-2 cells in a dose-dependent manner (Figure 3). We
also found that the increase in AMPK phosphorylation

was associated with a decrease in the level of phosphate-
mTOR.

It is known that autophagy is inhibited by mTOR. +e
role of autophagy in adenine-induced cell death in colon
cancer cells was investigated. +e results showed that ex-
posure to adenine at concentrations of 5mM and 10mM led
to an elevated ratio of Atg5 to Bcl-2 mRNA compared with
that of controls in HT29 and Caco-2 cells, respectively
(Figure 4(a)). +e ratio of autophagy-related genes, Beclin1
and Bcl-2, in adenine-treated colon cancer cells was in-
creased in a dose-dependent fashion (Figure 4(b)). +e
influence of adenine treatment on autophagosome was also
determined as in the level of LC3-II using western blotting.
Levels of LC3-II were significantly increased in association
with increasing concentrations of adenine in HT29 and
Caco-2 cells (Figure 4(c)).

3.4. Adenine Inhibited the Growth of Colon Cancer Cells via
AMPK-Mediated Autophagy. We found that AMPK activa-
tion was associated with induction of autophagy in presence of
adenine; thus, effects of adenine-induced AMPK activation on
the growth of colon cancer were investigated. +e results
showed that increased phosphorylation of AMPK in both
colon cancer cell lines treated with adenine were restored in
the presence of AMPK inhibitor, dorsomorphin, at a

Table 1

Gene Forward primer (5’–3’) Reverse primer (3’–5’)
Bax AGTGGAGCTGCAGAGGATGA ATGGCCTTGAGCACCAGTTT
Bcl-2 ATAACTGGAGAGTGCTGAAGA ATGTTGTATTTTTTAAGTACAGC
Atg5 ATGGACAGTTGCACACACTA TCTTCAGGATCAATAGCAGAA
Beclin1 CTCACAGCTCCATTACTTACCA CAATAAATGGCTCCTCTCCTGA
GAPDH AATGGAAATCCCATCACCATCT CAGCATCGCCCCACTTG
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Figure 1: Adenine inhibited the growth of colorectal cancer cells. HT29 cells and Caco-2 cells were treated with adenine for 24 (a) and 48 (b)
hours. Cell viability was evaluated using the MTT assay. Assay was conducted in triplicate, and the data are presented as mean± SD.
∗p< 0.05 compared with 0mM adenine.
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concentration of 5μM corresponding with increased mTOR
phosphorylation (Figure 5(a)). Cotreatment with dorsomor-
phin significantly restored the viability of colon cancer cells
treated with 10mM adenine (Figure 5(b)).

4. Discussion

In the present study, we demonstrate that adenine inhibits the
growth of human colon cancer cells via induction of apoptosis
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Figure 2: Adenine induces apoptosis in colon cancer cells. Colorectal cancer cells HT29 (a) and Caco-2 (b) were treated with serial
concentrations of adenine for 24 hours. After treatment, total protein was extracted for western blotting. Primary antibodies against
procaspase-3, caspase-3, procaspse-8, caspase-8, and PARP were used to measure the levels of apoptotic proteins. Total RNA extraction was
performed, and cDNA was produced reverse-transcriptionally from mRNA for real-time PCR of Bax and Bcl-2 (c). Experiments were
conducted in triplicate, and the data are presented as mean± SD. ∗p< 0.05 compared with 0mM adenine.
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Figure 3: Adenine-induced AMPK activation and regulated AMPK signaling. Colon cancer cells HT29 (a) and Caco-2 (b) were treated with
a serial concentration of adenine for 24 h and then were lyzed for the measurements of protein levels of p-AMPK, AMPK, p-mTOR, and
mTOR using western blotting.
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and autophagy. We found that adenine induced different
degrees of apoptosis depending on the genotype of colon
cancer cells.+e inhibition of cell growth in colon cancer cells
is associated with AMPK activation. Our results reveal that

the inhibitory effect of adenine on proliferation of colon
cancer cell is attributed to the activation of AMPK signaling.

Adenine, known as vitamin B4, has attracted much
attention as a therapeutic agent based on its biochemical
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Figure 4: HT29 and Caco-2 cells were treated with serial concentrations of adenine for 24 hours. Total RNA extraction was performed, and
cDNA was produced reverse-transcriptionally from mRNA for real-time PCR of Atg5 (a) and Beclin1 (b). Total proteins of adenine-treated
cells were extracted for western blotting. Primary antibodies against LC3-1 and LC3-II were used to evaluate the degrees of autophagosome
formation (c). Tests were conducted in triplicate, and the data are presented as mean± SD. ∗p< 0.05 compared with 0mM adenine.
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Figure 5: Adenine-induced autophagic inhibition on colon cancer cells via AMPK activation. (a) After pretreatment with dorsomorphin
(5 μM), colon cancer cells HT29 and Caco-2 were treated with adenine (10mM) for 24 h . Levels of p-AMPK and p-mTORweremeasured by
western blotting. (b) Viabilities of cells receiving different treatments were evaluated using the MTT assay.
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property. Its use has been explored as treatment for ma-
lignancies. Adenine has been demonstrated to induce ap-
optosis and cell cycle S-phase arrest in hepatocellular
carcinoma cells and cervical cancer cells [9]. Chen et al.
reported that adenine induced G2/M cell cycle arrest and
autophagy in erythroleukemia K562 cells [10]. It is suggested
that adenine-induced inhibition of cancer cell growth varies
greatly depending on the type of cancer cells. Apoptosis
plays a critical role in cancer development. Abnormal ap-
optosis is considered to contribute to the pathogenesis of
colorectal cancer and resistance to treatments in particular.
In this study, we found that HT29 cells are relatively more
sensitive to adenine treatment than Caco-2 cells as a result of
different degree of apoptotic responses. Our findings showed
that adenine treatment led to increased mRNA ratio of Bax
to Bcl2 and elevated levels of cleaved caspase-3 and caspase-
8, suggesting that adenine could affect the expression of Bcl2
proteins and activate apoptotic pathway in HT29 cells. Our
data indicate that adenine induced significant apoptosis in
colorectal adenocarcinoma HT29 cells, a p53 mutant,
whereas Caco-2 cells, a p53-null cell line, exhibited less
apoptosis. +is finding is in agreement with the previous
study showing adenine fails to induce apoptosis in leukemia
K562 cells which are p53-negative [10]. It is suggested that
p53 status may play a role in responsiveness to adenine
treatment in the aspect of apoptosis. In addition, treatment
with adenine for 48 hours was shown to have a relatively
high inhibitory rate in HT29 compared with Caco-2 cells,
suggesting that the other cell death processes may contribute
to the adenine-induced inhibition in colon cancer cells such
as autophagy. Further studies are necessary to elucidate the
involvement of p53 in adenine-associated inhibition of colon
cancer cells.

AMP-activated protein kinase is known for its role in
regulation of the protein and lipid metabolism as a con-
served energy sensor [13]. Recently, AMPK signaling has
been considered as a target process for cancer prevention
and therapy [14]. One of the growth signaling pathways
regulated by AMPK is the mammalian target of rapamycin
(mTOR) pathway, which controls a variety of biological
processes involved in cell survival, migration, and meta-
bolism. Activation of AMPK has been shown to suppress the
mTOR signaling leading to, in part, the activation of
autophagy. Several studies have reported that activation of
AMPK induces autophagic cell death in various cancer cells
via suppression of mTOR [15–19]. Exogenous adenine in-
creases the expression and translocation of glucose trans-
porter 4, enhances the cellular glucose uptake, and elevates
the intracellular ATP level [11]. Adenine has been dem-
onstrated to induce AMPK activation in different types of
cells [12, 20–22]. A recent study has shown that adenine
inhibited the growth of leukemia K562 cells via AMPK
activation. In our study, we demonstrated that adenine
significantly induced AMPK activation and inhibited the
phosphorylation of downstreammTOR in both colon cancer
cell lines. In addition, we showed an increased level of LC3-II
with corresponding elevated expressions of Atg5 and Beclin
in HT29 and Caco-2 cells after exposure to adenine. +e
findings suggest that adenine triggers autophagic cell death

in colon cancer cells in present setting. Adenine-inhibited
cell proliferation in both colon cancer cell lines was restored
with increased levels of mTOR phosphorylation in the
presence of AMPK inhibitor dorsomorphin. +ese findings
are in consistent with the previous study showing adenine-
induced autophagy via AMPK signaling corresponding with
changes in the mTOR level in leukemia [10]. Autophagy has
been shown to have dual and contradictory roles in carci-
nogenesis. In addition to cell death, autophagy is shown to
provide a backup energy source for the survival and ex-
pansion of tumor cells, particularly cancers at advanced
stages [23–26]. In the present experimental setting, it is
indicated that adenine activates AMPK subsequently con-
tributing to autophagic cell death in colon cancer cells.
Nevertheless, treatment with dorsomorphin incompletely
reversed the inhibited cell growth, suggesting that adenine
may suppress colon cancer cells via AMPK-independent
pathways.

In conclusion, we show evidence that adenine signifi-
cantly inhibits the proliferation of colorectal cancer cells
through synergistically in part apoptosis and autophagy.+e
adenine-induced autophagic cell death is AMPK-dependent
in colon cancer cells, whereas apoptosis is attributed to p53
status. By manipulating both arms of apoptotic and auto-
phagic signaling, adenine represents a promisingly effective
therapeutic agent against human colorectal cancers. Further
studies are required to elucidate the role of p53 in adenine-
induced apoptosis in colon cancer cells.
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