4589 measured reflections

 $R_{\rm int} = 0.017$

2061 independent reflections

1712 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-n-Butyl-1,2-benzisothiazol-3(2H)-one 1.1-dioxide

Guan-Ping Yu,^{a,b} Zhong-Jie Xu,^c Liang-Zhong Xu^c and Haji Akber Aisa^a*

^aXinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumgi, 830011, People's Republic of China, ^bGraduate School of the Chinese Academy of Science, Beijing, 100039, People's Republic of China, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China Correspondence e-mail: gknhs@yahoo.com.cn

Received 2 March 2008; accepted 20 March 2008

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.110; data-to-parameter ratio = 14.1.

The crystal packing of the title compound, C₁₁H₁₃NO₃S, exhibits weak intermolecular $C-H \cdots O$ hydrogen bonding, which links molecules related by translation along the b axis into chains, and $\pi - \pi$ interactions [centroid–centroid distance of 3.778 (2) Å between benzene rings].

Related literature

For similar crystal structures, see: Feeder & Jones (1994, 1996); Glidewell et al. (2000). For related literature, see: Xiong (2004); Rice & Pettit (1954).

Experimental

Crystal data

C ₁₁ H ₁₃ NO ₃ S	$\gamma = 109.75 \ (3)^{\circ}$
$M_r = 239.28$	$V = 584.0 (2) \text{ Å}^3$
Triclinic, P1	Z = 2
a = 7.3130 (15) Å	Mo $K\alpha$ radiation
b = 7.7219 (15) Å	$\mu = 0.27 \text{ mm}^{-1}$
c = 11.416 (2) Å	T = 153 (2) K
$\alpha = 102.76 \ (3)^{\circ}$	$0.30 \times 0.24 \times 0.18 \text{ mm}$
$\beta = 94.23 \ (3)^{\circ}$	

Data collection

Rigaku R-AXIS RAPID IP areadetector diffractometer Absorption correction: multi-scan (ABSCOR: Higashi, 1995) $T_{\min} = 0.924, T_{\max} = 0.953$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	146 parameters
$vR(F^2) = 0.109$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
2061 reflections	$\Delta \rho_{\min} = -0.27 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2B\cdots O3^{ii}$	0.95	2.35	3.279 (2)	165

Symmetry code: (ii) x, y - 1, z.

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the Xinjiang Laboratory of Plant Resources and Natural Products Chemistry.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2391).

References

Feeder, N. & Jones, W. (1994). Acta Cryst. C50, 1118-1122. Feeder, N. & Jones, W. (1996). Acta Cryst. C52, 2323-2326. Glidewell, C., Low, J. N. & Wardell, J. L. (2000). Acta Cryst. C56, 1462-1464. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Rice, H. L. & Pettit, G. R. (1954). J. Am. Chem. Soc. 76, 302-303. Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Takyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Xiong, L. Z. (2004). Jingxi Huaxuepin, 21, 9-11.

supplementary materials

Acta Cryst. (2008). E64, o805 [doi:10.1107/S1600536808007733]

2-n-Butyl-1,2-benzisothiazol-3(2H)-one 1,1-dioxide

G.-P. Yu, Z.-J. Xu, L.-Z. Xu and H. A. Aisa

Comment

The title compound, (I), also called THIAZONE, is a new skin penetration enhancer. The tests of penetration enhancing behaviors to berberine, ciclopirox olamino and cypermethrin show that penetration enhancing effect of THIAZONE is 2.99 times higher than that of AZONE. THIAZONE is widely applied in pharmaceutic industry, cosmetic and health care industry, agriculture and forest industry, and many others (Xiong, 2004). Herewith we report the crystal structure of (I).

In (I) (Fig. 1), all bond lengths and angles within the saccharin group are similar to those observed in the series of N-saccharin acids (Feeder & Jones, 1996), N-saccharin peracids (Feeder & Jones, 1994) and saccharin (Glidewell *et al.*, 2000).

In the crystal, the relatively short distance between the centroids of benzene rings from neighbouring molecules (Table 1) suggests an existence of π ··· π interactions. The crystal packing exhibits also exhibits weak intermolecular C—H···O hydrogen bonds (Table 2), which link the molecules related by translation along *b* axis into chains.

Experimental

The title compound has been synthesized following the known procedure (Rice & Pettit, 1954). Saccharin sodium 2.65 g (0.011 mol) was dissolved in 20 ml of dried DMF. To the solution,1-butyl bromide 1.37 g (0.01 mol) was added. The mixture was stirred for half an hour at room temperature and then the mixture was heated with strring for 2 h at 100° C. The mixture was poured into water, and 2.50 g of the product were obtained (yield 95.7%). Single crystals suitable for X-ray measurement were obtained by recrystallization from dichloromethane at room temperature.

Refinement

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH₃) and 0.99 Å (CH₂), and with U_{iso} (H) values set at 1.5 U_{eq} (C)(for CH₃) or 1.2 U_{eq} (C)(for CH₂, aromatic CH).

Figures

Fig. 1. The molecular structure of (I) showing the atomic numbering and displacement ellipsoids drawn at the 40% probability level.

2-n-Butyl-1,2-benzisothiazol-3(2H)-one 1,1-dioxide

Crystal data	
C ₁₁ H ₁₃ NO ₃ S	Z = 2
$M_r = 239.28$	F(000) = 252
Triclinic, <i>P</i> T	$D_{\rm x} = 1.361 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.3130 (15) Å	Cell parameters from 1494 reflections
b = 7.7219 (15) Å	$\theta = 2.6 - 26.4^{\circ}$
c = 11.416 (2) Å	$\mu = 0.27 \text{ mm}^{-1}$
$\alpha = 102.76 \ (3)^{\circ}$	T = 153 K
$\beta = 94.23 \ (3)^{\circ}$	Block, colourless
$\gamma = 109.75 \ (3)^{\circ}$	$0.30\times0.24\times0.18~mm$
$V = 584.0 (2) \text{ Å}^3$	

Data collection

2061 independent reflections
1712 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.017$
$\theta_{\text{max}} = 25.0^\circ, \theta_{\text{min}} = 3.0^\circ$
$h = -8 \rightarrow 8$
$k = -9 \rightarrow 9$
$l = -13 \rightarrow 13$
2 1 R 9 h k

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map		
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites		
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained		
$wR(F^2) = 0.109$	$w = 1/[\sigma^2(F_o^2) + (0.0554P)^2 + 0.1349P]$ where $P = (F_o^2 + 2F_c^2)/3$		
<i>S</i> = 1.08	$(\Delta/\sigma)_{\rm max} = 0.001$		
2061 reflections	$\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$		
146 parameters	$\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$		
0 restraints	Extinction correction: <i>SHELXL</i> , Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}		
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.129 (10)		

Р methods

sup-2

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.42409 (7)	0.81664 (7)	0.72568 (5)	0.0606 (2)
01	0.3065 (2)	0.7267 (2)	0.80490 (15)	0.0795 (5)
O2	0.6279 (2)	0.8432 (2)	0.74251 (17)	0.0828 (5)
03	0.3009 (2)	1.1828 (2)	0.60625 (15)	0.0757 (5)
N1	0.4016 (2)	1.0256 (2)	0.73053 (15)	0.0597 (4)
C1	0.3124 (3)	0.7195 (3)	0.57339 (18)	0.0521 (5)
C2	0.2711 (3)	0.5368 (3)	0.5017 (2)	0.0624 (5)
H2B	0.3056	0.4455	0.5327	0.075*
C3	0.1780 (3)	0.4928 (3)	0.3836 (2)	0.0685 (6)
H3A	0.1489	0.3691	0.3317	0.082*
C4	0.1262 (3)	0.6256 (3)	0.3393 (2)	0.0675 (6)
H4A	0.0605	0.5910	0.2580	0.081*
C5	0.1682 (3)	0.8068 (3)	0.41115 (19)	0.0603 (5)
H5A	0.1332	0.8977	0.3800	0.072*
C6	0.2625 (3)	0.8541 (3)	0.52964 (18)	0.0506 (4)
C7	0.3201 (3)	1.0391 (3)	0.62121 (19)	0.0555 (5)
C8	0.4943 (3)	1.1887 (3)	0.8376 (2)	0.0770 (7)
H8A	0.5302	1.3073	0.8103	0.092*
H8B	0.6178	1.1805	0.8731	0.092*
C9	0.3700 (4)	1.2038 (4)	0.9357 (2)	0.0828 (7)
H9A	0.3341	1.0851	0.9628	0.099*
H9B	0.4509	1.3101	1.0061	0.099*
C10	0.1870 (4)	1.2355 (4)	0.9009 (3)	0.0896 (8)
H10A	0.0964	1.1205	0.8392	0.108*
H10B	0.2196	1.3434	0.8629	0.108*
C11	0.0818 (5)	1.2781 (4)	1.0081 (3)	0.1019 (9)
H11A	-0.0369	1.2987	0.9794	0.153*
H11B	0.1698	1.3930	1.0690	0.153*
H11C	0.0449	1.1701	1.0446	0.153*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0564 (3)	0.0666 (4)	0.0714 (4)	0.0257 (3)	0.0102 (2)	0.0377 (3)
O1	0.0874 (11)	0.0866 (11)	0.0758 (10)	0.0256 (9)	0.0202 (8)	0.0509 (9)
O2	0.0591 (9)	0.0988 (12)	0.1038 (12)	0.0374 (8)	0.0022 (8)	0.0426 (10)
O3	0.0906 (11)	0.0589 (9)	0.0971 (12)	0.0388 (8)	0.0214 (9)	0.0387 (8)
N1	0.0593 (10)	0.0567 (10)	0.0665 (10)	0.0210 (8)	0.0087 (8)	0.0232 (8)
C1	0.0454 (10)	0.0560 (11)	0.0688 (12)	0.0231 (8)	0.0181 (8)	0.0338 (9)
C2	0.0565 (11)	0.0555 (11)	0.0927 (16)	0.0284 (9)	0.0287 (11)	0.0358 (11)
C3	0.0599 (13)	0.0654 (13)	0.0783 (15)	0.0195 (10)	0.0227 (11)	0.0166 (11)
C4	0.0589 (12)	0.0796 (15)	0.0638 (13)	0.0218 (11)	0.0142 (10)	0.0228 (11)
C5	0.0533 (11)	0.0721 (13)	0.0695 (13)	0.0275 (10)	0.0156 (9)	0.0368 (11)
C6	0.0439 (9)	0.0530 (10)	0.0669 (11)	0.0209 (8)	0.0164 (8)	0.0319 (9)
C7	0.0512 (11)	0.0544 (11)	0.0736 (13)	0.0235 (9)	0.0196 (9)	0.0322 (9)
C8	0.0637 (14)	0.0725 (15)	0.0824 (16)	0.0144 (11)	0.0050 (12)	0.0142 (12)
C9	0.0883 (17)	0.0833 (16)	0.0685 (14)	0.0276 (14)	-0.0029 (12)	0.0141 (12)
C10	0.0831 (17)	0.0983 (19)	0.0853 (17)	0.0308 (15)	0.0070 (14)	0.0255 (14)
C11	0.104 (2)	0.095 (2)	0.107 (2)	0.0410 (17)	0.0282 (18)	0.0150 (16)

Geometric parameters (Å, °)

1.4265 (16) 1.6661 (17) 1.747 (2) 1.210 (2)	C5—H5A C6—C7 C8—C9	0.9500 1.476 (3) 1.503 (3)
1.6661 (17) 1.747 (2) 1.210 (2)	C6—C7 C8—C9	1.476 (3) 1.503 (3)
1.747 (2) 1.210 (2)	C8—C9	1.503 (3)
1.210 (2)	C0 110 A	
	Со—поА	0.9900
1.383 (3)	C8—H8B	0.9900
1.470 (3)	C9—C10	1.481 (4)
1.384 (3)	С9—Н9А	0.9900
1.386 (2)	С9—Н9В	0.9900
1.381 (3)	C10—C11	1.527 (4)
0.9500	C10—H10A	0.9900
1.383 (3)	C10—H10B	0.9900
0.9500	C11—H11A	0.9800
1.375 (3)	C11—H11B	0.9800
0.9500	C11—H11C	0.9800
3.778 (2)		
117.55 (10)	O3—C7—N1	123.7 (2)
109.67 (10)	O3—C7—C6	126.81 (19)
109.17 (10)	N1—C7—C6	109.45 (16)
111.98 (10)	N1—C8—C9	115.25 (19)
112.60 (10)	N1—C8—H8A	108.5
93.09 (9)	С9—С8—Н8А	108.5
123.88 (18)	N1—C8—H8B	108.5
114.58 (14)	С9—С8—Н8В	108.5
120.69 (15)	H8A—C8—H8B	107.5
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	L.383 (3) L.470 (3) L.384 (3) L.384 (3) L.386 (2) L.381 (3) D.9500 L.383 (3) D.9500 L.375 (3) D.9500 3.778 (2) 117.55 (10) 109.67 (10) 109.67 (10) 111.98 (10) 112.60 (10) D3.09 (9) 123.88 (18) 114.58 (14) 120.69 (15)	1.383 (3)C8—H8B 1.470 (3)C9—C10 1.384 (3)C9—H9A 1.384 (3)C9—H9B 1.386 (2)C9—H9B 1.381 (3)C10—C11 0.9500 C10—H10A 1.383 (3)C10—H10B 0.9500 C11—H11A 1.375 (3)C11—H11B 0.9500 C11—H11C 3.778 (2)C11—H11C 117.55 (10)O3—C7—N1 109.67 (10)N1—C7—C6 109.17 (10)N1—C8—C9 112.60 (10)N1—C8—H8A 23.09 (9)C9—C8—H8A 123.88 (18)N1—C8—H8B 114.58 (14)C9—C8—H8B 120.69 (15)H8A—C8—H8B

C2—C1—C6	121.99 (19)	С10—С9—С8		115.6 (2)
C2—C1—S1	128.18 (16)	С10—С9—Н9А		108.4
C6—C1—S1	109.81 (15)	С8—С9—Н9А		108.4
C3—C2—C1	117.30 (19)	С10—С9—Н9В		108.4
C3—C2—H2B	121.3	С8—С9—Н9В		108.4
C1—C2—H2B	121.3	Н9А—С9—Н9В		107.4
C2—C3—C4	121.1 (2)	C9-C10-C11		113.4 (2)
С2—С3—НЗА	119.4	C9-C10-H10A		108.9
С4—С3—НЗА	119.4	C11-C10-H10A		108.9
C5—C4—C3	121.1 (2)	C9-C10-H10B		108.9
C5—C4—H4A	119.4	C11-C10-H10B		108.9
C3—C4—H4A	119.4	H10A-C10-H10B		107.7
C4—C5—C6	118.64 (19)	C10-C11-H11A		109.5
C4—C5—H5A	120.7	C10-C11-H11B		109.5
С6—С5—Н5А	120.7	H11A—C11—H11B		109.5
C5—C6—C1	119.82 (19)	C10-C11-H11C		109.5
C5—C6—C7	127.23 (17)	H11A—C11—H11C		109.5
C1—C6—C7	112.96 (17)	H11B—C11—H11C		109.5
O1—S1—N1—C7	-117.32 (15)	C4—C5—C6—C7		-179.82 (17)
O2—S1—N1—C7	112.58 (16)	C2-C1-C6-C5		0.2 (3)
C1—S1—N1—C7	-2.65 (15)	S1—C1—C6—C5		-178.69 (14)
O1—S1—N1—C8	72.84 (17)	C2-C1-C6-C7		179.99 (16)
O2—S1—N1—C8	-57.26 (18)	S1—C1—C6—C7		1.14 (19)
C1—S1—N1—C8	-172.49 (16)	C8—N1—C7—O3		-7.0 (3)
O1—S1—C1—C2	-65.33 (19)	S1—N1—C7—O3		-176.51 (15)
O2—S1—C1—C2	69.76 (19)	C8—N1—C7—C6		173.10 (17)
N1—S1—C1—C2	-177.99 (17)	S1—N1—C7—C6		3.63 (19)
O1—S1—C1—C6	113.43 (14)	С5—С6—С7—О3		-3.0 (3)
O2—S1—C1—C6	-111.48 (14)	C1—C6—C7—O3		177.15 (18)
N1—S1—C1—C6	0.77 (14)	C5-C6-C7-N1		176.82 (17)
C6—C1—C2—C3	0.2 (3)	C1-C6-C7-N1		-3.0 (2)
S1—C1—C2—C3	178.82 (14)	C7—N1—C8—C9		101.9 (2)
C1—C2—C3—C4	-0.7 (3)	S1—N1—C8—C9		-89.2 (2)
C2—C3—C4—C5	0.9 (3)	N1-C8-C9-C10		-63.7 (3)
C3—C4—C5—C6	-0.5 (3)	C8—C9—C10—C11		-171.7 (2)
C4—C5—C6—C1	0.0 (3)			
Symmetry codes: (i) $-x+2, -y+1, -z+1$.				
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
C2—H2B···O3 ⁱⁱ	0.95	2.35	3.279 (2)	165.

Symmetry codes: (ii) x, y-1, z.

