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Abstract: In this study, we investigated the fluctuation characteristics of micro vertical acceleration of
center of mass (vCOMacc) in standing and examined the usefulness of vCOMacc as an aging marker
for standing control abilities. Sixteen young and 18 older adults participated in this experiment.
Data for vCOMacc were calculated as the vertical ground reaction force value divided by each
participant’s body mass using a force plate. The COMacc frequency structure was determined using
the continuous wavelet transform to analyze the relative frequency characteristics. For time domain
analysis, we determined the root mean square (RMS) and maximum amplitude (MA) of the integrated
power spectral density. We also analyzed the correlation between vCOMacc and lower limb muscle
activity. The relative frequency band of vCOMacc was higher in older than young adults, and the
time domain indicators were sufficient to distinguish the effects of aging. Regarding the relationship
between vCOMacc during standing and muscle activity, a correlation was found with the soleus
muscle in young adults, while it was moderately correlated with the gastrocnemius muscle in older
adults. The cause of vCOM may be related to differences in muscle activity, and vCOMacc may be
utilized to more easily assess the effects of aging in standing control.

Keywords: quiet standing; vertical center of mass acceleration; continuous wavelet transform; power
spectral density; aging

1. Introduction

Stable posture control is essential for safety in daily life and may determine quality of life,
especially for older adults. To evaluate bipedal standing ability, many studies use force plates to
analyze center of pressure (COP) [1–5] or center of mass (COM) acceleration [6–9]. The COP trajectory
has been shown to be able to predict the dynamic response of attitude control systems to perturbations
of young or older adults even during a quiet stance [10,11]. Alternatively, anterior-posterior center of
mass acceleration (apCOMacc) [6–9] can be used to analyze the aging, developmental, and disease
characteristics in a controlled standing system. In this regard, such devices are useful devices that
can be easily measured, leading to many studies, especially on sagittal plane trajectory [12–14].
On the other hand, vertical fluctuation is much smaller than horizontal fluctuation; thus, there is
generally little interest in such variation characteristics [15]. However, it has been reported that the
vertical ground reaction force (Fz) parameter allows the collection of data at a lower cost, because
it only collects the weight load fluctuation of the individual; additionally, it is more robust against
fluctuations between trials [16]. If an analysis method using only vertical acceleration can be proposed
for balance control due to aging, clinical evaluation using a simpler and lower-cost device will be
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possible. In a previous study, the standard deviation of Fz was found to be significantly correlated with
clinical balance scale scores, and it was highly reliable for identifying stance tasks compared to COP
measurements [17]; however, few studies utilized such force plates to measure the body acceleration
(Fz/m, m = body mass) in the vertical direction for the analysis of standing control [18]. Since the
Fz component is not well known, its relationship with the key muscles of lower limbs in standing
control is also unclear. It would be preferable if such an index could lead to the evaluation of physical
function and the identification of abnormalities different from traditional indices [19]. Easy-to-collect
biometric information is an advantage for future clinical studies and may provide another aspect for
standing control studies. The first purpose of this study was to evaluate whether this simple and micro
vibration component can be a balance marker in relation to age-related changes or to the major muscles
of postural maintenance. Another concern relates to the method of analysis for biological signals.
Fourier transform frequency analysis, used in previous studies, is a common method for analyzing
postural sway. Past researchers used fast Fourier transform algorithms to compare postural sway in
young adults and older adults, with respect to the power spectral content of COP trajectory [20–22].
These analyses assume that the signal being analyzed is stationary. However, this is not the case
for most biological signals, which exhibit varying degrees of nonstationarity [23]. Furthermore, it is
well known that the gastrocnemius muscle, which is the main muscle for standing control, provides
impulsive control during postural sway [24]; hence, its temporal characteristics should also be noted in
order to more closely investigate the characteristics of postural stability control [25]. Time–frequency
analyses are particularly suitable for analyzing local dynamics at intermittent times, which occur in
nonlinear systems [26]. Thus, continuous wavelet transform (CWT) calculations enable a complete
study of the attitude control spectrum and time characteristics. Furthermore, wave transformation can
provide useful results for identifying changes in attitude control. Previous studies measured COPs
using wavelet analysis [26,27]; however, analysis with acceleration as an index is considered a simple
and practical parameter [7,8]. The time–frequency analysis of vertical center of mass acceleration
(vCOMacc) provides an easy and alternative method for the detection of instantaneous acceleration
changes in body sway. It has not yet been debated how such simple signals change with age and what
neurological background causes them. Furthermore, it is unknown if vCOMacc is associated with
apCOMacc. Therefore, the purpose of this study was to compare the quiet standing behavior of young
adults and older adults by examining the time and frequency domain characteristics of vCOMacc.

2. Materials and Methods

2.1. Subjects

This study included 16 healthy young adults (age: 20.4 ± 0.6 years; height: 165.9 ± 8.3 cm;
weight: 58.3 ± 6.3 kg) and 18 healthy older adults (age: 72.9 ± 3.6 years; height: 162.0 ± 8.2 cm;
weight: 62.9 ± 8.6 kg), a total of 34 subjects. Exclusion criteria included a history of musculoskeletal
injuries or diseases and neurological disorders. All subjects gave their informed oral and written
consent for inclusion before they participated in the study. The study was conducted in accordance
with the Declaration of Helsinki, and the protocol was approved by the ethics review board of Yamagata
Prefectural University of Health Sciences (approval ID: 1310-16).

2.2. Measurements

Participants were requested to stand, with their eyes open, on a single force plate (60 × 90 cm,
Type 9287A; Kistler, Winterthur, Switzerland). They were instructed to watch a target, which was
placed at eye level, while keeping their arms and stance in a comfortable position. Anteriorposterior
positioning of the feet was based upon a predetermined distance and was aligned using markers
on the force plates. The force plate was used to extract both Fz data and anterior-posterior ground
reaction force data (Fx) points. For the purpose of clarifying the relationship between vCOMacc and
the muscle activity of the lower limbs, a surface electromyography (EMG) system (TrignoTM Wireless
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EMG, Delsys Inc., Boston, MA, USA) was used to collect muscle activity data. Prior to attaching the
electrodes, skin impedance was reduced by wiping the skin with alcohol swabs. The EMG electrodes
were placed on the soleus (So) and medial gastrocnemius muscles (MG) of both limbs. The EMG signals
of lower limb muscle were in the range of 10–450 Hz when bandpass-filtered offline (fourth-order
Butterworth filter). Each subject underwent three trials, with a sufficient resting period between each
trial. All data were collected at a sampling frequency of 1000 Hz, and signals were loaded onto a
personal computer for analysis. The duration of each trial was approximately 60 s. Only data from the
last 55 s were subjected to subsequent analyses.

2.3. Data Analysis

For both Fz and Fx data, analog offset (DC offsets; mean amplitude displacement from zero) were
removed. vCOMacc and apCOMacc were obtained by dividing the ground reaction force (GRF) in the
Fz and Fx directions by the participant’s body mass. The vCOMacc data were subjected to filtering
using a fourth-order Butterworth bandpass filter, which employed a zero-phase lag with a cutoff

frequency of 0.1–20 Hz. The apCOMacc data were low-pass-filtered at a frequency of 10 Hz using a
Butterworth filter [27].

We used the CWT method to analyze the effect of aging on the time domain and the frequency
domain of COMacc. Continuous wavelet transform describes a mathematical technique that can
be used to analyze a complex time-series signal with variable power or magnitude over a wide
range of frequencies. The CWT, shown in Equation (1), was calculated using AutoSignal software
(Systat Software Inc., San Jose, CA, USA). The CWT of a discrete sequence xn is defined as the
convolution of xn with a scaled and translated version of ψ0(n).

Wn(s) =
N−1∑
n′=0

xn′

√
δt
s
ψ∗0

[
(n′ − n)δt

s

]
(1)

where the complex conjugate is indicated by *, N is the data series length, and δt is the sampling
interval. By varying the wavelet scale s and translating along the localized time index n, it is possible
to construct an image showing the amplitude of any feature versus the scale and how this amplitude
varies with time. The subscript zero on ψ (Equation (2)) was added to indicate that this value of ψ was
also normalized.

Ψ0(τ) = π−
1
4 eiστe−

τ2
2 (2)

where τ is the adjustable, nondimensional time parameter. For this study, the adjustable parameter
σ was set to 8 in the AutoSignal environment. The global wavelet spectrum (Equation (3)), which is
defined as the time average over a series of wavelet powers, can be expressed as

W
2
(S) =

1
N

N−1∑
n=0

∣∣∣wn(S)
∣∣∣2 (3)

where Wn is the CWT coefficient, and n and N are the specific time ranges to average the CWT
coefficients. A continuous wavelet (Morlet) time–frequency analysis, which determines the integrated
power (time-integral squared amplitude (TISA)) across time [28–30], was performed. The TISA power
is defined as

TISA (Power) = ∆t × (Re2 + Im2)/2 (4)

where Re and Im are the real and imaginary parts of the transformed data, respectively, and ∆t is the
sampling interval (Equation (4)).
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2.3.1. Frequency Domain Analysis

The normalized power spectral density (power in frequency bin divided by the total amount of
power) was averaged across a 2 Hz band recording, which ranged from 0 to 20 Hz for vCOMacc or 0 to
10 Hz for apCOMacc.

2.3.2. Time Domain Analysis

For each participant’s COMacc and EMG data, the root mean square (RMS) was used to quantify
the mean power of COMacc (Figure 1). Measurements of the average power spectral density of
COMacc and EMG data were calculated for each trial from the RMS as follows:

RMS =

√√√
1
N

N∑
i=1

[x(i)]2 (5)

where x(i) is the COMacc data for sample number i, and N is the number of samples. Moreover,
the maximum amplitude (MA) of the COMacc integrated power was compared for both groups,
which allowed for an evaluation of the instantaneous changes in COMacc and an examination of the
effects of aging.

Geriatrics 2020, 5, x FOR PEER REVIEW 4 of 12 

2.3.2. Time Domain Analysis 

For each participant’s COMacc and EMG data, the root mean square (RMS) was used to quantify 
the mean power of COMacc (Figure 1). Measurements of the average power spectral density of 
COMacc and EMG data were calculated for each trial from the RMS as follows: 

RMS = ඩ1𝑁ሾ𝑥(𝑖)ሿଶே
ୀଵ  (5) 

where x(i) is the COMacc data for sample number i, and N is the number of samples. Moreover, the 
maximum amplitude (MA) of the COMacc integrated power was compared for both groups, which 
allowed for an evaluation of the instantaneous changes in COMacc and an examination of the effects 
of aging. 

 

Figure 1. Representative time series of vertical center of mass acceleration (vCOMacc) (left panel—(a) 
and (b)) and anterior-posterior center of mass acceleration (apCOMacc) (right panel—((c) and (d)) 
from a young adult (upper panel) and an older adult (lower panel) for standing. 

2.4. Statistical Analysis of COMacc Data 

Statistical analysis of the mean power value within each frequency band for the two groups was 
performed using two-factor analysis of variance, with a statistical significance level set at p < 0.05. 
Time domain vCOMacc and apCOMacc data were statistically tested for both groups (young vs. 
older adults) using a non-paired t-test. The correlation between RMS vCOMacc or RMS apCOMacc 
and the correlation between each COM and EMG were estimated using Pearson’s correlation 
coefficient (r) (* p < 0.05, ** p < 0.01). 

3. Results 

Figure 1 shows a representative time-series example of vCOMacc or apCOMacc from young 
adults (upper panel, a and c) and older adults (lower panel, b and d). Figure 2 shows typical examples 
of frequency domain and time domain analysis results for each COMacc using CWT. Approximately 

Figure 1. Representative time series of vertical center of mass acceleration (vCOMacc) (left panel—(a,b))
and anterior-posterior center of mass acceleration (apCOMacc) (right panel—(c,d)) from a young adult
(upper panel) and an older adult (lower panel) for standing.

2.4. Statistical Analysis of COMacc Data

Statistical analysis of the mean power value within each frequency band for the two groups was
performed using two-factor analysis of variance, with a statistical significance level set at p < 0.05.
Time domain vCOMacc and apCOMacc data were statistically tested for both groups (young vs. older
adults) using a non-paired t-test. The correlation between RMS vCOMacc or RMS apCOMacc and the
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correlation between each COM and EMG were estimated using Pearson’s correlation coefficient (r)
(* p < 0.05, ** p < 0.01).

3. Results

Figure 1 shows a representative time-series example of vCOMacc or apCOMacc from young
adults (upper panel, a and c) and older adults (lower panel, b and d). Figure 2 shows typical examples
of frequency domain and time domain analysis results for each COMacc using CWT. Approximately
90% of vCOMacc data in both young and older adults were present below 10 Hz; thus, those below
10 Hz were analyzed in this study.
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Figure 2. Examples of analysis in two-dimensional plots from continuous wavelet transform (CWT) of
COMacc in young adults (panels (a,c)) and older adults (panels (b,d)). The power spectral density of
the CWT shows the time-integrated square amplitude. Frequency domain analysis was normalized,
and the power spectral densities were averaged across the 1 Hz band over the frequency range of
0–20 Hz for vCOMacc and 0–10 Hz for apCOMacc.

3.1. Frequency Domain

Analysis of the frequency structure of COMacc indicated that the power spectrum of vCOMacc
was stronger within older adults, mainly with respect to the relative power observed across the 2–8 Hz
band. In addition, almost every young adult displayed major peaks in the 4–6 Hz power spectrum,
whereas older adults typically showed peaks in the vCOMacc spectrum between frequencies of 6 and
8 Hz (Figure 3, Table 1). Moreover, the main frequency band of apCOMacc in both groups was less
than approximately 2 Hz, which was similar to previous reports (Figure 3, Table 2) [7].
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Figure 3. Power spectral density functions of vCOMacc (left panel) and apCOMacc (right panel).
The upper and lower panels indicate the results for young adults (panel (a,c)) and older adults (panel
(b,d)), respectively. The solid line represents the average in each frequency band of the group. The
shaded area represents one standard deviation.

Table 1. Summary of vertical center of mass acceleration (vCOMacc), integrated power spectral
density (PSD), maximum amplitude (MA), root mean square (RMS), and correlation coefficient (r) for
both age groups combined.
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Table 2. Summary of anterior-posterior center of mass acceleration (apCOMacc), integrated power
spectral density, maximum amplitude, root mean square for both age groups combined.
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Figure 4. Superposition time-series waveforms of young (panels (a,c)) and older adults (panels (b,d))
for vCOMacc (left panel) and apCOMacc (right panel) of the continuous wavelet time–frequency
spectrum (time-integral squared amplitude power) during quiet standing. The dotted line in the figure
shows the root mean square value.
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3.3. Correlation Analysis for vCOMacc and apCOMacc

There was no significant correlation between vCOMacc and apCOMacc in both young and older
adults (young: r = 0.16, p = 0.56; older adults: r = 0.42, p = 0.08) (Table 1).

Tables 3 and 4 show the correlation between vCOMacc or apCOMacc and EMG for young adults
and older adults, respectively. In young adults, a high correlation coefficient was obtained with
COMacc for the frequency band above 4 Hz. In older adults, a negative correlation was found between
vCOMacc and MG in the 0–2 Hz frequency band, while a positive correlation was found between
apCOMacc and EMG in the 4–6 and 6–8 Hz frequency bands

Table 3. Correlation between the power spectral density of vCOMacc or apCOMacc in young adults
and the root mean square of lower limb muscle activity.

Young Adults

vCOMacc apCOMacc

Frequency Band (Hz) MG RMS So RMS MG RMS So RMS

0–2 −0.27 0.17 0.11 −0.41
2–4 −0.21 −0.18 −0.09 0.04
4–6 0.00 −0.62 ** −0.04 0.46 *
6–8 0.33 0.19 −0.06 0.71 **
8–10 −0.13 0.75 ** −0.19 0.69 **

MG: medial gastrocnemius, So: soleus; * p < 0.05, ** p < 0.01.

Table 4. Correlation between the power spectral density of vCOMacc or apCOMacc in older adults
and the root mean square of lower limb muscle activity.

Older Adults

vCOMacc apCOMacc

Frequency Band (Hz) MG RMS So RMS MG RMS So RMS

0–2 −0.61 ** −0.20 −0.26 −0.21
2–4 −0.43 0.13 0.07 0.06
4–6 −0.19 0.27 0.42 0.55 *
6–8 0.28 0.06 0.53 * 0.27
8–10 0.35 −0.27 0.34 0.18

MG: medial gastrocnemius, So: soleus; * p < 0.05, ** p < 0.01.

4. Discussion

The purpose of this study was to apply wavelet spectral analysis to the study of postural control and
to determine whether aging results in measurable changes in spectral properties during quiet standing.

4.1. Frequency Domain

vCOMacc revealed differing power spectral densities according to age, and the frequencies
showed measurable differences between age groups. Specifically, the relative power spectral density
was characterized by a high-frequency band in older adults. Physical tremors of the soleus muscle [31]
or increased power of lower limb muscle activity in the high-frequency band [32] may be associated
with vCOMacc in older adults; therefore, vCOMacc can be an indicator of age-related neurological or
musculoskeletal decline. Worthy of note was the correlation between the gastrocnemius muscle and
vCOMacc in the lower-frequency band. Previous studies reported that the lower-band oscillatory drive
of the bilateral plantar flexors during a quiet stance is characteristic in older adults [33]. Such an increase
in the low-frequency bands may be associated with poor motor unit firing rate [34], reduced vibrotactile
sensitivity of the foot soles [35], and amplified vestibular motor response [36]. During quiet standing,
the activation of calf muscles plays an important role in the postural control of standing balance [37,38],
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because the ankle joint torque controls the COM behavior [39]. Thus, if the behavior of MG activity
can be estimated from a specific frequency band of vCOMacc, it may be possible to easily obtain more
information from a simple bio signal.

4.2. Time Domain

The results obtained from the MA RMS and the integrated power spectral density RMS were
enough to reliably distinguish young adults from older adults, as shown in Figure 2. A significant
increase in the power spectral density of vCOMacc during standing may be associated with the
age-related decrease in dynamic ballistic muscle strength [40] or in the number of motor units [41].
Additionally, a persistent increase in spectrum density in older adults may be associated with the
sustained and enhanced muscle activity of the plantaris flexors [42,43], as well as a decline in cutaneous
feedback and proprioception [44]. Otherwise, during standing, the body is constantly subjected to micro
vibrations, which may be caused by myocardial contractions [45] or physiological tremors [46–48].

Previous studies also investigated the amplitude and structural variabilities of apCOMacc
and EMG, showing an enhanced relationship between postural variability and responsible muscle
activation [49] Similarly, this study also evaluated the relationship between the sagittal plane COM and
the calf muscles, while a different correlation was found between vCOMacc and calf muscle. Thus, it is
possible that vCOMacc allows the observation of different aspects of balance control.

Note that the correlation between apCOMacc RMS and vCOMacc RMS was low. When apCOMacc
is the result of multilinked joint control of the lower limbs [50], this suggests that vCOMacc is an index
that can evaluate aspects of the physical control mechanism differently from apCOMacc. As the details
of the mechanism giving rise to such characteristics have not yet been clarified, this is a desirable
subject for future studies.

The present study had some limitations. This study relied upon an uncomplicated experiment,
which specifically analyzed time variation in vCOMacc. One of the major objectives of this study was
to investigate whether we could use the obtained data to identify age-related changes in postural
control. However, it was not possible to clarify the cause of age-related differences in vCOMacc
fluctuation. Additional measurements (e.g., heart rate and electroencephalogram recordings) could
provide potential sources of time–frequency differences across age groups. In addition, the number of
subjects who participated in this experiment is small, which may affect the accuracy of the estimation
obtained in this experiment. Therefore, this experiment is positioned as a preliminary experiment for
further research in the future.

In conclusion, a micro acceleration analysis in quiet standing using time–frequency characteristics
revealed differing power spectral densities according to age. Time–frequency analysis showed multiple
spectral activity peaks during body oscillations within each frequency range, indicating that the
underlying signal contained within vCOMacc is highly dynamic. Therefore, the use of time–frequency
methods, which provide information on not only the frequency content but also the timing of these
dynamic features of spectral activity, is recommended for further investigation. Furthermore, vCOMacc
was able to reflect the activity dynamics of lower limb muscle activities in the standing position,
suggesting that neurological information in standing control may be collected using a simple method.
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