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Abstract

Microarray analysis of Pseudomonas aeruginosa mRNA transcripts expressed in vivo during animal infection has not been
previously used to investigate potential virulence factors needed in this setting. We compared mRNA expression in bacterial
cells recovered from the gastrointestinal (GI) tracts of P. aeruginosa-colonized mice to that of P. aeruginosa in the drinking
water used to colonize the mice. Genes associated with biofilm formation and type III secretion (T3SS) had markedly
increased expression in the GI tract. A non-redundant transposon library in P. aeruginosa strain PA14 was used to test
mutants in genes identified as having increased transcription during in vivo colonization. All of the Tn-library mutants in
biofilm-associated genes had an attenuated ability to form biofilms in vitro, but there were no significant differences in GI
colonization and dissemination between these mutants and WT P. aeruginosa PA14. To evaluate T3SS factors, we tested GI
colonization and neutropenia-induced dissemination of both deletional (PAO1 and PAK) and insertional (PA14) mutants in
four genes in the P. aeruginosa T3SS, exoS or exoU, exoT, and popB. There were no significant differences in GI colonization
among these mutant strains and their WT counterparts, whereas rates of survival following dissemination were significantly
decreased in mice infected by the T3SS mutant strains. However, there was a variable, strain-dependent effect on overall
survival between parental and T3SS mutants. Thus, increased transcription of genes during in vivo murine GI colonization is
not predictive of an essential role for the gene product in either colonization or overall survival following induction of
neutropenia.
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Introduction

Modern molecular tools allow for analysis of levels of mRNA in

bacterial cells living in different environments and many such

studies have been applied to Pseudomonas aeruginosa [1,2,3,4,5].

However, apart from one study analyzing mRNA expression in P.

aeruginosa present in the sputum of a single cystic fibrosis patient [6],

no other studies have analyzed P. aeruginosa gene expression during

in vivo infection. Part of the problem lies with recovering sufficient

mRNA from bacterial cells directly isolated from infected tissues for

microarray analysis. In a previously described model of murine GI

colonization and dissemination following induction of neutropenia

[7] we found that high levels of P. aeruginosa could be recovered from

the mouse cecum, potentially identifying a source of in vivo bacterial

mRNA sufficient for microarray analysis. This model mimics the

morbidity and mortality of immunocompromised hosts such as

patients with leukemia, severe burn wounds or recipients of organ

transplants [8]. In many patients at-risk for P. aeruginosa infection (i.e.

surgical patients, cancer patients receiving chemotherapy) the

gastrointestinal (GI) tract is believed to be the main tissue initially

colonized by this organism, often times allowing for translocation to

extra-gastrointestinal sites and, in the worst cases, development of

life-threatening sepsis [9,10]. In this patient group, P. aeruginosa has

the highest case-fatality rate among all gram-negative pathogens

[11]. The mere presence of P. aeruginosa in the GI tract of critically-ill

surgical patients is associated with a 70% mortality rate, a three-fold

increase over physiologically matched critically-ill patients not

infected with P. aeruginosa [12].

Here we report that enough in vivo-expressed P. aeruginosa

mRNA can be recovered from microbial cells in the cecum of
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colonized mice and determined that genes involved in two major

bacterial phenotypes thought to be important in virulence,

production of biofilms and elaboration of type III secretion system

(T3SS) effectors, had consistent increases in mRNA levels when

compared with expression levels in the bacteria living in the water

used to colonize the mice. Using P. aeruginosa strains from both a

non-redundant transposon insert library in strain PA14 [13] as

well as deletional mutants in strains PAK and PA01, we confirmed

that the genes with increased transcription that were involved

biofilm production were deficient in this phenotype in vitro, but

were not compromised in either their ability to colonize the GI

tract in vivo or disseminate following induction of neutropenia.

Mutants in T3SS effector genes were also not deficient for GI

colonization. Mice infected with these mutants had an increase in

time of survival after induction of neutropenia but variable, strain-

dependent effects on overall mouse survival with different T3SS

mutants. Our findings validate a system for measuring gene

expression of P. aeruginosa during an important phase of the

pathogenesis of human disease, but also indicate that increased

mRNA expression is not necessarily predictive of a phenotype

needed by this organism to induce or maintain in vivo infection or

cause WT levels of pathology.

Results

Transcription Profiling of P. aeruginosa in the Murine GI
Tract

We initially identified P. aeruginosa genes that were differentially

transcribed in the GI tract of eight colonized C3H mice in

comparison to genes expressed in sterile water containing 1500 U

penicillin G/mL. For both the basal state and colonization states,

three separate biologic replicates were performed. We chose to use

P. aeruginosa recovered from the drinking water as the baseline

condition since water contaminated with P.aeruginosa is often cited

as the source for both nosocomial and community-acquired P.

aeruginosa infections. Within the hospital, P. aeruginosa is most often

isolated from water sources such as sinks, drains, toilets, and

showers [14] and has been identified by molecular techniques (e.g.

genotyping) to be the causative pathogen in documented P.

aeruginosa infections [15]. Furthermore, community-acquired P.

aeruginosa infections are also often associated with exposure to

contaminated water sources (i.e. swimming pools, hot tubs) [16].

Given the epidemiology of P. aeruginosa acquisition and the fact

that our murine model was designed with the aim of recapitulating

the pathogenesis of P. aeruginosa infection in a human host, we felt

that using bacteria recovered from the drinking water was the best

representative of a baseline condition. Although the P. aeruginosa

arrays were developed using the PAO1 genome [17], previous

studies have shown that the strain PAK transcriptome of the genes

conserved between these two strains can be reliably measured with

P. aeruginosa Genome Arrays (of the 5886 P. aeruginosa probe sets

included on the microarray, 5678 were detected using PAK DNA)

[18]. An average of the microarray hybridization intensity data (3

microarrays) for both baseline (drinking water) and colonization

state (cecums) was generated and compared (Gene Expression

Omnibus Accession Number GSE22665). Statistical analysis of the

derived transcriptomes indicated that 1089 genes (including 321

hypothetical and unclassified genes) showed a two-fold increase in

expression from the baseline to the GI colonization state, and 423

genes (including 229 hypothetical and unclassified genes) showed a

two-fold decrease in expression from baseline (Figure 1).

We found that the transcript levels of genes functionally

classified as being involved in Cell Wall/LPS/Capsule were

generally increased by two-fold or more over expression when the

bacteria are in water: 34 of 86 genes (40%) involved in Cell Wall/

LPS/Capsule function were expressed at a higher level in the GI

tract versus 2 of 86 (2%) genes expressed at a ,2-fold lower level.

In contrast, relatively few genes involved in membrane protein

synthesis were changed (3 of 43 increased versus 7 of 43

decreased), and genes involved in motility and attachment were

roughly evenly increased or decreased (18 of 67 genes had

increased mRNA levels while 20 of 67 genes had decreased

mRNA levels). Of the 16 biofilm genes that we chose to study, 11

of 16 genes (69%) were expressed at .2-fold level in the GI tract

compared to expression levels of bacteria in water. Most

interesting, however, was that 98% of the genes (39 of 40)

involved in the Type III Secretion System had increased

expression and none had decreased expression (Table 1). Of the

5 T3SS genes that we studied, all of the genes (with the exception

of exoU, since exoU is absent in strain PAK) showed a seven-fold or

higher increase in transcript levels (Table 1).

Selection of P. aeruginosa PA14 strains with insertions in
genes needed for biofilm formation

Using the data generated from several studies [19,20,21,22], we

identified genes that have been shown to be important for all

stages of in vitro biofilm formation: fleR, flgK,fliP, sadB, crc, pilB, pilC,

pilY1, PA3782, lasI, rhlA, and rpoN. Next, we cross-referenced the

murine GI colonization transcriptome data that we generated with

three published transcription profiling studies related to P.

aeruginosa biofilm formation in vitro [2,4,5]. Two genes encoding

hypothetical proteins (PA0713 and PA0952) were significantly

increased in 2 or more datasets (Table 2), and two additional genes

encoding hypothetical proteins were found to be important in

biofilm formation using a signature-tagged mutagenesis analysis of

factors needed for virulence in a rat P. aeruginosa pulmonary lung

infection [23] model: PA0141 (25 fold increase) and PA1009 (4.8

fold increase). The transcriptome results generated from murine

GI colonization for genes known to be involved in biofilm

formation in vitro and for the genes encoding hypothetical proteins

are provided in Table 2.

Microtiter Biofilm Assay
We then used a non-redundant transposon mutant library in P.

aeruginosa strain PA14 [13], to retrieve mutant strains with

transposon insertions in the candidate genes identified above

(Table 2). The disruption of the target genes by the transposon was

confirmed by colony PCR. Next, the mutants were tested for biofilm

formation in vitro using a 96-well microtiter plate assay [20] on two

different substrates: polystyrene (PS) and polypropylene (PP).

Several strains (i.e., PA14fliP, fleR and flgK) were attenuated in both

in vitro biofilm formation and growth rates (Figure 2). Assuming a

linear relationship between growth and biofilm formation, biofilm

to growth ratios were calculated to account for differences in growth

(Figure 3). Ratios less than 1 compared to that of the wild-type strain

were designated as indicative of decreased biofilm formation. The

same PA14 mutants (with insertions in pilB, sadB, crc, fleR, pilY1, flgK,

fliP, and pilC genes) that showed significant absolute decreases in

biofilm formation also had biofilm:growth ratios less than 1. (Fig. 3).

We also analyzed biofilm formation by the P. aeruginosa strain

PA14galU2 which is unable to synthesize a complete outer core

lipopolysaccharide (LPS) [24], as this strain is unable to colonize the

antibiotic-treated murine GI tract [7]. Interestingly, the galU mutant

had a biofilm:growth ratio of 2.5 on PP, making it a better biofilm

former than the WT strain PA14.

We also tested biofilm formation under anaerobic conditions (to

better approximate conditions found in the human gastrointestinal

tract[25]) on both PP and PS substrates. The 8 mutants (pilB, sadB,

Analysis of P. aeruginosa Gene Expression In Vivo
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crc, fleR, pilY1, flgK, fliP, and pilC) had comparable biofilm

formation and biofilm/growth ratios when grown anaerobically

as those produced under aerobic growth conditions (data not

shown).

Colonization and Systemic Dissemination from the
Murine GI Tract by Biofilm-deficient TN-mutants

The strains identified as attenuated for biofilm formation in

vitro were further investigated for colonization and dissemination

Figure 1. Functional classification of P. aeruginosa (PAK strain) genes differentially expressed in murine gastrointestinal
colonization. The functional classes are according to the Pseudomonas Community Annotation Project (www.pseudomonas.com). The percentage
of differentially expressed genes is calculated as the number of genes in each class divided by the total number of differentially 26up-regulated or
26down-regulated genes. Note that many genes have more than one functional annotation. LPS, lipopolysaccharide.
doi:10.1371/journal.pone.0015131.g001
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phenotypes in the murine GI tract colonization and dissemina-

tion model [7]. Wild-type P. aeruginosa PA14 consistently

colonized the mouse GI tract at levels comparable to those

previously reported [7] for P. aeruginosa strain PAO1: PA14 (n = 8,

median = 3.766108 cfu/g stool, first quartile = 2.846108, third

quartile = 5.246108) and PAO1 (n = 8, median = 3.526108 cfu/g

stool, first quartile = 2.646108, third quartile = 3.816108, Fig. 4).

All mutant strains colonized the murine GI tract at comparable

levels to WT P. aeruginosa PA14, with the exception of the

PA14crc- mutant and the negative control strain, PA14galU-,

which does not colonize at detectable levels (Fig. 4). The PA14crc-

mutant did colonize the GI tract but at significantly lower levels

(slightly more than one-log) compared to WT PA14: crc (n = 8,

median = 2.936107 cfu/g stool, first quartile = 1.316107, third

quartile = 3.776107; PA14 (n = 8, median = 3.156108 cfu/g

stool, first quartile = 3.026108, third quartile = 3.606108,

p = 0.0002 by Mann Whitney test compared to PA14Dcrc,

Fig. 4). Confirmation of maintenance of the mutant genotype

was obtained by performing PCR on colonies recovered from

murine feces.

Table 1. Type III Secretion Gene Expression in P. aeruginosa murine GI colonization.

Gene Name Function Fold Activation Mean (SEM)

exoS (PA3841) exoenzyme S 25.5 (3.4)

exoT (PA0044) exoenzyme T 18.9 (0.9)

exoY (PA2191) adenylate cyclase ExoY 7.2 (0.1)

exsA (PA1713) transcriptional regulator ExsA 10.0 (0.6)

exsB (PA1712) exoenzyme S synthesis protein B 3.3 (0.6)

exsC (PA1710) exoenzyme S synthesis protein C precursor 3.1 (0.2)

exsD (PA1714) hypothetical protein 7.1 (1.2)

orf1 (PA3842) probable chaperone 14.4 (1.7)

pcr1 (PA1699) conserved hypothetical protein in type III secretion 19.6 (5.1)

pcr2 (PA1700) conserved hypothetical protein in type III secretion 11.0 (1.8)

pcr3 (PA1701) conserved hypothetical protein in type III secretion 10.7 (1.6)

pcr4 (PA1702) conserved hypothetical protein in type III secretion 13.1 (1.8)

pcrD (PA1703) type III secretory apparatus protein PcrD 8.8 (0.8)

pcrG (PA1705) regulator in type III secretion 3.9 (0.1)

pcrH (PA1707) regulatory protein PcrH 9.5 (0.7)

pcrR (PA1704) transcriptional regulator protein PcrR 2.9 (0.3)

pcrV (PA1706) type III secretion protein PcrV 8.5 (1.2)

PopB (PA1708) translocator protein PopB 8.9 (1.1)

PopD (PA1709) Translocator outer membrane protein PopD precursor 10.1 (1.3)

PopN (PA1698) Type III secretion outer membrane protein PopN 12.7 (2.7)

pscB (PA1715) type III export apparatus protein 16.5 (4.0)

pscC (PA1716) Type III secretion outer membrane protein PscC precursor 10.1 (1.0)

pscD (PA1717) type III export protein PscD 12.8 (2.0)

pscE (PA1718) type III export protein PscE 10.4 (2.5)

pscF (PA1719) type III export protein PscF 16.4 (3.8)

pscG (PA1720) type III export protein PscG 10.9 (1.4)

pscH (PA1721) type III export protein PscH 10.1 (2.0)

pscI (PA1722) type III export protein PscI 7.5 (2.6)

pscJ (PA1723) type III export protein PscJ 8.1 (1.8)

pscK (PA1724) type III export protein PscK 6.3 (0.9)

pscL (PA1725) type III export protein PscL 5.2 (1.5)

pscN (PA1697) ATP synthase in type III secretion system 9.1 (0.4)

pscO (PA1696) translocation protein in type III secretion 15.5 (1.4)

pscP (PA1695) translocation protein in type III secretion 58.8 (2.9)

pscQ (PA1694) translocation protein in type III secretion 9.9 (2.3)

pscR (PA1693) translocation protein in type III secretion 5.7 (0.7)

pscS (PA1692) probable translocation protein in type III 4.0 (0.1)

pscT (PA1691) translocation protein in type III secretion 2.8 (0.7)

PA1711 hypothetical protein 3.6 (0.3)

doi:10.1371/journal.pone.0015131.t001

Analysis of P. aeruginosa Gene Expression In Vivo

PLoS ONE | www.plosone.org 4 December 2010 | Volume 5 | Issue 12 | e15131



Table 2. Biofilm genes differentially expressed in P. aeruginosa murine GI colonization.

Gene Name Function Fold activation (mean, SEM)

This study Hentzer et al. Waite et al. 8 hours*Waite et al. 48 hours*

PA0713 Hypothetical 24.8 (2.0) 2.8 3.4 3.7

PA0952 Hypothetical 15.6 (4.7) 4.2 4.4 2.0

PA0141 Hypothetical 24.8 (0.9) 3.0 0.1 0.8

PA1009 Hypothetical 4.9 (0.1) -------- 1.9 1.0

crc (PA5332) Catabolite repression control protein 1.9 (0.1) ------ 0.4 0.4

fleR (PA1099) Two-component response regulator 0.3 (0.03) ------ 0.7 0.1

flgK (PA1086) Flagellar hook-associated protein 1 3.1 (1.0) ------ 0.6 0.2

fliP (PA1446) Flagellar biosynthetic protein 0.3 (0.02) ------ 0.6 0.4

PA3782 Probable transcriptional regulator 2.1 (0.3) ------ 0.5 1.1

pilB (PA4526) Type 4 fimbrial biogenesis protein 2.8 (0.7) ------ 4.5 2.3

pilC (PA4527) Type 4 fimbrial biogenesis protein 6.5 (3.7) -------- 3.1 2.1

pilY1 (PA4554) Type 4 fimbrial biogenesis protein 4.5 (0.7) ------ 4.1 1.7

sadB (PA5346) Predicted signal transduction protein 2.7 (0.5) ------ 0.9 1.3

lasI (PA1432) Autoinducer synthesis protein 0.4 (0.02) ------ 1.3 7.0

rhlA (PA3479) rhamnosyltransferase chain A 0.03 (0.01) ------ 3.0 1.1

rpoN (PA4462) RNA polymerase sigma-54 factor 2.1 (0.3) ------ 0.8 0.5

*Data was obtained from supplementary tables S4-S10 in Waite et al. (available at http://www.biomedcentral.com/content/supplementary/1471-2164-7-162-S3.xls) and
fold regulation was calculated by dividing LP signal with 8 h or dividing SP signal with 48 h biofilm signal or vice versa if expression was down-regulated.
doi:10.1371/journal.pone.0015131.t002

Figure 2. Microtiter Plate Biofilm Assay. P. aeruginosa wild-type strain PA14 and the listed mutants (obtained from a non-redundant PA14
transposon-insertion mutant library) were incubated in 96-well microtiter plates with different substrates (polystyrene and polypropylene) for 12–
14 hours at 37uC. Growth was measured by spectrophotometry (OD630). To assess biofilm formation, microtiter plates were then emptied, washed
with sterile 0.9% normal saline, incubated with 1% crystal violet for 15 minutes at RT, then destained with 95% ethanol. The results are the means of
three separate biological experiments. Each biological experiment contained 7 technical replicates; the mean was obtained for each biological
experiment. The red line indicates biofilm and growth rate for wild-type strain PA14 (100% WT).
doi:10.1371/journal.pone.0015131.g002
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In additional experiments, after establishing and confirming P.

aeruginosa GI colonization, mice were made neutropenic by

administering a single 200 mg injection of monoclonal antibody

RB6-8C5 [7,26]. One-hundred percent of mice colonized with

WT PA14 (n = 8) were euthanized when moribund or died in

between observation periods. Seventy-five to 100% of mice

colonized with all 16 of the PA14 strains with transposon

insertions (n = 8 for each mutant strain) in the genes needed for

full biofilm formation also became moribund and were euthanized

or died in between observation periods. Thus, there were no

significant differences in mortality in mice colonized with either

WT PA14 or Tn-mutant strains unable to produce biofilms in

vitro (Table 3).

To verify P. aeruginosa bacteremia and dissemination had

occurred in the moribund/dead animals, spleens from these

mice were resected and homogenized. Homogenates were

serially diluted and plated on both TSA and cetrimide agar.

The presence of green, oxidase-positive colonies on cetrimide

agar and absence of any heterogeneous colony types on TSA

agar confirmed the presence of P. aeruginosa. All deceased mice

had only P. aeruginosa recovered from the spleens, ranging in

levels from 106 to 109 CFU/g spleen (Figure 5). As with the Tn-

mutant strains recovered from the feces, maintenance of the

mutant genotype following dissemination was also confirmed

with colony PCR performed on P. aeruginosa grown from spleen

homogenates.

Colonization and Dissemination of P. aeruginosa Type III
Secretion Mutants in the murine GI tract

Given that the uniform high expression levels of the genes

involved in T3SS detected during GI colonization, we investigated

the colonization and dissemination phenotypes of P. aeruginosa

strains wherein the exoS, exoT or popB genes were deleted in strains

PAO1 and PAK as well as the transposon insertional mutants in

T3SS genes including exoU in the PA14 background. All three

wild-type strains colonized the mouse GI tract at levels

comparable to those previously reported [7]: P. aeruginosa strain

PAK (n = 8, median = 1.356108 cfu/g stool, first quar-

tile = 1.036108, third quartile = 1.936108); strain PA14 (n = 8,

median = 5.606107 cfu/g stool, first quartile = 2.856107, third

quartile = 8.776107); and strain PAO1 (n = 8, med-

ian = 1.196108 cfu/g stool, first quartile = 7.216107, third quar-

tile = 1.356108). All T3SS mutant strains colonized the murine GI

tract at levels comparable to or even higher (in the PA14 mutants)

Figure 3. Biofilm/Growth Ratios for P. aeruginosa PA14 transposon-insertion mutants listed above. Bars represent the means for three
separate biological replicates (each biological replicate is the mean of seven technical replicates). Ratios ,1 indicate decreased biofilm formation
relative to growth level. By definition WT biofilm/growth ratio is 1, as biofilm and growth levels were used to calculate the ratio are in % of WT. The
red line indicates biofilm growth ratio of 1.0.
doi:10.1371/journal.pone.0015131.g003
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than their respective background strains (data not shown). Thus,

the T3SS does not appear to be critical for GI colonization.

After the mice were made neutropenic by administering mAb

RB6-8C5, 100% of mice colonized with WT strains PAK (n = 8),

PA14 (n = 8), or PAO1 (n = 8) became moribund and were

euthanized or died between observation periods. In contrast, there

were significant differences in the length of survival between the

WT and all their isogenic T3SS mutant strains (Figure 6)

indicating that dissemination of P. aeruginosa in the setting of

neutropenia is modified by the T3SS. However, in these

experiments an overall mouse survival of #37.5% is not

statistically different from the 100% lack of survival following

dissemination of the WT parental strains, and while this was

observed for all of the T3SS mutants in strain PAO1, only the

mice infected with PAKDexoT strain had an overall significantly

higher survival in this strain background. While mice infected with

the PAK double DexoSDexoT mutant did not survive any better

than the mice infected with the parental PAK strain, the difference

in survival between mice infected with the single DexoT mutant

and double DexoSDexoT strains was only 1 animal, likely indicative

of normal experimental variation. None of the mice infected with

the PA14 T3SS-deficient strains had significantly greater overall

survival compared to survival of mice infected with the parental

PA14 strain.

Discussion

P. aeruginosa’s pathogenic signature revolves around its ability to

cause infectious in many clinical settings: ventilator-associated

pneumonia, chronic lung infections in CF patients, skin and soft

tissue infections of burn victims, and bacteremia and sepsis in

cancer patients. The pathogenesis of P. aeruginosa bacteremia in

cancer patients derives from a combination of a chronic, usually

non-pathogenic state of GI colonization followed by an acute,

invasive infection caused by extra-intestinal bacterial translocation

and subsequent bacteremia once the immune system is compro-

mised [9,10,27]. Using a murine model of P. aeruginosa GI

colonization and neutropenia-induced dissemination, we have

shown that factors critical for establishing disseminated disease in

this model encompass the ability to establish GI colonization at

quantitatively sufficient levels (e.g. a minimum of 107 cfu/g stool)

to allow for dissemination from the GI tract once neutropenia is

Figure 4. Gastrointestinal Colonization Levels Mice fed P. aeruginosa strains PA14 and the above listed PA14 transposon insertion
mutants. Points represent result from individual animals (female 6–8 wk-old C3H/HeN mice), and horizontal lines represent the medians. n = 8 for
each strain. Colonization levels with strain Dcrc were significantly lower (p,0.05 by Kruskal Wallis with Dunn’s multiple comparison test) compared
with wild-type strain PA14 (WT).
doi:10.1371/journal.pone.0015131.g004
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induced [7]. We hypothesized that a microarray analysis of in vivo

expressed mRNA transcripts during GI colonization would

identify genes and/or phenotypes predictive of essentiality for

the initiation and/or maintenance of the colonization state.

However, while increased transcription of genes involved in both

biofilm formation and T3SS were found during GI colonization,

mutations in genes needed for these phenotypes did not alter the

ability of P. aeruginosa to colonize the murine GI tract. We did find

that loss of T3SS factors significantly increased the length of

survival of mice infected with these mutants, but there was a

variable effect of loss of the T3SS on overall mouse lethality. In

general, our results indicate that increased mRNA transcription

during in vivo infection may not be indicative of the need for the

encoded protein in the infectious process.

We chose to use the PAK strain for these transcription profiling

experiments because we had the greatest experience using this

particular P. aeruginosa strain for microarray analysis[18], and at

the time of these initial experiments, the PA14 TN library was not

available. We only decided to utilize the PA14 TN mutants

subsequent to the initial transcription profiling experiments.

However, in retrospect the use of a different P. aeruginosa strain

background to validate the results with specific Tn mutants based

on transcriptome-findings with a heterologous strain probably

adds robustness to the data as strain-specific effects are less likely to

have been analyzed in the follow-up studies with the Tn mutants.

In addition to genes encoding proteins needed for biofilm

formation and T3SS, 40% of genes involved in Cell Wall/LPS/

Capsule production were generally increased by two-fold or more

over expression when the bacteria are in water. The ability of P.

aeruginosa to synthesize a complete LPS outer core [24] appears to

be critical for establishing GI colonization in this murine model

[7]. LPS and O-antigen synthesis have also been shown to be

critical in establishing GI colonization with Yersinia pseudotuberculosis

[28], Yersinia enterocolitica [29], and E. coli [30]. Thus, we did not

explore these phenotypes in more depth as the need for production

of an intact LPS by P. aeruginosa to establish and maintain GI

colonization has been validated.

Son et al. [6] reported on P. aeruginosa transcript expression in

CF sputum and found a limited number of transcripts expressed in

vivo compared to those expressed by the same P. aeruginosa strain

grown in vitro. This was surprising given the observation of specific

phenotypes of the organisms found in vivo, such as elaboration of

alginate, not correlating with increased transcription of synthetic

or regulatory genes known to affect this phenotype. Further

analysis indicated that the clinical isolate had increased constitu-

tive expression of mRNA transcripts when grown in vitro when

compared to the mRNA expression in the sequenced PA01 strain,

indicating that many of the phenotypes that had emerged during

chronic infection were based on genetic changes that were not

markedly affected by transfer to the in vitro state for bacterial

growth. When these findings are factored into our results, it seems

that a quantitative increases in vivo expression of P. aeruginosa

mRNA transcripts over that of a comparator in vitro state may have

a limited role in predicting genes involved in the overall

pathogenesis process.

In our experimental data set we found that 90% of the genes

involved in T3SS had increased expression levels compared with

P. aeruginosa in water, and in fact, almost 50% of these genes had

expression levels .10-fold compared to baseline (Table 1) and

none had decreased expression compared to baseline levels.

However, this increased transcription of the T3SS genes did not

predict a role in GI colonization but was associated with increases

in the time of mouse survival following dissemination after

induction of neutropenia. This suggests an importance of these

effectors in the pathogenic process directed to bacterial translo-

cation out of the GI tract and the associated ability of the T3SS

effectors to systemically intoxicate host cells and tissues. Of note,

there was not a uniform effect on overall survival in all three P.

aeruginosa strains resulting from a loss of T3SS. With strain PAO1

all of the groups of mice infected with T3SS mutants had increased

survival, whereas with strain PAK the group of mice infected with

the DexoT mutant, but not the mice infected with the DexoS or

double DexoS/DexoT, survived better than the parental group.

With strain PA14 none of the mice infected with the T3SS

mutants had better overall survival than mice infected with the

parental strain. In the setting of experimental lung infection in

animals evaluating the ExoU cytotoxin [31] as well as data from

human P. aeruginosa lung infections [32,33,34] there is an

indication of a role of the T3SS in virulence, although deletion

of individual T3SS effectors in strain PAO1 had little effect on

overall bacterial replication and survival in the lung [35], and only

popB- and exoSTY-deleted mutants had a defect in systemic spread

from the lung. All of these findings, including those reported here,

not only emphasize the effect of strain background on the

properties of mutant phenotypes but also raise questions as to the

degree to which the T3SS is a factor in P. aeruginosa virulence

among clinical isolates and in which settings of infection this

virulence factor is essential.

In work previously reported by this laboratory, we demonstrat-

ed using immunohistochemical examination of intestinal tissues

(cecal) obtained from mice colonized with P. aeruginosa that clumps

of bacteria were trapped within the mucus layer of the murine

cecums, while few bacterial cells were associated with the

underlying epithelial cells[36]. Thus it appears that P. aeruginosa

is embedded in an extracellular matrix in vivo, reminiscent of the

phenotype commonly referred to as a biofilm mode of growth

[37]. Consistent with these observations are results from

histochemical staining and electron microscopy of lung tissue

specimens obtained at autopsy from cystic fibrosis patients that

Table 3. Survival of neutropenic mice after administration of
0.2 mg RB6-8C5 MAb i.p.

Colonizing Strain
of P. aeruginosa

No. of survivors/No.
challenged mice

Wildtype PA14 0/8

PA14crc- 0/8

PA14fleR- 0/8

PA14flgK- 1/8

PA14fliP- 0/8

PA14pilB- 0/8

PA14pilC- 2/8

PA14pilY1- 1/8

PA14sadB- 0/8

PA14PA0141- 2/8

PA14PA0713- 0/8

PA14PA0952- 1/8

PA14PA1009- 0/8

PA14PA3782- 2/8

PA14lasI- 0/8

PA14rhlA- 0/8

PA14rpoN- 1/8

doi:10.1371/journal.pone.0015131.t003
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also showed that aggregates of P. aeruginosa cells are seen in vivo,

and, like the cells seen in the murine GI tract, are associated with

the mucus and sequestered away from the epithelial surfaces of the

airways [38]. Therefore, there appears to be direct evidence

indicating that P. aeruginosa forms biofilms in both the GI and

respiratory tracts within the mucus layer, but our results indicate

that genes identified as being needed for P. aeruginosa biofilm

formation in vitro are not needed for the mode of growth of the

aggregated bacterial cells observed in vivo.

To fully test whether the biofilm-related genes that had

increased expression in vivo GI colonization were strong candidates

for further evaluation, we compared our microarray results with

those from published studies analyzing the in vitro transcriptomes of

P. aeruginosa cells growing in a biofilm to try and obtain a

comprehensive identification of genes with increased transcription

during biofilm growth. This was predicated on the lack of a

consensus from multiple in vitro studies identifying a clear set of

factors contributing to the biofilm phenotype, as this phenotype

itself can be generated by different in vitro conditions. When

comparing the GI colonization transcriptome data with previously

published studies of in vitro P. aeruginosa biofilm formation, we

ended up choosing twelve P. aeruginosa strains with interruptions in

genes related to biofilm production for full in vivo analysis (crc, fleR,

flgK, fliP, PA3782, pilB, pilC, pilY1, sadB, lasI, rhlA, and rpoN) even

though only 6 of these genes were found to have mRNA

transcripts increased by two-fold or more in vivo: flgK, PA3782,

pilB, pilC, pilY1, and sadB. Of note, all of the genes encoding

hypothetical proteins associated with in vitro biofilm production

showed expression levels that were increased by two-fold or more

in vivo, ranging from 4.4 to 24.8 fold increases from baseline

(Table 2). Nonetheless, even by expanding our in vivo analysis to

include evaluation of the need for genes found to be involved in in

vitro biofilm formation that did not have increased expression in

vivo, we still could not validate a role for biofilm formation in P.

aeruginosa colonization of the GI tract and dissemination following

induction of neutropenia.

Most of the biofilm-defective strains chosen for in vivo analysis

showed this phenotype in vitro. We chose to utilize two different

types of plastic to detect biofilm formation, PS and PP, since prior

investigators had shown that some mutations resulted in loss of

biofilm formation only on specific substrates, [20]. We found that

with the exception of PA14DrhlA, which formed WT-levels of

biofilms on both PS and PP, all the remaining mutant strains were

attenuated in biofilm formation on both substrates (Fig. 2). Even

Figure 5. Viable counts of P. aeruginosa strains PA14 and PA14 Tn-mutants recovered from murine spleens. Points represent result from
individual animals (female 6–8 wk-old C3H/HeN mice), and horizontal lines represent the medians. n = 6–8 for each strain (please refer to Table 3 for
actual numbers for each mutant strain). Mice were initially colonized with PA14 and then subsequently made neutropenic with monoclonal antibody
RB6-8C5 (0.200 mg IP once). Tn, transposon-insertion.
doi:10.1371/journal.pone.0015131.g005
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after correcting for growth differences, the majority of mutant

strains continued to show attenuated biofilm formation; the

exceptions that showed WT biofilm formation with the correction

for slower growth were the rhlA mutant on PS and the pilC mutant

on PP (Fig. 3). What was most striking, however, was that the galU

strain that we include as a negative control for murine GI

colonization had a significantly increased ability to form biofilms in

vitro, with a growth rate comparable to WT P. aeruginosa PA14

(Fig. 3). However, one of the limitations of the biofilm microtiter

assay is that it is an endpoint assay and provides no information

about biofilm developmental stages such as those that can be

analyzed in flow cells. Nonetheless, we tested mutants with

interruptions in both the sadB [19] and lasI [39] genes that have

been shown to affect biofilm formation in dynamic flow cell assays

and found they were also not attenuated in our in vivo system.

While it is not clear which in vitro assay, if any, is useful for

identifying strains attenuated for biofilm formation in vivo, which in

and of itself is not a defined entity, our results suggest that the most

commonly used in vitro methods do not reliably identify genes

needed for in vivo virulence.

Only one P. aeruginosa PA14 mutant, the Dcrc strain exhibited a

defect in GI colonization, which was nearly ten-fold lower than the

wild-type strain (Fig. 4). While it is unclear if differences in

colonization levels are physiologically significant, especially since

the crc mutant caused comparable mortality to that of the WT

PA14 following induction of neutropenia, it is conceivable that in a

murine host colonized with P. aeruginosa along with other

indigenous microbial cells, including anaerobic species, that a

one log decrease in colonization rate may prevent disseminated

disease from developing. We have found that a certain threshold

Figure 6. Survival curves of neutropenic mice colonized with wild-type P. aeruginosa and T3SS mutant strains. Female 6–8 wk-old C3H/
HeN mice were colonized with P. aeruginosa strains PAO1(A), PAK (B), and PA14 (C) and with various deletional or insertional mutations of the type III
secretion system in the corresponding WT background and then subsequently made neutropenic with monocloncal antibody RB6-8C5 (0.200 mg IP
once). Median survival of mice colonized with mutants was significantly higher than that of mice colonized with the corresponding wildtype strain
(P,0.009 for PAO1 mutants, P,0.009 for PAK mutants, P,0.006 for PA14 mutants, log-rank test). Each group contained 8 mice. T3SS, type III
secretion system.
doi:10.1371/journal.pone.0015131.g006
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level of P. aeruginosa GI colonization (e.g. ,56107 cfu/g stool) is

needed in order for translocation to occur once neutropenia is

induced (AYK and GPB, unpublished observation).

In conclusion, we have utilized several independent molecular

and genetic approaches to investigate whether P. aeruginosa genes

noted to be important in in vitro biofilm formation exhibited any

specific phenotype in a murine model of GI colonization and

neutropenia-induced dissemination. Ultimately, we found that

attenuation of biofilm formation in a static in vitro microtiter well

did not correlate with a significant change in GI colonization

level or mortality secondary to disseminated disease. These

findings, however, do not completely diminish the importance of

biofilm formation by P. aeruginosa with regards to GI tract

colonization. Collections of microbial cells that could be called a

biofilm have previously been described in the mucus covering the

intestinal epithelial wall and on particulate matter in the intestine

[40,41]. It is possible that P. aeruginosa does not need any of its

own gene products to make a biofilm in vivo, as the mucus layer of

the intestine is believed to entrap microorganisms [42] and thus

may provide the environment needed for P. aeruginosa cells to

grow close together. If the microorganism can also survive the

antimicrobial factors excreted by the host [43] and can proliferate

faster than the mucus is being shed [44], then a microbial

reservoir is created [45]. The mucus layer could potentially act as

an entrapping matrix, similar to the exopolysaccharide (EPS)

matrix secreted by biofilm forming organisms [46]. Thus, while

all 16 genes in P. aeruginosa that were thought to be needed for

biofilm formation in vitro had no appreciable phenotype in vivo,

indicating that targeting these genes for disruption by therapeutic

interventions likely will have little effect of the pathogenesis on

infection and disease, there may still be potential interventions in

the mucosal colonization process that could reduce the ability of

P. aeruginosa to cause serious systemic infections. Similarly, we

found that while transcription levels of T3SS genes were

markedly elevated in the colonization state versus the basal state,

the phenotype observed was not of decreased GI colonization but

of decreased dissemination and yet there was also a variable effect

from loss of the T3SS when measuring overall survival of

neutropenic mice infected with mutant strains. Ultimately

microarray analysis of in vivo transcriptomes to define genes

needed for virulence may not be a particularly accurate tool and

it seems likely better methods and experimental designs will be

needed to obtain a more accurate prediction of virulence factors

that impact P. aeruginosa virulence.

Materials and Methods

Bacterial strains and growth
The strains of P. aeruginosa used are listed in Table 4. The

ordered transposon library in strain PA14 [13] was kindly

provided by Dr. Fred Ausubel, Boston, MA. P. aeruginosa strains

were grown overnight at 37uC in Luria Bertani (LB) broth (with

the addition of 0.015 mg gentamicin/mL for PA14 transposon-

insertion mutants), harvested by centrifugation, washed with PBS,

and resuspended in PBS in preparation for in vitro biofilm assays as

well as for inoculation into the drinking water to establish GI

colonization in mice. The P. aeruginosa concentration was estimated

using a spectrophotometer and actual cfu counts verified by

enumeration on LB and cetrimide agars.

Production or RB6-8C5 monoclonal antibody and
induction of neutropenia

The RB6-8C5 mAb specific for the Ly6 antigen that is highly

expressed by polymorphonuclear neutrophils (PMN) was pro-

duced by growth of hybridoma cells in culture (Dulbecco’s

modified Eagle’s medium with 10% fetal calf serum (FCS))

followed by purification of antibody by protein G chromatogra-

phy, as previously described [7]. A single dose of 200 mg of RB6-

8C5 was administered to C3H/HeN mice to produce a severe

neutropenia (absolute neutrophil count ,100) for 5 days [7].

Murine model of P. aeruginosa GI colonization and
neutropenia-induced dissemination

We used a murine model of P. aeruginosa GI colonization and

neutropenia-induced dissemination as previously described [7]

with minor modifications. Six- to 8-week-old female C3H/HeN

mice (Harlan Laboratories) were housed as groups of 4 in

sterilized cages equipped with filter hoods. Mice were supplied

with sterile bedding, sterile water and sterile mouse chow and

maintained under specific pathogen-free conditions at the animal

facilities of the Harvard Medical School in compliance with the

Harvard Medical Area Institutional Animal Care and Use

Committee guidelines and at the animal facilities of the

University of Texas Southwestern Medical Center in compliance

with the Institutional Animal Care and Use Committees of the

University of Texas Southwestern Medical Center. To deplete

the indigenous GI bacterial flora, mice were fed sterile water with

2 mg streptomycin/mL (Research Product International, Mt.

Prospect, IL) and 1500 U penicillin G/mL (Sigma-Aldrich, St.

Louis, MO) for 4 days. Stool was collected from individual mice

(0.030–0.050 g per stool pellet), homogenized in 1 mL 1%

proteose peptone, and 100 ml of the homogenate was spread on

trypticase soy (TSA) and MacConkey agars and grown overnight

at 37uC to verify reduction of indigenous GI microbial flora. P.

aeruginosa strains were grown as described above, added to sterile

water with 1500 Units penicillin G/mL at approximately

107 cfu/ml, and then administered to mice for 5 days. Bacterial

water was changed every second day to maintain adequate cfu

levels. After 5 days of exposure to P. aeruginosa, stool was again

collected, homogenized in 1 mL 1% protease peptone, serially

diluted in 1% proteose peptone and dilutions plated on TSA and

LB agar (with 0.015 mg gentamicin/mL (Research Product

International, Mt. Prospect, IL) for PA14 transposon insertion

mutants) to measure levels of GI colonization by P. aeruginosa.

Once colonization with P. aeruginosa was confirmed, 200 mg of

mAb RB6-8C5 was administered to each mouse by IP injection.

For mice colonized with PA14 transposon insertion mutants,

sterile water with 1500 Units penicillin G/mL and 0.015 mg

gentamicin/mL was initiated after RB6-8C5 administration.

Mice were monitored for morbidity for 7 days. Moribund mice

were euthanized and along with mice found dead between

observation periods, the carcasses were frozen at minus 20uC,

later thawed, spleens were resected, homogenized in 1 mL 1%

protease peptone, serially diluted and 10 ml of the homogenate

was drip-plated on TSA and LB (with or without 0.015 mg

gentamicin/mL) agar plates. Growth media were incubated at

37uC overnight under aerobic conditions. The presence of green

oxidase-positive colonies was used for confirmation of P. aeruginosa

systemic dissemination.

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Harvard Medical Area Institutional

Animal Care and Use Committee (Permit Number: 404-R98) and

the Institutional Animal Care and Use Committees of the
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University of Texas Southwestern Medical Center (Permit

Number: 2009-0243). All efforts were made to minimize suffering.

RNA Isolation
In order to establish a comparative transcriptome for P.

aeruginosa isolated from colonized mice, we isolated P. aeruginosa

RNA from bacteria in the drinking water provided to the mice.

Sterile water with 1500 Units penicillin G/mL and P. aeruginosa

strain PAK (107 cfu/ml) was stored in a sterile flask for 24 hours.

Bacteria were harvested by centrifugation, and the RNA isolation

protocol described below was initiated.

To obtain transcriptome information from bacteria colonizing

the murine GI tract, we initiated the murine model utilizing the P.

aeruginosa PAK strain. Seven days after initiating P. aeruginosa

drinking water and two days after confirmation of GI colonization

with PAK, eight mice were euthanized and the cecal contents were

flushed with a buffer containing 10 mM TrisHCl, 1 mM EDTA

and 200 mM NaCl [47] into a sterile stainless steel mortar (Fisher

Scientific, Pittsburgh, PA) which was immediately immersed in

liquid nitrogen. Cecal flushate contents were then ground with a

sterile pestle on a stainless steel mortar immersed in liquid

nitrogen, then added to 0.5 volume of boiling lysis buffer (2%

SDS, 16 mM EDTA, 200 mM NaCl), homogenized, and kept at

100uC for 5 minutes with frequent mixing. A hot acid

phenol:chloroform(5:1 ratio of phenol:chloroform, Ambion, Foster

City, CA) extraction was carried out at 65uC. An additional 2–3

room temperature acid phenol:chloroform extractions were

performed [48] followed by a final chloroform:isoamyl alcohol

extraction. Isopropanol (Sigma-Aldrich, St. Louis, MO) precipi-

tation at 220uC, overnight was followed by treatment with RQ1

DNase (Promega Corporation Madison, WI) for 1 hour at 37uC to

remove contaminating DNA. After DNase treatment and

additional cold acid phenol:chloroform extractions, a final

chloroform:isoamyl alcohol extraction was performed. The

Table 4. Bacterial strains and genotype used in this study.

Strain Relevant genotype or description Source or reference

PAO1 Wildtype, serotype O2/O5, noncytotoxic, chloramphenicol sensitive, pilC+ M. Vasil

PAO1DexoS PAO1DexoS [35]

PAO1DexoT PAO1DexoT [35]

PAO1D2TOX PAO1DexoSDexoT [35]

PAO1D3TOX PAO1DexoSDexoTDexoY [35]

PAO1DpopB PAO1DpopB [35]

PAK Wildtype S. Lory

PAKDexoS PAKDexoS S. Lory

PAKDexoT PAKDexoT S. Lory

PAKD2TOX PAKDexoSDexoT S. Lory

PA14 Wildtype, serogroup O10 strain, cytotoxic (ExoU+) [50]

PA14crc- crc::MAR2xT7a (GmR, 15 mg/ml) [13]

PA14fleR- fleR::MAR2xT7 (GmR, 15 mg/ml) [13]

PA14flgK- flgK::MAR2xT7 (GmR, 15 mg/ml) [13]

PA14fliP- fliP::MAR2xT7 (GmR, 15 mg/ml) [13]

PA14galU- galU::MAR2xT7 (GmR, 15 mg/ml) [13]

PA14pilB- pilB::MAR2xT7 (GmR, 15 mg/ml) [13]

PA14pilC- pilC::MAR2xT7 (GmR, 15 mg/ml) [13]

PA14pilY1- pilY1::MAR2xT7 (GmR, 15 mg/ml) [13]

PA14sadB- sadB::MAR2xT7 (GmR, 15 mg/ml) [13]

PA14PA3782- PA3782::MAR2xT7 (GmR, 15 mg/ml) [13]

PA14PA0141- PA0141::MAR2xT7 (GmR, 15 mg/ml) [13]

PA14PA0713- PA0713::MAR2xT7 (GmR, 15 mg/ml) [13]

PA14PA0952- PA0952::MAR2xT7 (GmR, 15 mg/ml) [13]

PA14PA1009- PA1009::MAR2xT7 (GmR, 15 mg/ml) [13]

PA14lasI- lasI::MAR2xT7 (GmR, 15 mg/ml) [13]

PA14rhlA- rhlA::MAR2xT7 (GmR, 15 mg/ml) [13]

PA14rpoN- rpoN::MAR2xT7 (gmR, 15 mg/ml) [13]

PA14exoU- exoU::MAR2xT7 (gmR, 15 mg/ml) [13]

PA14exoT- exoT::MAR2xT7 (gmR, 15 mg/ml) [13]

PA14popB- popB::MAR2xT7 (gmR, 15 mg/ml) [13]

aMAR2xT7 is a Himar1-derivative that originates from the eukaryotic mariner transposon-family [13].
GmR: Gentamicin resistance.
doi:10.1371/journal.pone.0015131.t004
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aqueous fraction was then precipitated with 2 volumes of 100%

ethanol and 0.1 volume of 3 M sodium acetate (pH 5.5) at 280uC
for 30 minutes. RNA was further purified with RNeasy Mini RNA

purification kit (RNA cleanup protocol; Qiagen, Valencia, CA).

Samples were eluted in 60 ul of RNase-free water. Purity was

confirmed by agarose gel electrophoresis and spectrophotometry

(Nanodrop Technologies, Wilmington, DE). No evidence of

eukaryotic rRNA (18 s at 1.9 kb and 28 s at 5 kb) was detected

using Northern analysis of ethidium bromide stained gels. All

RNA samples used for cDNA synthesis had 260/280 ratios

ranging from 1.7 to 2.0.

cDNA Synthesis and Microarray Hybridization
cDNA was synthesized and hybridized to micoarray chips as

previously described [18]. The protocol and modifications were

as follows: 12 micrograms of purified total RNA extracted from

pooled murine cecal samples (8 mice) or the drinking water

containing strain PAK were converted to cDNA with Super-

script II Reverse transcriptase (Invitrogen, Carlsbad, CA) and a

semi-random decamer, termed (NS)5 (Invitrogen Life Technol-

ogies, custom oligonucleotide order, 59NSNSNSNSNS 39,

where N = A,T,C, or G and S = C or G). As a control for

cDNA production and microarray hybridization, control RNAs

were spiked into the reverse transcriptase reaction. The

resulting cDNA was purified, partially digested with DNase I,

and end labeled with ddUTP-biotin (Enzo Life Sciences,

Farmingdale, NY). The resulting targets were hybridized to

GeneChip P. aeruginosa Genome Arrays (Affymetrix,). Labeled

DNA was hybridized to Affymetrix P. aeruginosa Genome Arrays,

and chips were washed, stained and scanned as previously

described [18].

Microarray Analysis and Statistical Significance
Assessment

Hybridization intensity data was collected from the scanned

array images of three replicate experiments (for both baseline and

GI colonization transcriptome levels), and intrachip normaliza-

tions were performed with Affymetrix Microarray Suite 5.0

software. Statistical analysis and experimental comparisons were

made with GeneSpring version 4.2.1 (Agilent Technologies, Santa

Clara, CA). Significance was established on the basis of three

criteria: first, a Welch t-test was performed to determine whether

the difference in expression for a given gene was greater between

test conditions than within replicates of the same condition. For

this test, a probability cutoff of 0.1 was used (p,0.1). Next, the

average hybridization intensity for each probe set had to be above

background in the activating condition. This determination was

made on the basis of the default absolute call metric in Microarray

Suite 5.0 (Affymetrix). Third, the magnitude of change between

two conditions (baseline drinking water and GI colonization state)

had to be greater than 2-fold [18]. Data generated from three

separate microarrays were used to calculate average transcription

levels. All microarray data is MIAME compliant and has been

deposited into the Gene Expression Omnibus database (accession

number GSE22665).

Colony PCR and gel electrophoresis
A single colony was selected from a plate, transferred into 30 ml

ddH2O and boiled at 100uC for 5 min. Cell debris was pelleted

by centrifugation (2 min at 16,0006g), and supernatants

transferred into a new tube and stored on ice. The supernatant

was used as DNA template for the PCR reaction, which

contained 43 ml of the PCR Platinum Supermix (Invitrogen,

Carlsbad, CA), 1 ml of each forward and reverse primer (10 mM)

and 5 ml of DNA template combined in a PCR tube. Forward

and reverse primers are listed in Table S1. PCR conditions were

as follows: 94uC for 30 sec; 30 cycles of 94uC for 30 sec, 55uC for

30 sec and 72uC for 1 min.; final ext. at 72uC for 5 min. For gel

electrophoresis, 1% agarose (American Bioanalytical, USA) in

TAE gel was used. Samples were run at 100 V for 80 min and

examined in a BioRad Gel Doc XR system (Biorad Laboratories,

Hercules, CA).

All 20 of the mutants used that were retrieved from the P.

aeruginosa PA14 transposon library (24) were confirmed to have the

correct insert based on the results from the colony PCR. The crc

mutant produced a blue/green phenotype when growing on LB-

agar, similar to what was observed by others [22,49].

Microtiter plate biofilm assay
The in vitro biofilm assay was performed as previously described

[20] with the following modifications. A P. aeruginosa Tn-mutant

strain of interest was grown overnight at 37uC on LB agar plates,

then suspended in sterile water with 1500 U Penicillin G/mL and

0.015 mg gentamicin/mL to a concentration of 109 CFU/ml. No

antibiotics were added for wild-type strains. P. aeruginosa bacterial

suspensions were serially diluted to a final concentration of 1:100;

100 ml was transferred to seven replicate wells using sterile PS 96-

well plates (Costar 3596, Corning, Corning, NY) or PP 96-well

plates (Costar 3364, Corning). Four wells in each plate were not

inoculated (LB medium only) for negative control references.

Plates were sealed with parafilm and incubated for 12–14 hours at

37uC. Growth was quantified by using a 96-well ELISA reader

and a wavelength of 630 nm (OD630) (ELx800, Bio-tek Instru-

ments, Winooski, VT). Microtiter plate wells were emptied and

washed twice in 130 ml 0.9% sterile NaCl. 200 ml 1% crystal violet

was added to each well and incubated for 15 min at RT. Wells

were then emptied, washed twice in 130 ml sterile 0.9% NaCl and

destained with 200 ml 95% ethanol for 5 min. Biofilm formation

was quantified using a 96-well ELISA Plate reader and an OD595

wavelength.

For in vitro biofilm formation under anaerobic conditions, we

utilized the same protocol as described above with the following

exceptions. P. aeruginosa strains were suspended in LB broth (with

or without gentamicin) containing 15 mM KNO3 at pH 6.5 and

grown anaerobically in a Coy anaerobic chamber at 37uC for

24 hours [3].

Statistical Analyses
Survival data were analyzed by Fisher’s exact test and log rank

test, and two-way comparisons of GI colonization levels were

carried out using the Kruskal-Wallis with Dunn’s multiple

comparison test to a single control group using the GraphPad

Prism software (San Diego, CA). When multiple comparisons or

more than two groups were analyzed, Bonferroni’s correction to

the significance level a was invoked.

Supporting Information

Table S1 Primer Names and sequences.

(DOC)
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