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Abstract: In this study, MgO-lignin (MgO-L) dual phase fillers with varying amounts of lignin
as well as pristine lignin and magnesium oxide were used as effective bio-fillers to increase the
ultraviolet light protection and enhance the barrier performance of low density polyethylene (LDPE)
thin sheet films. Differential scanning calorimetry (DSC) was used to check the crystalline structure
of the studied samples, and scanning electron microscopy (SEM) was applied to determine morpho-
logical characteristics. The results of optical spectrometry in the range of UV light indicated that
LDPE/MgO-L (1:5 wt/wt) composition exhibited the best protection factor, whereas LDPE did not
absorb ultraviolet waves. Moreover, the addition of hybrid filler decreased the oxygen permeability
factor and water vapor transmission compared with neat LDPE and its composites with pristine
additives, such as lignin and magnesium oxide. The strong influence of the microstructure on thin
sheet films was observed in the DSC results, as double melting peaks were detected only for LDPE
compounded with inorganic-organic bio-fillers: LDPE/MgO-L.

Keywords: lignin; inorganic-organic hybrid materials; bio-fillers; polyethylene

1. Introduction

Presently, material science, which covers polymer materials, is searching for benefits
associated with the wide application of bio-additives in traditional thermoplastics. The
benefits are usually connected with the improvement in technological as well as practical
properties. Numerous considered applications of bio-additives are focused on the modifi-
cation of polymers used for packaging [1–3]. This narrow declaration is connected with the
processing window, which is above 200 ◦C for engineering polymers and thus limits the
use of bio-based cellulose-like particles.

Widely used and commercially available high-volume polymer matrices include,
e.g., high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene
(PP), polystyrene (PS), poly(lactide) (PLA), poly(3-hydroxybutyrate) (PHB), polybuty-
lene adipate-co-terephthalate (PBAT), etc., whereas biopolymers processed using a low
temperature regime that are ready to use as bio-additives mainly include cellulose and
lignocellulose [4–11]. A comprehensive review of the possible lignin interactions in more
than twenty polymeric systems was published by Kun et al. [12]. In general, due to the
highly hydrophilic nature of lignin and other lignocellulosic fillers, they should undergo
modification or plasticization to improve their dispersion in polymeric materials, or a
compatibilizer should be added to increase interfacial adhesion between the components.
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Notably, lignin (aminated lignin) can also be used as a component for absorbers of the
electromagnetic field with a maximum absorbing capacity at 8 GHz band [13]. Moreover,
lignosulfonate was successfully used as a dispersant for improving the fluidity of the
cement paste with an additional increase in compressive strength [14].

If lignin is considered as a functional filler in thermoplastics, its influence on rheologi-
cal and anti-aging properties has to be determined. One of the most expected outcomes
resulting from the presence of lignin is the gain of antioxidation properties. Almost two
decades ago, Pouteau et al. introduced lignin as an antioxidant agent in polypropylene [15].
They examined the oxidation effect based on oxidation induction time (OIT) at 180 ◦C.
They found that the OIT value for PP blended with organosolv lignin was 20 times longer
(670 min) than for pristine PP (30 min). The oxidation behavior was related to the average
aggregate surface area of lignin particles as well as total OH content, whereas the induction
time decreased roughly with OH content. They also confirmed that lignosulfonate has
no effect on OIT due to its great polarity. The same positive impact of lignin on thermo-
oxidative durability was noted for the LDPE polymer [16]. The influence of lignin on the
thermal degradation of isotactic polypropylene, investigated by thermogravimetric analy-
sis, was reported by Canetti et al. [17]. An increase in thermal degradation temperature
of the blends was observed under oxidative and non-oxidative conditions. The increase
was noticeable for the experiments carried out in air atmosphere, where the interactions
between the polypropylene and the lignin led to the formation of a protective surface able
to reduce the oxygen diffusion toward the polymer bulk. Antioxidant effectiveness in
relation to PP was detected by Gregorova et al. [18]. Another positive influence of using
lignin on polymer properties should be underlined in the case of permeability reduction,
which was confirmed in systems with PLA [19].

Some of the published results also showed lignin activity in UV absorption, such as
how PLA films blended with lignin exhibited absorption in nearly the entire UV wavelength
range (200–700 nm) [20]. Absorption of UV light spectra is mainly linked with the phenolic
groups and conjugated carbonyl groups present in lignin [21]. Lignin, as an ultraviolet
absorbent, was positively evaluated by Toh et al. [22] and by Domenek et al. [23].

A positive aspect of lignin is associated with the increase in thermal degradation
temperature of PP and its flame retardation properties [17,24]. The fire retardancy of lignin
is also increased by small amounts of other known non-halogenated fire retardants to
reduce the flammability of PP; hence, synergism can be achieved [25,26].

Thinking about lignin as a polymer modifier, we assumed that not only functional
properties such as permeability, UV stabilization, and flame retardation should be strictly
taken into account in direct applications. From a practical point of view, much attention
should also be paid to technological properties. Therefore, in our previous studies, we
confirmed the positive role of kraft lignin combined with oxides in film weldability and
strength of welded sheets [27]. We also showed that the MgO-lignin hybrid additive gained
the thermoforming ability of low density polyethylene in case of uniform wall thickness
distribution of thermoformed shapes [28].

Since we proved that dual-phase fillers may be used as an effective modifier of
technological as well as mechanical properties of polymers, it is obligatory to investigate
their impact on some crucial properties adequate for film packaging materials. In this
research, compounds based on low density polyethylene with MgO-lignin hybrid materials
were studied to validate their potential availability as packaging materials by means of gas
permeation and ultraviolet barrier properties. By presenting the newly obtained results,
the material characteristics of LDPE/MgO-lignin hybrid compounds were determined.
Therefore, we decided to update the already published results and complete the data
regarding technological and application material properties, which are crucial from a
practical point of view.
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2. Materials and Methods
2.1. Materials

The following reagents were used to conduct the experiments: (i) magnesium oxide–
MgO (CAS Number: 1309-48-4), type caustic calcined magnesia (CCM) with purity ≥ 99%
from Sigma Aldrich (Steinheim am Albuch, Germany), and (ii) kraft lignin–alkali lignin
(CAS Number: 8068-05-1), with an average Mw ~10,000 from Sigma Aldrich (Steinheim am
Albuch, Germany).

The polymer matrix used in this work was a low density polyethylene (LDPE) Malen
E FGNX 23-D006 grade, from Basell Orlen Polyolefins (Płock, Poland). The producer
describes this grade as being suitable for manufacturing of highly transparent, very fine
films. Moreover, extruded films exhibit very good mechanical properties and are notable
for their high transparency and gloss. Malen E FGNX 23-D006 has a melt flow rate (MFR)
of 0.8 g/10 min at 190 ◦C. As a polar component and a compatibilizing agent, polyethylene-
graft-maleic anhydride copolymer was used, supplied by Sigma-Aldrich (Steinheim am
Albuch, Germany), with 0.5% maleic anhydride content.

2.2. Preparation of MgO-Lignin Dual Bio-Fillers

MgO-lignin dual bio-fillers were synthesized via grinding and mechanical-alloying
methods. This process was described in detail in our previous works [25,26].

As part of this publication, MgO-lignin systems with the following weight ratio of in-
organic to organic parts were prepared: 5:1, 1:1, and 1:5. All important details regarding the
dispersive and morphological characteristics, scanning electron microscopy images, and
physicochemical results were presented and discussed in our previous paper [27]. Addi-
tionally, MgO particle diameter data are presented as follows: d(0.1)–0.6 µm, d(0.5)–1.2 µm,
and d(0.9)–2.2 µm, which means that the percentage contribution (10, 50, 90%, respectively)
of the particles volume distribution is below this diameter. The average particle size of
MgO is 1.5 µm.

2.3. Preparation of LDPE/PE-g-MAH/MgO-Lignin Composites

The compounding of LDPE/PE-g-MAH and the prepared MgO-lignin fillers with
different lignin amounts in the filler structure was carried out by melt mixing in a twin
screw extruder Zamak 16/40 EHD (Zamak Mercator Sp. zo.o., Skawina, Poland), working
in a co-rotating mode. The plasticizing unit, which includes screws with the diameter of
16 mm, is characterized by a 40 L/D ratio and is equipped with three segments of kneading
disc blocks, which facilitate higher shear stress. All composites were extruded with a
barrel temperature of 160–185 ◦C and a screw rotation speed of 150 rpm. Some detailed
information regarding screw configuration and other processing parameters were presented
in our previous work [29]. The pellets of LDPE and granulated composites of LDPE/PE-g-
MAH/MgO-lignin were cast-extruded using a single screw extruder (Metalchem 28/30,
Gliwice, Poland) (screw diameter of 28 mm, and 30 L/D ratio) and a semi-laboratory chill-
roll device (Remi-Plast, Czerwonak, Poland). The line was equipped with a 1 mm thick
and 170 mm long slit die and two chill rolls. The temperature profile at the plasticizing unit
was set to 160, 175, 165, 174, 180, and 190 ◦C from feed to die, with a main screws rotation
speed of 70 rpm. For all compositions, the chill roll temperature was set to 40 ◦C using
an external cooling chiller. During thin film casting, only one chill roll speed was used:
2 m/min. The optical pictures of foil strips are presented in Figure 1. The contributions of
all components in prepared composites are listed in Table 1.
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wt/wt), and (f) LDPE/Lignin. 
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LDPE/Lignin 
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samples were first heated to 250 °C at a rate of 10 °C/min, then isothermally treated for 5 
min to eliminate their thermal history and subsequently cooled to 25 °C at a rate of 10 
°C/min, under nitrogen atmosphere. In the first heating segment, the samples showed 
thermal effects that originate from oriented structure due to stretching in the chill-roll 
device. The second endotherm was recorded in the same regime as first one. The heat of 
crystallization was calculated relevant to that of pure crystalline PE (293 J/g according to 
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2.5. Microstructural Investigations 
The morphology of the film surfaces was observed using SEM (Tescan Mira3, Tescan, 
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Figure 1. The apparent transparency cutaway foil strips of extruded samples: (a) pristine LDPE,
(b) LDPE/MgO, (c) LDPE/MgO-L (5:1 wt/wt), (d) LDPE/MgO-L (1:1 wt/wt), (e) LDPE/MgO-L
(1:5 wt/wt), and (f) LDPE/Lignin.

Table 1. Percentage contributions of MgO-lignin (MgO-L) bio-filler into LDPE matrix in films
extruded with a chill roll speed of 2 m/min.

Film Composition
Composition

Polymer Content
(%) of Weight

Filler Content
(%) of Weight

PE-g-MAH
(%) of Weight

LDPE 100.0 - -

LDPE/MgO
LDPE/MgO-L (5:1 wt/wt)
LDPE/MgO-L (1:1 wt/wt)
LDPE/MgO-L (1:5 wt/wt)

LDPE/Lignin

93.0 5.0 2.0

We decided to present all further material characteristics only for the compound with
5 wt % filler content and film sheets produced with a chill roll speed of 2 m/min. This
results from all of the technological and material properties that we already published
being established exactly for the compounds defined above.

2.4. Differential Scanning Calorimetry (DSC) Analysis

The melting and crystallization temperatures as well as heats of fusion and crystal-
lization of the samples were measured using a Netzsch 204 F1 Phoenix (Selb, Germany)
differential scanning calorimeter. Three runs were applied for sample characteristics. The
samples were first heated to 250 ◦C at a rate of 10 ◦C/min, then isothermally treated for
5 min to eliminate their thermal history and subsequently cooled to 25 ◦C at a rate of
10 ◦C/min, under nitrogen atmosphere. In the first heating segment, the samples showed
thermal effects that originate from oriented structure due to stretching in the chill-roll
device. The second endotherm was recorded in the same regime as first one. The heat of
crystallization was calculated relevant to that of pure crystalline PE (293 J/g according
to [30,31]).
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2.5. Microstructural Investigations

The morphology of the film surfaces was observed using SEM (Tescan Mira3, Tescan,
Brno, Czech Republic) equipped with EDS (Oxford Instruments Ultim Max 65). An ac-
celerating voltage of 12 kV was applied. Prior to SEM observation, the sheet surface of
selected films was cleaned with methanol and dried for 220 min at 60 ◦C. All samples were
sputtered coated with an amorphous layer of carbon with a thickness of approximately
20 nm. The Jeol JEE 4B vacuum evaporator (Peabody, MA, USA) was used. The contents of
elements such as Mg were analyzed. Due to the low atomic number of carbon, its content
was not measured. The distribution of element concentrations in the form of EDS patterns
maps were performed.

2.6. UV-Vis Absorption Test

The optical properties of the composite films were determined by measuring the
absorption of light at 190–1100 nm, at the optical resolution of 4 nm, using a UV-Vis
spectrophotometer (UV line 9400, Schott Instruments, Mainz, Germany).

2.7. Gas Permeability and Water Vapor Permeation Tests

Oxygen permeability (OP) of films was measured using a Lyssy L100-5000 analyzer
(Systech Illinois, Devens, MA, USA), following the manometric method (pressure change
via gas transmission through films), according to the PN-EN ISO 2556:2002 standard. Films
were conditioned for at least 2 days at 23 ◦C and 52% RH prior to analysis. Their thicknesses
were measured by a micrometer and varied from 96–255 µm. Three individual tests were
conducted for each sample. The OP is given in the units (mL/m2/24 hours) at a pressure
difference of 100 kPa.

Water vapor permeability (WVP) was assessed according to standard PN-EN ISO
15106-1:2005 by using a Lyssy L80-5000 (Systech Illinois, Devens, MA, USA) analyzer. The
equipment can measure high permeability materials using special sample cards. Pristine
and modified LDPE films were conditioned for at least 2 days at 23 ◦C and 52% RH prior
to analysis. Their thicknesses were measured by a micrometer and varied from 60–247 µm.
Samples were cut and sealed in aluminum foil with a round shape open area of 5 cm2.
The WVP of the samples was measured at 38 ◦C and at a relative humidity of 90%. Three
individual tests were carried out for each ample.

3. Results and Discussion
3.1. Thermal Behavior of the LDPE/MgO-Lignin Composites

The DSC curves recorded during the first heating (Figure 2) show differences in the
melting region of LDPE. It can be clearly seen that the thermograms of samples with dual
fillers and pristine lignin include double melting peaks, shifted by approximately 2–3 ◦C.
For LDPE/MgO and LDPE/MgO-L (5:1 wt/wt) samples (blue- and green-colored curves,
respectively), there is a slight indication of shoulder peak, located on the main melting
effect, however, without curve inflection. The separation of the main melting peak into
two closely placed peaks (overlapping effect) probably resulted from the interaction of
particles, as lignin was doped and arrangement of molecular chains located close to filer
particles originated from stretching in the chill-roll device. Notably, double melting peaks
are present for composites with higher lignin content. Cheng et al. [32] stated that an
addition of nano-microparticles would involve two crystalline morphologies with crys-
talline regions: homogenous nucleated and heterogenous nucleated. Another possibility
for the appearance of the two melting peaks could be associated with the presence of the
compatibilizer–malleated polyethylene (MAPE). As shown by Diop et al. [33], a possible
bonding reaction between lignin and MAPE resulted in high interface adhesion. The
authors confirmed their theoretical considerations based on the morphology investigation,
which brought evidence that lignin was perfectly bonded to the matrix. By the incorpo-
ration of low molecular weight proadhesive agent MAPE into a nonpolar (LDPE)–polar
(lignin) system, the interface tension was reduced and some molecular rearrangement
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during film stretching was possible. If we consider only the relationship between com-
ponential ratios (oxide/lignin), it is clear that increasing the amount of lignin in hybrid
fillers results in an increase in crystallinity of LDPE and the appearance of a double peak of
endothermic peak appeared (Table 2). The crystallization temperature from the melting
state was characterized by identical values for all samples, which means that under con-
trolled cooling conditions in the DSC chamber, without stretching, the tested fillers had a
negligible influence on the crystallization process and crystallinity (Figure 3a). As shown
in Figure 3b, based on the presented curves adequate for second heating, only one main
endothermic effect appeared for all tested samples. Moreover, the crystallinity of LDPE and
its composites seemed to be constant, without regular relation to the sample composition,
and varied between 37.5% and 41.3% (Table 2). A similar relation of thermal properties
was observed by Olmos et al. during studies of LDPE combined with silica fumes [34].
Additionally, during cooling after isothermal treatment at 250 ◦C, the crystallization process
was similar for all samples.
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Table 2. Calorimetric parameters from first heating, cooling, and second heating scans for all materials.

Sample Tm1 (◦C) ∆Hm1 (J/g) Xc1 (%) Tc (◦C) Tm2 (◦C) Xc2 (%)

LDPE 114.5 110.7 37.78 95.8 114.5 40.36

LDPE/MgO
LDPE/MgO-L (5:1 wt/wt)
LDPE/MgO-L (1:1 wt/wt)
LDPE/MgO-L (1:5 wt/wt)

LDPE/Lignin

114.2 108.8 37.05 96.7 113.3 39.96
115.8 104.9 35.79 95.9 114.3 39.33

110.2; 115.8 104.2 35.55 96.0 113.6 40.22
114.0; 116.4 114.4 39.04 96.6 114.0 37.57
116.6; 114.3 118.7 40.50 96.9 113.0 41.36

Note: Tm1, Tm2–melting peak temperature at 1st and 2nd heating; ∆Hm1–enthalpy of melting at 1st heating; Xc1,
Xc2–crystallinity at 1st and 2nd heating; Tc–crystallization peak temperature.
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3.2. Microscopic Observation

The SEM micrographs of the MgO and lignin particles as well as images of the surface
morphology of their composites with LDPE are shown in Figures 4 and 5, respectively.
Pristine MgO exhibited a tendency to form agglomerated structures, which were composed
of platy or disc-shaped particles (Figure 4a,b). The morphology of LDPE/MgO also in-
cluded platy inclusions (particles covered by the polymer layers), but the isolated platy
forms were characterized by a diameter of 20 µm. In turn, kraft lignin particles possessed
a rather spherical shape, with numerous clearly visible microbubbles inside one single
broken particle (Figure 5a,b). Partially flat, embedded particles can be seen in Figure 5c,d,
which confirm the fragmentation of lignin particles during the melt processing, especially
in the twin screw extruder equipped with kneading blocks. In contrast, a noticeably im-
proved particle dispersion was seen for composites with hybrid fillers (MgO-L). Dispersed
particles in those composites were separated, and only small, spread aggregates were
visible (Figure 6a,b). The most uniform particle distribution and no visible aggregates were
noted for composites with the MgO-L (1:5) hybrid filler. In Figure 6c, only isolated particles
with diameter lower than 10 µm can be observed. This observation was confirmed by the



Materials 2021, 14, 2114 8 of 15

magnesium Mg mapping using SEM-EDS analysis (Figure 7). In Figure 7a, there is a huge
irregular inclusion in the morphology, and EDS analysis confirmed that it represented
agglomerated magnesium oxide particles. As mentioned earlier, composites with hybrid
fillers MgO-L (5:1) and MgO-L (1:1) exhibited a morphology with small agglomerates,
which is also confirmed by the local, minor concentration of magnesium in polyethylene
matrix. EDS mapping of the composite with MgO-L (1:5) hybrid filler revealed the uniform
spread distribution of magnesium, without local clumps, confirming the observation using
the SEM technique for this composite (Figure 7d).
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3.3. UV Absorption Properties

The UV–visible light absorption curves of the composites in the wavelength range of
200–800 nm are presented in Figure 8. The neat LDPE film exhibited almost no absorption
in the wavelength range greater than 220 nm due to the rather high transparency of the
sample (Figure 8). Addition of pristine magnesium oxide into LDPE did not change the
absorbance trace, as confirmed by a lack of any light absorption at wavelengths above
240 nm. The incorporation of the hybridized filler MgO-lignin system into LDPE, especially
for dual fillers MgO-L (1:1 wt/wt) and MgO-L (1:5 wt/wt), resulted in a sharp absorption
peak (located at approx. 220 nm) and a broad peak formed in the range of 280–400 nm.
Shankar et al. also reported that PLA blended with lignin and silver nitrate exhibited two
bands of UV absorbance, one narrow with a shoulder effect (lignin absorbance) and one
broad at 450 nm, connected with silver action [20]. The first peak can be attributed to
the presence of a chromophore C=O in the lignin chain, while the broad peak indicates
the absorption resulting from phenolic groups and conjugated structure of lignin. It is
unexpected that we did not observe a strong absorption signal and protection that might
be associated with the presence of lignin. However, the broad peak in the LDPE/lignin
material spectra was also present. This behavior can result from additional operations such
as ball milling and sieving, which were only applied in the case for dual filler powders.
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Pristine magnesium oxide and lignin, as byproducts, did not undergo such treatment. These
results indicated that the composite films with the highest amount of lignin incorporated
into a hybridized filler labelled as a MgO-L (1:5 wt/wt) possessed an excellent UV-barrier
property. The increased UV-barrier property of the mentioned material was primarily
attributed to the absorption of UV light by aromatic groups and conjugated carbonyl
groups in lignin [22,35,36] and to the very uniform spread of those particles (without huge
aggregates) in the LDPE matrix, as was noted during the SEM investigation (Figure 6c).
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3.4. Barrier Properties of Studied Compounds

Food packaging of polymeric films is the main application of the studied compounds,
for which the barrier property of the film should be improved. The permeable properties of
LDPE/MgO-lignin composites films were evaluated in terms of the oxygen transmission
rate (OTR) and water vapor transmission rate (WVTR), and the results are presented in
Tables 3 and 4, respectively. The oxygen permeability value of the LDPE, which was
equal to 779 mL/m2/day atm, is a similar value to that presented by Mooninta et al.
(697 mL/m2/day atm) [37]. The addition of MgO filler resulted in a dramatic increase in the
OTR of the film up to 1292.6 mL/m2/day atm, which was the highest result obtained in this
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investigation. For the majority of the tested samples, the OTR was also higher than in case
of LDPE, which was attributed to the agglomerates of MgO (Figure 5a) and poor dispersion
of lignin and some hybridized filler (Figure 6a–c). Surprisingly, the application of the MgO-
L (1:5 wt/wt) hybrid additive decreased the oxygen transmission rate in LDPE by approx.
18%. The explanation of this beneficial aspect is associated with the very fine dispersion
of the filler in the matrix, which promotes increased tortuosity of the permeate path, as
frequently suggested in nanocomposite systems [38]. For the water vapor transmission
test, in contrast with the gas barrier properties, the WVTR values of all tested composites
were lower compared with that of neat LDPE. The reduction in WVTR was equal to at least
38% in case of MgO, as the additive with the worse dispersibility. In contrast, the higher
reduction in water transition occurred in LDPE/MgO-L (1:5 wt/wt) and for LDPE/lignin
systems, by 56% and 68%, respectively. This means that the increase in lignin content
results in a better barrier for water transition. One of the possible explanations of this
feature is the presence of –OH groups in lignin and the affinity to water molecules, which
are able to form a hydrogen bond, and therefore reduction of water permeability increases.
A similar observation was reported by Kaboorani et al. when LDPE was mixed with
thermoplastic starch (TPS) and particles of cellulose nanocrystals (CNCs) [39]. In this work,
the WVTR reduced from 22.2 to 17.2 (g/m2/day) for LDPE/TPS and LDPE/TPS/CNCs
composites, respectively.

Table 3. Oxygen transmission rate (OTR) of neat LDPE film and composite films.

Sample O2 Permeability S.D. Change

(mL/m2/Day atm) (%)

LDPE 779.0 5.1 -

LDPE/MgO
LDPE/MgO-L (5:1 wt/wt)
LDPE/MgO-L (1:1 wt/wt)
LDPE/MgO-L (1:5 wt/wt)

LDPE/Lignin

1292.6 118.2 rise 65
920.3 54.8 rise 18

1011.5 84.1 rise 29
635.1 33.9 drop 18
818.1 55.1 rise 5

Table 4. Water vapor transmission rate (WVTR) of neat LDPE film and composite films.

Sample WVTR S.D. Change

(g/m2/Day) (%)

LDPE 8.16 0.05 -

LDPE/MgO
LDPE/MgO-L (5:1 wt/wt)
LDPE/MgO-L (1:1 wt/wt)
LDPE/MgO-L (1:5 wt/wt)

LDPE/Lignin

5.00 0.63 drop 38
3.85 0.91 drop 52
4.57 1.17 drop 43
3.53 0.26 drop 56
2.56 0.24 drop 68

4. Conclusions

In the present study, we examined the functional properties of LDPE/MgO-lignin
composites interpreted as barrier properties and ultraviolet light absorption efficiency. As
shown, the oxygen permeability, which is used frequently as a key factor in packaging
materials, reached the lowest value for the LDPE/MgO-L (1:5 wt/wt) composite. The
vapor transmission evaluated for that material is almost twofold lower than for neat LDPE.
It should be underlined that the oxygen permeability of composite films was significantly
affected by the microstructure in our composites, as LDPE/MgO-L (1:5 wt/wt) was charac-
terized by the most uniform particle distribution and a lack of aggregate formation. The
UV-barrier property of the composite films can be used as UV-screening films for food
packaging application, especially for the best material, which again was the LDPE/MgO-L
(1:5 wt/wt) composite. Therefore, we summarize that combining oxide and lignin via
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mechanical synthesis is a promising and practical direction to prepare novel compounds,
which include bio-resource components. Based on our previous reports as well as the
present study, after extensive studies of triple material composites LDPE/MgO-lignin,
we confirm that the stoichiometric composition of hybrids and their excellent spread in
polymer matrix are the key factors that influence the most important properties. Moreover,
in our earlier studies, we confirmed that the mechanical as well as technological (weld-
ability, thermoforming ability) properties are better than those of LDPE, which is the most
popular food packaging material. Additionally, the optical properties changed notably for
the hybrid films, and the anti-UV properties of the hybrid films are significantly improved
by UV absorbance.
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