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Abstract

Background: Chance imbalance in baseline prognosis of a randomized controlled trial can lead to over or underestimation
of treatment effects, particularly in trials with small sample sizes. Our study aimed to (1) evaluate the probability of
imbalance in a binary prognostic factor (PF) between two treatment arms, (2) investigate the impact of prognostic
imbalance on the estimation of a treatment effect, and (3) examine the effect of sample size (n) in relation to the first two
objectives.

Methods: We simulated data from parallel-group trials evaluating a binary outcome by varying the risk of the outcome,
effect of the treatment, power and prevalence of the PF, and n. Logistic regression models with and without adjustment for
the PF were compared in terms of bias, standard error, coverage of confidence interval and statistical power.

Results: For a PF with a prevalence of 0.5, the probability of a difference in the frequency of the PF$5% reaches 0.42 with
125/arm. Ignoring a strong PF (relative risk = 5) leads to underestimating the strength of a moderate treatment effect, and
the underestimate is independent of n when n is .50/arm. Adjusting for such PF increases statistical power. If the PF is
weak (RR = 2), adjustment makes little difference in statistical inference. Conditional on a 5% imbalance of a powerful PF,
adjustment reduces the likelihood of large bias. If an absolute measure of imbalance $5% is deemed important, including
1000 patients/arm provides sufficient protection against such an imbalance. Two thousand patients/arm may provide an
adequate control against large random deviations in treatment effect estimation in the presence of a powerful PF.

Conclusions: The probability of prognostic imbalance in small trials can be substantial. Covariate adjustment improves
estimation accuracy and statistical power, and hence should be performed when strong PFs are observed.
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Introduction

Because randomization attempts to balance the distribution of

known and unknown prognostic factors (PFs) between treatment

groups, authorities view it as critical for ensuring unbiased

assessment of treatment effects [1]. Despite randomization,

imbalance in PFs as a result of chance (chance imbalance) may

still arise, and with small to moderate sample sizes such imbalance

may be substantial [2,3]. Ignoring chance imbalance in key PFs

between treatment groups may result in a biased estimate of the

treatment effect, particular when a large between-group difference

occurs in a powerful PF [4–7].

Control for unbalanced PFs is often achieved via statistical

techniques such as regression analysis, sometimes in conjunction

with other design features such as stratified randomization.

Adjusting for balanced or marginally unbalanced PFs of high

predictive value increases statistical power and reduces sample size

requirements [8–13]. While including balanced baseline covariates

in linear models does not change the estimate of treatment effect,

omitting balanced covariates in logistic regression models may lead

to underestimation of subject-specific treatment effects [14–16].

Although guidelines for RCTs recommend conducting both

unadjusted and adjusted analyses [17–19], only a minority of

trials report adjusted analyses [13,20]. Moreover, although

recommendations also suggest specifying key PFs in the protocol

based on prior judgement, there is often insufficient prior

knowledge to ascertain all important PFs before a trial commences

[13,21].

Sample size of RCTs plays a critical role in balancing known

and unknown PFs between treatment groups. Although many

clinical trials with a binary outcome employ power calculations to
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determine an adequate sample size, underpowered studies are

common [22–24]. Among 519 PubMed-indexed RCTs published

in December 2000, the median total sample size per trial was 52

(10th–90th percentile: 12–310) considering all designs and 80 (10th–

90th percentile: 25–369) considering only parallel-group trials [25].

A more recent systematic review of 215 two-arm parallel group

RCTS of superiority with a single primary outcome published in

six high impact factor general medical journals between January 1,

2005 and December 31, 2006 indicates a larger median total trial

size of 425 (interquartile range: 158–1041) [26]. Sample size

calculations often assume a balance of prognosis between the

treatment groups regardless of sample size, yet the distribution of

the possible unobserved PFs can be difficult to examine using

empirical data mainly because they are unobserved.

The current simulation study was designed to address three

objectives: (1) to evaluate the probability of imbalance in a binary

PF between two treatment groups in simple RCTs with standard

randomization (without stratification, blocking or minimization)

evaluating a binary outcome; (2) to investigate the impact of

prognostic imbalance on the estimation of treatment effect; and (3)

to examine the effect of sample size on the probability and impact

of prognostic imbalance in RCTs.

Methods

Simulation framework
We considered parallel group RCTs with a binary outcome in

which equal numbers of patients were randomized to the

treatment and control groups. For simplicity, we confined our

attention to only one baseline PF without stratification. Five trial

design parameters were considered: the frequency of the outcome

event in the control group; the effect of treatment on the outcome;

the strength of the association between the PF and the outcome;

the prevalence of the PF; and the sample size.

We explored two simulation settings. For setting #1, we did not

impose any level of imbalance, but simply generated a binary PF

(C = 0, 1) independently from the treatment allocation (T = 0, 1)

for each simulated trial. We refer to this as the ‘‘unconditional

setting’’. This setting allowed us to evaluate the cumulative

probability of prognostic imbalance greater than or equal to some

level, and address whether or not adjusting for a baseline PF that is

subject to chance imbalance improves the accuracy, precision and

efficiency of the estimation of treatment effects.

We refer to setting #2 as the ‘‘conditional setting’’ for which we

imposed a particular level of imbalance in each simulated trial,

specifically, 5% more patients in the control group having the PF

than those in the treatment group. Although, over a large number

of RCTs, the probability of repeated occurrence of imbalance

approaches zero, the conditional setting allowed us to explore

what would happen if there were a 5% imbalance in a particular

trial. This provided a way to assess the magnitude of potential bias

resulting from an imbalance if it was unobserved or omitted from

the analysis. It also allowed us to study whether this potential bias

could be controlled by increasing the sample size.

Setting #1: the unconditional setting. Each simulated

dataset in the unconditional setting consisted of a binary indicator

for treatment allocation (T = 0, 1), a binary baseline PF (C = 0, 1),

and a binomial response variable (Y), indicating the number of

patients who experience an outcome event (D = 0, 1) for each T-C

categorization. We related the log odds of experiencing the

outcome D = 1 conditional on the allocated treatment and baseline

prognosis through the following model:

Simulation model:

log
Pr(D~1DT ,C)

1{Pr(D~1DT ,C)
~b0zb1Tzb2C, ð1Þ

where b0 corresponds to the log odds of the outcome among

patients without the PF in the control group, b1 corresponds to the

log odds ratio (OR) of having the outcome in the experimental

treatment group relative to the control group conditional on

baseline prognosis (i.e. the treatment effect), and b2 corresponds to

the log OR of the outcome among patients having the PF versus

not conditional on treatment status.

We assumed equal numbers of patients being randomized to the

experimental group (T = 1) and control group (T = 0), i.e.

n1 = n0 = n. We sampled C independently of T from the binomial

distribution Bin(ni, l), with prevalence l being fixed at 14 values

between 0.005 and 0.995, namely, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and 0.995. We simulated 8

scenarios (Table 1) by varying each of three parameters to reflect

typical features of a cardiovascular prevention trial: (a) risk of

outcome event in the control group (a low risk of 0.05; and a

moderate risk of 0.10), (b) treatment effect size in the absence of

the PF (a moderate effect: relative risk [RR] of 0.75; and a zero

effect: RR of 1), and (c) effect of the PF on the outcome in the

control group (a strong effect: RR of 5; and a moderate effect: RR

of 2). If the covariates are strongly predictive of the outcome, i.e.

strong PFs, mild or moderate imbalance can result in a biased

effect estimate [3,27]. The potential impact of dissimilarity in such

strong PFs between groups can plausibly be greater when the risk

of event in the control group is low, because results of hypothesis

testing may be more sensitive to the change in the numbers of

outcome events in treatment groups when the outcomes are rare.

For each scenario, we investigated six sample sizes and the 14 l
values listed above. Considering a clinical trial aiming to detect a

moderate treatment effect (i.e. RR = 0.75) and a moderate risk of

the outcome in the control group (i.e. 0.10), a standard power

calculation suggests a total of 4000 patients (2000 per group) is

needed to yield type I and type II error rates of 5% and 20%,

respectively. To assess the impact of sample size on prognostic

imbalance, we also included K, J and 1/16 of this calculated

sample size for each simulation scenario (corresponding to 1000,

500 and 125 patients per arm, respectively). We also considered

two smaller sample sizes (25 and 50 patients per arm) because

small trials occur frequently in medical publications [25]. We

simulated 10,000 trials per prevalence per sample size per

scenario.

Setting #2: the conditional setting. We also simulated

10,000 replicates for each combination of the prevalence and

sample size per scenario as per Table 1 in the conditional setting.

For each trial, 5% more patients had the PF in the control group

than the treatment group. We fixed the overall proportion of the

PF at each of the 11 values: 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, and 0.95, as the probability of observing a 5% imbalance

is extremely low for l,0.05 or .0.95. We conducted all

simulations and analyses in R 2.12.1.

Analysis
Distribution of imbalance. For each scenario, we retained

the simulated proportion of patients with the PF per arm, with

continuity correction by adding 0.5 to each T-C categorization to

handle sparse cells [28]. We quantified imbalance using two

different measures: the absolute difference (D1) and the standard-

ized difference (D2), as follows:

Prognostic Imbalance in RCTs
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N D1~ pc
1{pc

0

�� ��, and

N D2~ pc
1{pc

0

�� ��. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5pc

1 1{pc
1

� �
z0:5pc

0 1{pc
0

� �q
,

where pc
i = proportion of patients having the PF (C = 1) (with

continuity correction) at baseline in the treatment (i = 1) or control

(i = 0) group. We decided to use the absolute difference, D1, as the

primary measure of imbalance, because it is more intuitive for

clinicians. The standardized measure has been advocated for

having better statistical properties and may be more appealing to

the statistical audience [29,30]. We assessed the probabilities of

observing different levels of imbalance for each sample size: Pr

(Di$d1), where d1 = 0.005, 0.01, 0.025, 0.05, 0.10, 0.15, 0.20.

Impact of prognostic imbalance on treatment effect

estimation. We fit two logistic regression models to evaluate

the effect of treatment with and without adjustment for the PF.

The adjusted model was the same as the underlying simulation

model (Eq. 1) and the unadjusted model took the form of Eq. 2.

Unadjusted Model:

log
Pr(D~1DT)

1{Pr(D~1DT)
~a0za1T , ð2Þ

where a0 represents the log odds of having the outcome among

patients in the control group (with or without the PF), and a1

represents the log OR of the outcome in the experimental

treatment group relative to the control group regardless of baseline

prognosis.

For each simulated RCT, we recorded the estimated regression

coefficients, their associated estimated standard errors (SEs), 95%

confidence intervals (CIs, based on Ward test), and fitted

probabilities of the outcome for each T-C (for the adjusted model)

or C (for the unadjusted model) categorization. For each scenario,

bias of the estimated regression coefficient (âa1 or b̂b1) relative to the

true log OR (b1), its empirical standard deviation (SD), and mean

squared error (MSE) were recorded for each model. The empirical

coverage of the 95% CI was computed as the proportion of CIs

that contained the true effect; and power was calculated as the

proportion of replications where the CI excluded the null.

Results

Distribution of imbalance
Figure 1 displays the cumulative probabilities of an imbalance

using the absolute measure (D1) with 25, 50, 125, 500, 1000, and

2000 patients per arm. For a fixed sample size, the probability of

imbalance varied with the prevalence of the PF (l): imbalance was

more likely to occur when l is close to 0.5, but probability

diminished as l approached 0 or 1. The probability of imbalance

increased markedly as sample size decreased regardless of l. For a

PF with prevalence of 0.5, the probability of an imbalance $5%

was about 0.02 with 1000 patients per arm, 0.1 with 500 patients

per arm, and 0.42, 0.62 and 0.67 with 125, 50 and 25 patients per

arm, respectively. When the prevalence of PF was 0.05,

Pr(D1$0.05) increased from #0.0001, 0.0004, 0.059, 0.24 and

0.29 as sample size decreased from 1000 to 25.

Figure S1 displays the cumulative probability of imbalance

using the standardized measure (D2). Because the absolute

difference was scaled by the pooled SD to create the standardized

measure, l had little impact on the probability of D2, except for

the extreme values. Common for both imbalance measures, the

chance of imbalance decreased with increasing sample size.

However, the relationship between the probability of imbalance

and the prevalence of the PF differed using different measures.

Impact of prognostic imbalance on treatment effect
estimation

Setup #1: the unconditional setting. Scenario 1 corre-

sponded to trials with a 10% risk of the outcome in the control

group, a strong prognostic factor (RR = 5), and a moderate

treatment effect (RR = 0.75, corresponding OR = 0.73) (Table 1).

Figures 2 and 3 depict the bias and empirical SD of the point

estimator of log OR, the coverage of the 95% CI, and the

empirical statistical power for the adjusted and unadjusted models

with 125 and 2000 patients per arm. When PF was omitted from

the logistic regression, the estimated log OR was biased towards

zero.

The magnitude of bias declined as l approached 0 or 1, but

varied little with sample size when each arm had 50 or more

patients. The adjusted estimator b̂b1 was unbiased conditional on

baseline prognosis, and independent of l and sample size, when

there were over 50 patients per arm. With 25 patients per arm,

estimated log ORs from both models tended to be biased towards

zero for l#0.1; the adjusted estimates were slightly negatively

biased for greater l values. This was possibly due to the lack of

outcome events to reliably estimate the treatment contrast (Figures

S2 and S3).

Adjusting for the PF reduced precision of the point estimator,

especially when the trial size was less than 500 per arm. The

adjusted model was able to maintain the nominal coverage of the

Table 1. Simulation scenarios for the unconditional and conditional settings.

Scenario
Effect of treatment
in RR* (B1)

Effect of PF
in RR{ (B2)

Incidence of
outcome (B0) Prevalence of PF (C) Sample size/arm

1 0.75 (20.315) 5 (2.197) 0.1 (22.197)

2 0.75 (20.315) 2 (0.811) 0.005–0.995 (a) 25

3 1 (0) 5 (2.197) (unconditional) (b) 50

4 1 (0) 2 (0.811) (c) 125

5 0.75 (20.301) 5 (1.846) 0.05 (22.944) 0.05–0.95 (d) 500

6 0.75 (20.301) 2 (0.747) (conditional) (e) 1000

7 1 (0) 5 (1.846) (f) 2000

8 1 (0) 2 (0.747)

*Relative risk of having an outcome event for people receiving the experimental treatment (vs. control treatment) without the prognostic factor.
{Relative risk of having an outcome for people with vs. without the PF in the control group.
doi:10.1371/journal.pone.0036677.t001
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Figure 1. Probability of imbalance using absolute measure (D1) with different trial sizes. Lines correspond to Pr (D1$d1), where d1 = 0.005
(hollow circle), 0.01 (triangle), 0.025 (cross), 0.05 (X), 0.10 (diamond), 0.15 (inverted triangle), and 0.20 (filled circle), from the top to the bottom,
respectively. Top left: 25/arm, top right: 50/arm, middle left: 125/arm, middle right: 500/arm, bottom left: 1000/arm, bottom right: 2000/arm.
doi:10.1371/journal.pone.0036677.g001
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95% CI for different trial sizes. In contrast, coverage of the

unadjusted model was less than the nominal value for most l
values, when sample size exceeded 500 per arm; the decline was

more drastic when l was near 0.5. For a PF with prevalence of 0.5,

the actual coverage of the unadjusted 95% CIs was 95%, 93.58%,

91.15%, and 88.12% with 25–125, 500, 1000 and 2000 patients

per arm, respectively.

When l decreased to 0.05, coverage of the unadjusted 95% CIs

was roughly around the nominal value. Despite a slight loss of

precision, the adjusted model had equal or greater statistical power

across of the spectrum of the prevalence of PF. The gain in power

was more marked when sample size was between 500 and 1000

per arm (Figures S4 and S5), probably due to the floor or ceiling

effect associated with very small or large sample sizes, i.e. power

from both models approached 0 or 100%, so the difference in

power between models shrank accordingly.

For a PF with prevalence of 0.5, the loss of power of the

unadjusted model relative to the adjusted model was 3.44%,

15.20%, 11.29%, 14.39%, 9.66%, and 2.61% with 25, 50, 125,

500, 1000 and 2000 patients per arm. The two models achieved

similar power for a rare PF with l,0.1. For both models, the

precision of point estimator and empirical power increased with

the number of outcome events resulted from increasing sample

size and l.

As relative risk of experiencing an outcome event for those with

the PF versus those without in the control group reduced from 5 to

2 (scenario 2), bias associated with the unadjusted point estimator

of log OR became negligible for all trial sizes (except for 25 per

arm with l#0.2). The adjusted and unadjusted models were also

similar in terms of precision, coverage of CI and statistical power

(Figures S6, S7, S8, and S9).

When the treatment had no effect on the outcome of interest

(scenarios 3 and 4), the adjusted and unadjusted models produced

unbiased point estimate despite the predictive power of the PF.

Adjusting for baseline PF was not necessary in this situation to

remove bias, and in fact it led to a slight inflation of SD. Sample

size had little impact on the comparative performance of the two

models, and nominal coverage of CI was achieved for both models

(Figure S10).

For scenarios 5–8, where there was 5% risk of the outcome in

the control group, the results demonstrated patterns similar to

those described above for the first four scenarios. Precision of the

point estimates and statistical power were lower for both models in

scenarios 5–8. The magnitude of bias of the unadjusted log OR

estimator in scenario 5 was slightly less than those in scenario 1.

Figure 2. Bias, simulation standard deviation (SD), coverage proportion and statistical power for the unadjusted and adjusted
logOR, in scenario 1, the unconditional setting, with 125 patients per arm. The unadjusted model is indicated by the dotted line with
hollow circles, and the adjusted model is indicated by the solid line with filled circles.
doi:10.1371/journal.pone.0036677.g002
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Differences in statistical power between two models also decreased

slightly with the risk of outcome event when a treatment difference

truly existed.

Figure 4 and Figures S11 and S12 display distributions of the

differences (DORR) between the estimator of OR reduction (ORR,

defined as 1 - OR) and the true ORR, i.e. DORR~OR̂RR-ORR,

across the spectrum of l, based on 10,000 trials in scenario 1, with

125 patients per arm. The vertical axis represents the proportion

of trials associated with a difference greater than or equal to a

certain value d2, where d2 = 0, 0.05, 0.10, 0.15, 0.2 or 0.25. While

Figure 4 corresponds to the probability of deviations in either

direction, Pr( DORRj jƒd2), Figures S11 and S12 correspond

specifically to underestimation, Pr(DORRƒ{d2) and overestima-

tion, Pr(DORR§d2), respectively. Figure 5 and Figures S13 and

S14 present distributions of DORR for the same scenario with 2000

per arm. Tables 2 and 3 present the proportions of difference at

selected l values across all sample sizes in scenario 1.

Overall, the proportion of random deviations decreased when

the sample size, l and the size of the deviation increased. When

l= 0.05 in scenario 1, the probabilities of DORR$0.05 (in either

direction) from the true ORR was 0.87–0.88 and 0.52 with 125

and 2000 patients per arm, respectively, for both models (Table 2).

In comparison, the probabilities of DORR$0.1 dropped to 0.75–

0.76 (125/arm) and 0.20 (2000/arm) at the same prevalence

(Table 3). When the treatment effect was zero, the corresponding

probabilities of a given deviation were higher (Tables 4 and 5). For

instance, probabilities of DORR$0.1 were 0.78–0.81 (125/arm) and

0.30–0.32 (2000/arm) when l= 0.05 in scenario 3. The proba-

bilities of DORR$0.1 remained above 0.8 with 50 or less patients

per arm in all scenarios, when l was between 0.01 and 0.5.

In scenario 1, the distribution of the unadjusted ORR estimates

was positively skewed, indicating a higher likelihood of underes-

timation than overestimation when PF was a strong predictor of

the outcome and treatment was moderately efficacious. Adjusting

for PF made the distribution of the ORR estimator symmetric

around the true effect, i.e. random fluctuations were equally likely

in either direction. When the influence of the PF was moderate or

the actual treatment effect was zero, adjusting for PF did not

improve accuracy or precision of the estimate.

Setup #2: the conditional setting. For all 8 scenarios in the

conditional setting, the adjusted model produced roughly unbiased

estimates of the treatment effect and maintained nominal coverage

of the 95% CI. The unadjusted model overestimated treatment

effects, and the model performance was influenced by multiple

factors including the treatment effect, the effect and prevalence of

the PF, and the sample size.

Figure 3. Bias, simulation standard deviation (SD), coverage proportion and statistical power for the unadjusted and adjusted
logOR, in scenario 1, the unconditional setting, with 2000 patients per arm. The unadjusted model is indicated by the dotted line with
hollow circles, and the adjusted model is indicated by the solid line with filled circles.
doi:10.1371/journal.pone.0036677.g003
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Figures S15 and S16 display the performances of the adjusted

and unadjusted models in scenario 1 under the conditional setting

with 125 and 2000 patients per arm. Ignoring the fact that 5%

more patients had this PF in the control arm led to substantial

overestimation of treatment effect. Bias was comparatively larger

when PF was rare: when l ranged between 0.05 and 0.2, bias of

the unadjusted estimate of log OR, âa1, relative to b1 was between

20.18 and 20.09, with 125 per arm in scenario 1. Varying sample

size led to little change in the magnitude of bias in scenario 1,

though estimates were more variable with 125 or fewer patients

per arm. Coverage of the unadjusted CI was greater than its

nominal value with 125 or fewer per arm for most prevalence

values between 0 and 1. The coverage reduced substantially as

sample size went beyond 1000 per arm; when l#0.2 or$0.8

coverage of the unadjusted CI dropped to 60%–90%. For a fixed

sample size, the unadjusted estimate had slightly greater precision

than the adjusted estimate; but the difference diminished as sample

size increased.

With PF RR = 2 in scenario 2, bias of the unadjusted point

estimator decreased with sample size and varied little with l. The

average biases of âa1 over the 11 prevalence values investigated

were 20.014, 20.055 and 20.050 with 25, 50 and 125 patients

per arm respectively and reduced to 20.015, 20.007 and 20.004

when the sample size reached 500, 1000 and 2000 per arm. The

corresponding biases of the adjusted log OR estimator, b̂b1, were

0.024, 20.024, 20.012, 20.005, 20.002 and 20.001. Both

models achieved similar coverage when sample sizes were greater

than or equal to 50 per arm, and demonstrated comparable

precision.

The unadjusted model had slightly greater power though this

advantage decreased as sample size increased. When the treatment

had no effect, performance of the adjusted and unadjusted models

in scenarios 3 and 4 was similar to that in scenario 2. Omitting a

stronger PF in analysis again led to a greater bias for a fixed

sample size and bias again shrank as trial size enlarged. Findings

similar to scenarios 1–4 were demonstrated when the risk of

Figure 4. Probability of difference between the estimated and true ORR (deviation in either direction) in scenario 1, the
unconditional setting, with 125 patients per arm. Within each graph, lines correspond to Pr (|DORR|$d2), where d2 = 0 (solid circle), 0.05 (bullet),
0.10 (little circle), 0.15 (square), 0.2 (diamond) and 0.25 (triangle), from top to bottom, respectively.
doi:10.1371/journal.pone.0036677.g004

Figure 5. Probability of difference between the estimated and true ORR (deviation in either direction) in scenario 1, the
unconditional setting, with 2000 patients per arm. Within each graph, lines correspond to Pr (|DORR|$d2), where d2 = 0 (solid circle), 0.05
(bullet), 0.10 (little circle), 0.15 (square), 0.2 (diamond) and 0.25 (triangle), from top to bottom, respectively.
doi:10.1371/journal.pone.0036677.g005
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Table 2. Probability of difference between the estimated and true ORR$0.05 in the unconditional setting scenario 1.

Difference from true ORR$0.05 Unadjusted model Adjusted model

Sample size Prevalence of PF Prevalence of PF

0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.5

Over- 25 0.45 0.45 0.44 0.44 0.44 0.45 0.44 0.46 0.48 0.47

estimation 50 0.46 0.44 0.43 0.42 0.39 0.47 0.47 0.47 0.47 0.45

125 0.44 0.42 0.39 0.35 0.33 0.45 0.45 0.44 0.43 0.42

500 0.37 0.33 0.29 0.24 0.20 0.38 0.38 0.37 0.36 0.33

1000 0.32 0.27 0.21 0.16 0.11 0.33 0.33 0.31 0.29 0.26

2000 0.25 0.19 0.14 0.08 0.04 0.27 0.26 0.25 0.23 0.18

Under- 25 0.52 0.50 0.48 0.47 0.51 0.52 0.51 0.48 0.46 0.46

estimation 50 0.47 0.49 0.49 0.47 0.49 0.46 0.46 0.46 0.44 0.45

125 0.43 0.45 0.46 0.48 0.48 0.43 0.43 0.43 0.43 0.41

500 0.39 0.41 0.44 0.46 0.47 0.39 0.37 0.37 0.36 0.33

1000 0.34 0.37 0.42 0.46 0.46 0.33 0.32 0.32 0.31 0.28

2000 0.28 0.33 0.38 0.44 0.44 0.27 0.26 0.26 0.25 0.20

Overall 25 0.96 0.94 0.92 0.91 0.95 0.97 0.95 0.94 0.94 0.93

50 0.93 0.92 0.92 0.89 0.88 0.93 0.93 0.93 0.91 0.90

125 0.88 0.87 0.86 0.84 0.81 0.88 0.88 0.87 0.86 0.83

500 0.76 0.75 0.73 0.70 0.66 0.76 0.75 0.74 0.72 0.67

1000 0.66 0.64 0.63 0.62 0.57 0.66 0.65 0.63 0.60 0.54

2000 0.54 0.52 0.51 0.52 0.48 0.54 0.52 0.51 0.48 0.38

ORR: odds ratio reduction; PF: prognostic factor.
doi:10.1371/journal.pone.0036677.t002

Table 3. Probability of difference between the estimated and true ORR$0.10 in the unconditional setting scenario 1.

Difference from true ORR$0.10 Unadjusted model Adjusted model

Sample size Prevalence of PF Prevalence of PF

0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.5

Over- 25 0.37 0.37 0.38 0.40 0.38 0.39 0.41 0.43 0.44 0.44

estimation 50 0.40 0.39 0.39 0.38 0.33 0.42 0.43 0.43 0.43 0.39

125 0.38 0.35 0.32 0.28 0.24 0.39 0.38 0.37 0.35 0.33

500 0.26 0.22 0.17 0.12 0.08 0.27 0.25 0.24 0.22 0.18

1000 0.17 0.13 0.09 0.05 0.02 0.18 0.18 0.16 0.14 0.09

2000 0.09 0.05 0.03 0.01 0.00 0.10 0.09 0.07 0.07 0.03

Under- 25 0.51 0.49 0.47 0.43 0.42 0.52 0.49 0.46 0.43 0.42

estimation 50 0.41 0.43 0.44 0.45 0.42 0.41 0.43 0.42 0.40 0.40

125 0.39 0.40 0.41 0.42 0.39 0.38 0.38 0.38 0.37 0.34

500 0.29 0.30 0.31 0.32 0.30 0.28 0.27 0.26 0.24 0.20

1000 0.21 0.23 0.25 0.26 0.24 0.20 0.20 0.19 0.17 0.13

2000 0.13 0.15 0.17 0.19 0.15 0.12 0.11 0.10 0.08 0.05

Overall 25 0.88 0.86 0.85 0.83 0.80 0.91 0.90 0.89 0.88 0.86

50 0.81 0.81 0.83 0.82 0.75 0.83 0.85 0.85 0.83 0.79

125 0.76 0.75 0.72 0.70 0.63 0.76 0.76 0.75 0.72 0.67

500 0.55 0.52 0.49 0.45 0.38 0.55 0.52 0.50 0.47 0.39

1000 0.38 0.36 0.34 0.32 0.26 0.38 0.37 0.35 0.30 0.22

2000 0.22 0.20 0.20 0.20 0.15 0.22 0.20 0.18 0.15 0.08

ORR: odds ratio reduction; PF: prognostic factor.
doi:10.1371/journal.pone.0036677.t003
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Table 4. Probability of difference between the estimated and true ORR$0.05 in the unconditional setting scenario 3.

Difference from true ORR$0.05 Unadjusted model Adjusted model

Sample size Prevalence of PF Prevalence of PF

0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.5

Over- 25 0.39 0.41 0.41 0.42 0.43 0.39 0.44 0.47 0.48 0.47

estimation 50 0.44 0.44 0.44 0.45 0.46 0.44 0.47 0.47 0.47 0.46

125 0.45 0.46 0.46 0.45 0.42 0.46 0.45 0.45 0.45 0.44

500 0.41 0.41 0.39 0.39 0.36 0.33 0.32 0.31 0.30 0.27

1000 0.36 0.35 0.35 0.33 0.31 0.37 0.36 0.36 0.35 0.32

2000 0.31 0.30 0.29 0.27 0.23 0.31 0.30 0.30 0.29 0.26

Under- 25 0.40 0.41 0.41 0.43 0.44 0.41 0.45 0.47 0.47 0.48

estimation 50 0.43 0.43 0.45 0.45 0.45 0.43 0.46 0.47 0.47 0.46

125 0.46 0.46 0.46 0.45 0.42 0.46 0.45 0.45 0.44 0.44

500 0.40 0.40 0.39 0.38 0.35 0.41 0.40 0.40 0.39 0.37

1000 0.37 0.36 0.35 0.34 0.31 0.37 0.37 0.35 0.35 0.33

2000 0.32 0.31 0.30 0.28 0.24 0.32 0.32 0.31 0.29 0.26

Overall 25 0.79 0.81 0.82 0.85 0.87 0.80 0.89 0.93 0.95 0.95

50 0.86 0.88 0.89 0.90 0.91 0.87 0.93 0.94 0.94 0.92

125 0.92 0.93 0.92 0.91 0.83 0.92 0.90 0.90 0.89 0.88

500 0.81 0.81 0.78 0.77 0.71 0.73 0.72 0.71 0.69 0.64

1000 0.73 0.71 0.70 0.67 0.61 0.73 0.73 0.72 0.70 0.65

2000 0.63 0.60 0.59 0.55 0.47 0.63 0.62 0.61 0.58 0.53

ORR: odds ratio reduction; PF: prognostic factor.
doi:10.1371/journal.pone.0036677.t004

Table 5. Probability of difference between the estimated and true ORR$0.10 in the unconditional setting scenario 3.

Difference from true ORR$0.10 Unadjusted model Adjusted model

Sample size Prevalence of PF Prevalence of PF

0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.5

Over- 25 0.39 0.41 0.41 0.42 0.43 0.39 0.42 0.45 0.46 0.44

estimation 50 0.44 0.44 0.44 0.45 0.39 0.43 0.44 0.44 0.43 0.42

125 0.38 0.39 0.39 0.38 0.36 0.39 0.40 0.39 0.39 0.37

500 0.31 0.30 0.28 0.27 0.23 0.31 0.31 0.29 0.29 0.25

1000 0.24 0.22 0.21 0.18 0.14 0.24 0.23 0.22 0.21 0.16

2000 0.16 0.14 0.13 0.11 0.06 0.16 0.14 0.14 0.12 0.09

Under- 25 0.40 0.41 0.41 0.43 0.44 0.40 0.43 0.45 0.45 0.46

estimation 50 0.43 0.43 0.45 0.45 0.41 0.43 0.43 0.45 0.44 0.42

125 0.41 0.39 0.39 0.39 0.37 0.42 0.41 0.40 0.39 0.38

500 0.32 0.31 0.30 0.28 0.24 0.33 0.32 0.31 0.30 0.27

1000 0.26 0.25 0.22 0.20 0.16 0.26 0.26 0.24 0.22 0.20

2000 0.18 0.17 0.15 0.12 0.08 0.18 0.17 0.17 0.15 0.11

Overall 25 0.79 0.81 0.82 0.85 0.87 0.79 0.84 0.89 0.91 0.89

50 0.86 0.88 0.89 0.89 0.80 0.86 0.88 0.88 0.87 0.84

125 0.79 0.78 0.78 0.78 0.73 0.81 0.81 0.80 0.78 0.75

500 0.63 0.61 0.58 0.54 0.47 0.64 0.63 0.60 0.59 0.52

1000 0.49 0.47 0.43 0.38 0.30 0.50 0.49 0.47 0.43 0.36

2000 0.34 0.30 0.27 0.23 0.15 0.34 0.32 0.30 0.27 0.20

ORR: odds ratio reduction; PF: prognostic factor.
doi:10.1371/journal.pone.0036677.t005
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outcome events in the control group reduced from 0.1 to 0.05

(scenarios 5–8). A low event rate in each trial resulted in reduced

precision and statistical power. Bias of the unadjusted log OR

estimates decreased with sample size and was generally smaller

than the counterpart in the previous scenarios.

Discussion

Our simulation results demonstrate that small sample size is

associated with a high risk of imbalance in PFs in individual simple

RCTs. The probabilities of an absolute imbalance $5% in a

binary PF of prevalence 0.5 is 0.42, 0.62 and 0.67 with 125, 50

and 25 patients per arm. The probability of absolute imbalance

decreases as sample size increases or prevalence of PF approaches

0 or 1.

Failing to adjust for a largely balanced strong PF (RR = 5) in a

logistic regression model leads to bias toward no treatment effect

when the actual size of treatment effect is moderate (RR = 0.75);

this bias varies little with sample size greater than 50 patients per

arm. Adjusting for such a PF reduces precision of the effect

estimate but increases statistical power. The gain in power is

comparatively larger when sample size is between 500 and 1000

per arm and prevalence is within 0.2–0.6, relative to other cases.

When the PF is less powerful and a treatment difference exists,

improvement in accuracy and efficiency associated with the

adjustment for a largely balanced PF is less noticeable. When the

treatment effect is zero, such covariate adjustment leads to

minimal loss of precision. Overall the simulation results based

on a single binary baseline PF suggest it is critical to adjust for

important PFs in trials evaluating a binary outcome. If ignored,

substantial bias due to confounding or non-collapsibility can

emerge; bias would be more marked when PF has high predictive

value and sample size is small to moderate.

It is challenging to establish a single rule for sample size

requirement focused on the probability and impact of prognostic

imbalance. Multiple factors influence the requirement.

Firstly, sample size should be sufficiently large that the

probability of imbalance is restricted to a reasonably low value.

The adequate sample size varies with the choice of imbalance

measure, the size of imbalance that is deemed important, and the

prevalence of the PF. For example, Figure 1 suggests that if an

absolute measure of imbalance $0.05 is deemed important, 1000

patients per arm is a reasonable size.

Secondly, sample size should be sufficient to produce a reliable

estimate of treatment effect. Although it has less impact on the

magnitude of bias around the mean effect estimate in the

unconditional setting, sample size does affect precision. While

adjusting for PF removes systematic bias, estimates from an

individual trial may still deviate from the true effect in either

direction due to random sampling variation. Tables 2 and 4

suggest that probabilities of having an absolute deviation . = 0.05

(in either direction) from the true ORR are 0.87–0.93 and 0.52–

0.62 for trials recruiting 125 and 2000 patients per arm,

respectively. If trialists are willing to tolerate a slightly bigger

deviation from the true ORR, for instance, no more than 0.1, the

above probabilities decrease to 0.75–0.81 (125/arm) and 0.20–

0.32 (2000/arm) for both models, and 2000 patients per arm then

seems to be a reasonable sample size (Tables 3 and 5). As PF

becomes less prevalent, larger trial sizes are required for purposes

of precision. When randomization partially or completely fails, no

statistical adjustment or increase in sample size can fully correct

the resulting bias.

The current investigation on the likelihood of prognostic

imbalance and its implications for sample size requirements is

consistent with previous findings. A minimum of 100 patients per

arm has been suggested to control the chance of imbalance of 20%

or more in a single PF [31], and 1350 per arm may be needed to

minimize the chance of a 5% imbalance [3]. Although Cui et al

calculated the probabilities of a 20% imbalance in at least one out

of k independent PFs (k = 2, 3, and 4) [31], situations involving

multiple correlated PFs are worth further investigation.

Gail first demonstrated that omitting balanced baseline

covariates in logistic regression asymptotically (i.e. for very large

sample sizes) results in downward bias on the subject-specific

treatment-outcome association [14]. This is also referred to as the

non-collapsibility problem [16], because the odds ratio as the

measure of association between the treatment and the binary

outcome within each category of the baseline covariates (i.e.

conditional or subject-specific association) is different from the

association across all categories of the covariates (i.e. the marginal

or average association).

In their simulation study [32], Negassa and Hanley showed that

omitting an important balanced continuous or binary covariate in

logistic regression model lowers both the coverage probability (that

is, the proportion of the time that the CI contains the true value of

interest in a set of hypothetical repetition of data collection and

analysis procedure [33]) and study power in binary trials with

moderate sample sizes (n = 500 and 1000). These findings are

complemented by a simulation study that explored the effect of

imbalance in two continuous baseline covariates on power in a

logistic regression framework when both variables were adjusted

for in analyzing small trials (n = 50, 100 and 300) [12]. Others

quantified the increase in statistical power resulting from covariate

adjustment as a decrease in the sample size required in comparison

to the unadjusted model [11].

It was not clear in the literature, however, how the interplay of

chance imbalance, the risk of outcome and the prevalence of a

binary PF affects treatment effect estimation in trials with a binary

outcome. Our simulation study provided information on what

constitute an adequate sample size to control against potential

impact of prognostic imbalance. Our results based on trials subject

to chance imbalance across six sample sizes in the unconditional

setting are consistent with the previous findings.

When one is confident that all important PFs are distributed

similarly between treatment groups in a binary trial, it is sensible to

decide if the goal of a trial evaluating a binary outcome is to assess

the marginal effect of treatment over patients with heterogeneous

baseline prognosis, or to obtain a more individualized treatment

effect estimate that is specific to a prognosis. These objectives can

be achieved by using the unadjusted and adjusted logistic

regression analyses. With a binary outcome, the two models

produce mathematically different results in the presence of a non-

zero treatment effect. Mismatch of the study objective, the

statistical method, and interpretation of results can result in

misleading messages. Due to the uncertainty around the existence

or magnitude of the treatment effect and possibly different criteria

to assess prognostic imbalance, we recommend reporting both the

adjusted and unadjusted results in the manuscript.

The CPMP guideline recommends that including important

PFs in the primary analysis can be justified only if their

associations with the primary outcome are expected to be strong,

based on previous evidence, and are specified a priori [18]. What

constitutes adequate justification may be a matter of judgment.

Our results demonstrate the value of adjustment, and suggest the

merits of avoiding excessively stringent criteria when deciding

whether prior evidence of prognostic power is adequate.

Our study has several limitations. First, we included only one

binary baseline PF to illustrate the probability and impact of
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prognostic imbalance in RCTs evaluating a binary outcome. For

continuous PFs, Ciolino and colleagues proposed a rank-sum ratio

to measure the level of imbalance in addition to the commonly

used mean values [12]. When multiple PFs are present at baseline,

balancing distribution of the individual PFs and the overall

prognosis needs to be assessed. Although the single binary PF

considered in the current study can be conceptualized as a

measure of the overall prognosis of a patient based on multiple

PFs, for instance, in a propensity score framework [34], further

investigation on the distribution and impact of multiple correlated

PFs on effect estimation in RCTs is warranted.

Second, although our investigation was focused on prognostic

balancing in individual RCTs, systematic reviews and meta-

analyses face the same methodological challenges. The cumulative

number of patients from individual RCTs and the between-study

variation need to be considered to assess the impact of imbalance

on obtaining an aggregated estimate of treatment effects. Future

work is needed in these directions.

Our study provides useful new insights. The results can not only

help to design clinical trials, but can also inform quality assessment

of a body of evidence from RCTs. Our simulation findings provide

insights on prognostic imbalance which pertains to both risk of

bias and imprecision [35]. The current study was not designed to

propose a single threshold value of sample size that can be readily

employed to rate the quality of evidence with respect to precision.

Rather it lends itself to guide selection of such threshold values

over various combinations of trial parameters, a subjective process

likely influenced by the tolerance of risk.

In summary, prognostic imbalance does not on average

jeopardize internal validity of findings from RCTs, but if

neglected, may lead to chance confounding and biased estimate

of treatment effect in a single RCT. To produce an accurate

estimate of the treatment-outcome relationship conditional on

patients’ baseline prognosis, balanced or unbalanced PFs with high

predictive value should be adjusted for in the analysis. Covariate

adjustment slightly reduces precision, but improves study efficien-

cy, when PFs are largely balanced. Once chance imbalance in

baseline prognosis is observed, covariate adjustment should be

performed to remove chance confounding.

Supporting Information

Figure S1 Probability of imbalance using standardized
measure (D2) with different trial sizes. Lines correspond to

Pr (D2$d1), where d1 = 0.005 (hollow circle), 0.01 (triangle), 0.025

(cross), 0.05 (X), 0.10 (diamond), 0.15 (inverted triangle), and 0.20

(filled circle), from the top to the bottom, respectively. Top left:

25/arm, top right: 50/arm, middle left: 125/arm, middle right:

500/arm, bottom left: 1000/arm, bottom right: 2000/arm.

(TIF)

Figure S2 Bias, simulation standard deviation (SD),
coverage proportion and statistical power for the
unadjusted and adjusted logOR, in scenario 1, the
unconditional setting, with 25 patients per arm. The

unadjusted model is indicated by the dotted line with hollow

circles, and the adjusted model is indicated by the solid line with

filled circles.

(TIF)

Figure S3 Bias, simulation standard deviation (SD),
coverage proportion and statistical power for the
unadjusted and adjusted logOR, in scenario 1, the
unconditional setting, with 50 patients per arm. The

unadjusted model is indicated by the dotted line with hollow

circles, and the adjusted model is indicated by the solid line with

filled circles.

(TIF)

Figure S4 Bias, simulation standard deviation (SD),
coverage proportion and statistical power for the
unadjusted and adjusted logOR, in scenario 1, the
unconditional setting, with 500 patients per arm. The

unadjusted model is indicated by the dotted line with hollow

circles, and the adjusted model is indicated by the solid line with

filled circles.

(TIF)

Figure S5 Bias, simulation standard deviation (SD),
coverage proportion and statistical power for the
unadjusted and adjusted logOR, in scenario 1, the
unconditional setting, with 1000 patients per arm. The

unadjusted model is indicated by the dotted line with hollow

circles, and the adjusted model is indicated by the solid line with

filled circles.

(TIF)

Figure S6 Bias, simulation standard deviation (SD),
coverage proportion and statistical power for the
unadjusted and adjusted logOR, in scenario 2, the
unconditional setting, with 25 patients per arm. The

unadjusted model is indicated by the dotted line with hollow

circles, and the adjusted model is indicated by solid line with filled

circles.

(TIF)

Figure S7 Bias, simulation standard deviation (SD),
coverage proportion and statistical power for the
unadjusted and adjusted logOR, in scenario 2, the
unconditional setting, with 50 patients per arm. The

unadjusted model is indicated by the dotted line with hollow

circles, and the adjusted model is indicated by the solid line with

filled circles.

(TIF)

Figure S8 Bias, simulation standard deviation (SD),
coverage proportion and statistical power for the
unadjusted and adjusted logOR, in scenario 2, the
unconditional setting, with 125 patients per arm. The

unadjusted model is indicated by the dotted line with hollow

circles, and the adjusted model is indicated by solid line with filled

circles.

(TIF)

Figure S9 Bias, simulation standard deviation (SD),
coverage proportion and statistical power for the
unadjusted and adjusted logOR, in scenario 2, the
unconditional setting, with 2000 patients per arm. The

unadjusted model is indicated by the dotted line with hollow

circles, and the adjusted model is indicated by the solid line with

filled circles.

(TIF)

Figure S10 Bias, simulation standard deviation (SD),
coverage proportion and statistical power for the
unadjusted and adjusted logOR, in scenario 3, the
unconditional setting, with 125 patients per arm. The

unadjusted model is indicated by the dotted line with hollow

circles, and the adjusted model is indicated by the solid line with

filled circles.

(TIF)
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Figure S11 Probability of difference between the esti-
mated and true ORR (underestimation) in scenario 1,
the unconditional setting, with 125 patients per arm.
Within each graph, lines correspond to Pr (DORR#2d2), where

d2 = 0 (solid circle), 0.05 (bullet), 0.10 (little circle), 0.15 (square),

0.2 (diamond) and 0.25 (triangle), from top to bottom, respectively.

(TIF)

Figure S12 Probability of difference between the esti-
mated and true ORR (overestimation) in scenario 1, the
unconditional setting, with 125 patients per arm. Within

each graph, lines correspond to Pr (DORR$d2), where d2 = 0 (solid

circle), 0.05 (bullet), 0.10 (little circle), 0.15 (square), 0.2 (diamond)

and 0.25 (triangle), from top to bottom, respectively.

(TIF)

Figure S13 Probability of difference between the esti-
mated and true ORR (underestimation) in scenario 1,
the unconditional setting, with 2000 patients per arm.
Within each graph, lines correspond to Pr (DORR#2d2), where

d2 = 0 (solid circle), 0.05 (bullet), 0.10 (little circle), 0.15 (square),

0.2 (diamond) and 0.25 (triangle), from top to bottom, respectively.

(TIF)

Figure S14 Probability of difference between the esti-
mated and true ORR (overestimation) in scenario 1, the
unconditional setting, with 2000 patients per arm. Within

each graph, lines correspond to Pr (DORR$d2), where d2 = 0 (solid

circle), 0.05 (bullet), 0.10 (little circle), 0.15 (square), 0.2 (diamond)

and 0.25 (triangle), from top to bottom, respectively.

(TIF)

Figure S15 Bias, simulation standard deviation (SD),
coverage proportion and statistical power for the
unadjusted and adjusted logOR, in scenario 1, the
conditional setting, with 125 patients per arm. The

unadjusted model is indicated by the dotted line with hollow

circles, and the adjusted model is indicated by the solid line with

filled circles.

(TIF)

Figure S16 Bias, simulation standard deviation (SD),
coverage proportion and statistical power for the
unadjusted and adjusted logOR, in scenario 1, the
conditional setting, with 2000 patients per arm. The

unadjusted model is indicated by the dotted line with hollow

circles, and the adjusted model is indicated by the solid line with

filled circles.

(TIF)
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