Article

The [3+2] Annulation of CF_{3}-Ketimines by Re Catalysis: Access to CF_{3}-Containing Amino Heterocycles and Polyamides

Saisai Zhang, XunYong Liu,
Zhenbang Chang, Xinxin Qiao,
Heng-Ying Xiong,
Guangwu Zhang
xionghengying@vip.henu.edu. cn (H.-Y.X.)
gw.zhangchem@hotmail.com (G.Z.)

HIGHLIGHTS

Challenging sp ${ }^{2} \mathrm{C}-\mathrm{H}$ activation

Valuable CF_{3}-containing heterocycles

Variant synthetic applications

Interesting fluorinated polyamides

[^0]
Article
 The [3+2] Annulation of CF_{3}-Ketimines by Re Catalysis: Access to CF_{3}-Containing Amino Heterocycles and Polyamides

Saisai Zhang, ${ }^{1}$ Xun-Yong Liu, ${ }^{2}$ Zhenbang Chang, ${ }^{1}$ Xinxin Qiao, ${ }^{1}$ Heng-Ying Xiong, ${ }^{1, *}$ and Guangwu Zhang ${ }^{1,3, *}$

Abstract

SUMMARY Transition metal catalyzed [3 + 2] annulation of imines with double bonds via directed C-H activation offers a direct access to amino cyclic motifs. However, owing to weak coordination and steric hindrance, trifluoromethylated ketimines have been an unaddressed challenge for TM-catalyzed annulations. Here, a rhenium-catalyzed [3 + 2] annulation of trifluoromethylated ketimines with isocyanates via $\mathrm{C}\left(\mathrm{sp}^{2}\right)$-H activation has been disclosed. This approach provides an efficient platform for rapid access to a privileged library of CF_{3}-containing iminoisoindolinones and polyamides by utilizing challenging CF_{3}-ketimines as the annulation component. The capability of gram scale synthesis, the post-functionalization of the cyclization adduct, the derivation of complex natural molecules and the facile synthesis of polyamides highlight a diversity of synthetic potential of the current methodology.

INTRODUCTION

Besides serving as versatile and important organic intermediates for the synthesis of molecules with amine functionality (Layer, 1963; Bloch, 1998; Kobayashi and Ishitani, 1999; Martin, 2009; Blicke, 2011), imines are also eminent for the directing role in transition metal-catalyzed C-H functionalizations (Zhang et al., 2014a, 2014b; Chen et al., 2015; Sambiagio et al., 2018; Li and Shi, 2012; Rouquet and Chatani, 2013; Jiao et al., 2016; Gensch et al., 2016; Leitch and Frost, 2017; He et al., 2017; Yang et al., 2017; Hummel et al., 2017; Park et al., 2017; Dong et al., 2017; Gandeepan, et al., 2019). In particular, the directed ortho C(sp²)-H bond transformation of imines with an unsaturated bonds (Zhang et al., 2014a, 2014b; Yang and Huang 2015) and the following cyclization process, a formal [3+2] annulation, which was first reported by Kuninobu (Kuninobu et al., 2005, 2006), has become a powerful route for the construction of amino carbon (hetero) cycles (Scheme 1A) (Kuninobu et al., 2010; Tran and Cramer, 2010, 2011; Zhang et al., 2013; Liu et al. 2015; Liang et al., 2017). However, trifluoromethylated ketimines remain a major challenge and have not been engaged in such an appealing procedure, which would give rise to biologically interesting and highly valuable CF_{3}-containing amino carbon or hetero cyclic motifs with a quaternary carbon center (Figure 1) (Sani et al., 2007; Petrov, 2009; Satoshi et al., 2008; Hurley et al., 2009). The probable challenges could be ascribed to two aspects: (1) the weakened coordination potential of nitrogen atom by the strong electron withdrawing effect of CF_{3} group; (2) the increased steric hindrance by CF_{3} group compared with a common alkyl group (such as Me and Et) (Meanwell, 2018). Considering the fact that the electron-withdrawing character of CF_{3} group might enhance the reactivity of ketimines (Wang et al., 2006), the nucleophilic cyclization step would be likely assisted by CF_{3} group. To this end, we envisaged that, if the insertion of unsaturated bond into the C - H bond of CF_{3}-ketimines could be accomplished by certain transition metal catalysis, it would also allow for the subsequent nucleophilic cyclization (Scheme 1B: route a). The proposed challenging [3+2] strategy would be more straightforward compared with the post-functionalization of a cyclic imine precursor with CF_{3}-nucleophiles to deliver CF_{3}-containing amino cycles (Scheme 1 B: route b), and the latter approach may suffer from tedious synthetic steps of cyclic imine precursor and site selectivity issue during nucleophilic trifluoromethylation if other unsaturated bond presented in the imine structure.

Since the pioneering works of several groups (Chen and Hartwig, 1999; Kuninobu et al., 2005, 2006), rhenium-catalyzed C-H functionalization has become a promising implement for the rapid construction of new C-C and C-X bonds in an atom economic and environmentally benign manner (Kuninobu et al.,

Institute of Organic
unctional Molecules, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P.R. China
${ }^{2}$ School of Chemistry and Materials Science, Ludong University, Yantai, 264025, P.R. China

Lead Contact
*Correspondence:
xionghengying@vip.henu. edu.cn (H.-Y.X.), gw.zhangchem@hotmail com (G.Z.)
https://doi.org/10.1016/j.isci 2020.101705

A The [3+2] annulation of imines with double bonds (Ackermann, Kuninobu, Cramer and Wang)

B The proposed synthesis of of CF_{3}-containing cycles starting from imine

C The challenging [3+2] annulation of CF_{3}-ketimines (this work)

C-H bonds

hetero cycles

Scheme 1. The Progresses of the [3 + 2] Annulation of Imines, the Strategies on the Synthesis of CF_{3}-Containing Cycles from Imine and Current Work

2008; Fukumoto et al., 2012; Sueki et al., 2013; Wang et al., 2013; Tang et al., 2013; Jin et al., 2013). Among these reactions, rhenium often exhibited exclusive catalytic activities over other transition metals, owing to the special properties of rhenium (Kuninobu and Takai, 2011). However, merging rhenium-catalyzed C-H activation with the synthesis of fluorinated molecules has been relatively underexploited. Herein, we describe an effective rhenium-catalyzed insertion of isocyanate into the $\mathrm{C}-\mathrm{H}$ bond of CF_{3}-ketimine/nucleophilic cyclization sequence for the rapid access CF_{3}-substituted iminoisoindolinones (Scheme 1C). In this reaction, the imino group has been preserved in the absence of leaving group.

RESULTS AND DISCUSSION

Reaction Optimization

We commenced our studies by using 2,2,2-trifluoro-N,1-diphenylethan-1-imine (1a) as the mode substrate to react with p-tolyl isocyanate (2a). After systematic optimization of the various reaction parameters, the expected 3-amino-3-(trifluoromethyl)isoindolin-1-one was obtained in 82% yield (Table 1, entry 1). In a control reaction that $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ was omitted, no desired product was detected (entry 2). Re salts other than $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ also mediated the formation of the product albeit in slightly lower yields (entries 3-4). A range of other metal carbonyls showed no catalytic activities on this annulation (entries 5-11). In addition, the use of common Pd, Cu, or Rh catalysts, which were successfully implemented in C-H functionalization of imines, resulted in no conversion of the staring material (entries 12-15). The nature of solvent also plays a key role in reaction efficiency. After the replacement of o-xylene with PhCl or toluene, the comparable results were achieved (entries 16-17). The use of polar solvents gave low conversions (entries 18-20), whereas very polar solvents such as DMSO totally impeded the formation of the desired product (entry 21). At last, no reaction occurred at lower temperature (entry 22).

Substrate Scope regarding CF_{3}-Ketimines

The Re-catalyzed insertion/cyclization process can be applied to a series of CF_{3}-ketimines with different substitution patterns on amines or ketones (Scheme 2). For the amine part, the reactions of imines with either electron-deficient or electron-rich groups on para, meta, or ortho position on anilines were conducted to furnish 3 in decent to excellent yields. In general, more electron-deficient aniline derived substrates gave slightly lower yields, and the ortho-substituted ones were converted in low to moderate yields probably owing to the steric hindrance during the cyclization step. A series of functional groups such as $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, methyl ethers, dioxolyl, and CF_{3} on anilines were compatible under the optimal conditions. It is noticed that

NMDA receptor antagonist

Glycosidase inhibitor

UPPS inhibitor

Figure 1. Selected Biologically Active CF_{3}-Containing Amino (Hetero) Cycles

2-naphthylamine and amylamine were well tolerated to give corresponding cyclization products in good yields $(3 s, 3 t)$. In regard of substitutions on ketone part, there was no obvious electronic effect on reaction outcomes in which substrates with either electron-deficient or electron-rich substituents on aromatic ring all afforded desired products in moderate to good yields. In addition, owing to regioselectivity, a mixture of two regioisomers was obtained from the meta-substituted ketone (3z, 3ac, 3ad). Furthermore, the reaction of 2-thienyl ketone derived CF_{3}-ketimine 1 af proceeded to afford the expected product 3af in low yield, probably owing to the instability of the substrate under standard conditions. Diimine 1 ag gave the mono-annulation adduct in 72% yield, while delivering the di-annulation product in trace amount. Gratefully, vinylic CF_{3}-ketimine 1ah smoothly underwent the $[3+2]$ sequence to give the desired cyclization product in moderate yield (3ah).

Substrate Scope regarding Isocyanates

The reaction scope was then tested on the isocyanate side (Scheme 3). Aryl isocyanates with either an elec-tron-donating or electron-withdrawing group smoothly underwent the cyclization reaction to give the desired product in moderate to excellent yield, implying no significant electronic effect on the aromatic ring of isocyanate. Interestingly, in the case of the ortho- CH_{3} substituted isocyanate, the reaction outcome was moderate (3aq). Functional groups such as $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, methyl ethers, phenyl ether, and CF_{3} were amenable to the optimal reaction conditions. In addition, naphthalenyl isocyanate was transformed to corresponding product in good yield (3ax). Furthermore, aliphatic isocyanates with linear or cyclic chains smoothly proceeded to generate the desired products in good to high yield (3ay-bb). The vinylic C-H bond of ketimine 1 ah could be further functionalized with substituted isocyanate (2d), affording the desired annulation adduct in moderate yield. Upon the treatment of dimine 1 ag with the highly electron-deficient isocyanate $\mathbf{2 c}$, the di-annulation adduct was isolated as the main product.

With aromatic sp^{2} and benzylic $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bonds installed in the same molecule, the $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bond activation was preferred over $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bond when 1 ai was subjected to standard reaction conditions, indicating the highly selective profile of the protocol (Figure 2).

Mechanistic Investigations

To gain some mechanistic information on this reaction, the deuterium-labeling experiments were conducted (Scheme 4). With the deuterium-labeled compound [D] $]_{5}-1$ a, D-H exchange was observed with neither the substrate nor the product (Scheme 4, top). Based on the initial rates of parallel reactions, the intermolecular kinetic isotope effect (KIE) of the rhenium-catalyzed C-H functionalization was measured to be $\mathrm{k}_{\mathrm{H}} /$ $k_{D}=0.8$, demonstrating that the $\mathrm{C}-\mathrm{H}$ bond cleavage of imine 1 a might not be the kinetically relevant step (Scheme 4, bottom).

Several control experiments were performed for further mechanistic studies (Scheme 5). Under O_{2}, no desired annulations product was observed, suggesting low-valent Re catalyst is essential for the reaction since rhenium could be oxidized to a high oxidation state by O_{2} (Ivin and Mol, 1997). In the presence of radical scavenger TEMPO or under CO, the annulation was impeded, indicating CO dissociation and $\mathrm{Re}(\mathrm{CO})_{5}$ radicals formation likely involved in annulations process (Reynolds et al., 2001). In the presence of catalytic amount of base, the reaction efficiency varied. It was observed that $E t_{3} \mathrm{~N}$ gave slightly higher yield, whereas inorganic bases such as $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOA c exhibited reduced performance on reaction outcomes. Interestingly, after replacement of CF_{3} with CH_{3} on imine structure, the deaminative annulation product 3 bf was generated in good yield (80\%) under standard reaction conditions (Hou et al., 2013), indicating the role of CF_{3} group for stabilizing the resulting amino heterocycles.

Table 1. Influence of Reaction Parameters on [3 + 2] Annulation
Reaction conditions: Ketimine 1a ($0.3 \mathrm{mmol}, 1$ equiv.), isocyanate 2 a ($0.6 \mathrm{mmol}, 2$ equiv.), catalyst ($0.03 \mathrm{mmol}, 0.1$ equiv.), in solvent (3 mL) under Ar at $150^{\circ} \mathrm{C}$ for 60 h .
${ }^{\text {a }}$ Isolated yield.

On the basis of these mechanistic investigations and previous reports (Chen and Hartwig, 1999; Kuninobu et al., 2005, 2006, 2008; Fukumoto et al., 2012; Sueki et al., 2013; Wang et al., 2013; Tang et al., 2013; Jin et al., 2013; Reynolds et al., 2001; Lapointe and Fagnou, 2010; Ackermann, 2011; Engle et al., 2012), we then presumed two catalytic pathways for the annulation of CF_{3}-ketimines with isocyanates (Scheme 6). In pathway I, with the assistance of base, the initial C-H metalation of CF_{3}-ketimine 1 formed rhenacycle A after the coordination of imine with rhenium catalyst, which was followed by the insertion of isocyanate to generate the aminated rhenium species \mathbf{B}. The further intramolecular nucleophilic amination and protodemetalation of the aminated rhenium species \mathbf{C} furnished the desired cyclization product and regenerated the active rhenium catalyst. In pathway II, the homolytic Re-Re bond cleavage of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ produced

Scheme 2. Scope of the Ketimines
Reaction conditions: Ketimine 1 ($0.3 \mathrm{mmol}, 1$ equiv.), isocyanate $2(0.6 \mathrm{mmol}, 2$ equiv.), catalyst ($0.03 \mathrm{mmol}, 0.1$ equiv.), in o-xylene (3 mL), under Ar at $150^{\circ} \mathrm{C}$ for 60 h , isolated yield. a in PhCl for 48 h . ${ }^{\text {b }}$ at $160^{\circ} \mathrm{C}$. ${ }^{\circ}$ at $140^{\circ} \mathrm{C}$. ${ }^{\text {d at }} 130^{\circ} \mathrm{C}$. ${ }^{e}$ at $110^{\circ} \mathrm{C}$. ${ }^{\text {f on }}$ 0.15 mmol scale, at $160^{\circ} \mathrm{C}$ for 72 h . ${ }^{9}$ on 0.2 mmol scale.
$\operatorname{Re}(\mathrm{CO})_{5}$ radicals, which reacted with CF_{3}-ketimine 1 to form dinuclear Re complexes A^{\prime} through CO dissociation and C-H bond cleavage. The followed insertion of isocyanate generated the aminated dinuclear rhenium species B^{\prime}, which further underwent intramolecular nucleophilic amination to give species C^{\prime}. The reductive elimination of \mathbf{C}^{\prime} furnished the desired cyclization product and regenerated the active rhenium catalyst.

Synthetic Applications

Next, the synthetic utility of this approach was explored (Scheme 7). The annulation of 1 a and 2 a was conducted on 4.5 mmol scale with reduced catalyst loading ($8 \mathrm{~mol} \%$) and prolonged reaction time, furnishing 3a in 81% yield (1.39 g), which is comparable with the aforementioned result on small scale. The methylation

Scheme 3. Scope of the Isocyanates
Reaction conditions: Ketimine 1 ($0.3 \mathrm{mmol}, 1$ equiv.), isocyanate $2(0.6 \mathrm{mmol}, 2$ equiv.), catalyst ($0.03 \mathrm{mmol}, 0.1$ equiv.), in o-xylene (3 mL), under Ar at $150^{\circ} \mathrm{C}$ for 60 h , isolated yield. ${ }^{\text {a }} \mathrm{In} \mathrm{PhCl}$ for 48 h . ${ }^{\mathrm{b}} \mathrm{On} 0.2 \mathrm{mmol}$ scale. ${ }^{\mathrm{c}} \mathrm{On} 0.15 \mathrm{mmol}$ scale, at $160^{\circ} \mathrm{C}$ for 72 h .

Figure 2. Intramolecular Competitive sp^{2} and $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ Bond Activation
of 3 a with Mel as the alkylation reagent smoothly afforded 4 in 86% yield. Surprisingly, the treatment of 3a with PIDA as the oxidant in TFE delivered trifluoroethyl ketal moiety 5 in 59% yield, arising from the oxidation of the aniline part of 3 a. Upon the treatment of 3 a with stoichiometric amount of strong Lewis acid $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, the unexpected C-N bond cleavage was observed to give CF_{3}-tertiary alcohol and the OH group likely came from trace water. Notably, the structures of 5 and 6 were further unambiguously confirmed by X ray crystallography and the latter two transformations constitute novel discoveries that relevant processes have been scarcely reported in the literature.

The applicability of this Re-catalyzed annulations was further examined by selected derivation of several natural products (Scheme 8). For example, by nucleophilic trifluoromethylation of Myrtenal or Perillaldehyde with $\mathrm{TMSCF}_{3} / \mathrm{TBAF}$ system, the subsequent oxidation with DMP, and the followed condensation with aniline, the desired Myrtenal or Perillaldehyde derived CF_{3}-ketimine 9 or 13 was formed in decent yield, which was converted to the corresponding CF_{3}-containing amino hetero cycles in good yield under standard conditions. It was established that the strained four-member ring in 9 was intact during the annulations process and the structures of 10 and 14 were further unambiguously confirmed by X -ray crystallography. Following the similar procedure after conversion of Tocopherol to its aldehyde moiety through a subsequent four-step procedure, the expected CF_{3}-ketimine 21 was generated in decent yield, which was subjected to slightly modified annulations conditions to furnish two regioisomers 22 and 23 as the cyclization adduct.

Inspired by the success of double annulation reactions of the CF_{3}-diimine (1ag) and Kuninobu's leading work in the synthesis of polyimides (Sueki et al., 2013), we then attempted to explore the possibility for the synthesis of important trifluoromethylated polyamides bearing potential unique properties such as enhanced stability, solubility, and low surface energy (Wang, et al., 2004; Tsuchiya et al., 2006) through Re-catalyzed [$3+2$] annulations via C-H activation (Suraru et al., 2016; Yang et al., 2018; Blaskovits and Leclerc, 2019). Finally, trifluoromethylateddiimines with a diphenyl backbone were proved to be suitable annulation partners with phenyl diisocyanate, affording the trifluoromethylated polyamides in moderate yields with $\mathrm{Mw} / \mathrm{Mn}$ from 1.6 to 1.8 and good solubility in organic solvents such as dichloromethane, chloroform, and THF (Figure 3, top). The preliminary study of optical properties of these polymers was performed. The UV spectra of $\mathbf{2 4 a - d}$ display maximum absorption bands at $255-265 \mathrm{~nm}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, which is

Scheme 4. The D-H Exchange Experiment and the Kinetic Isotope Effect Experiments

Scheme 5. Control Experiments
ascribed to the $\pi-\pi^{\star}$ transition of arenes (see Supplementary Information). The $24 a-d$ solutions show strong blue emissions with the emission peaks around 438 nm (Figure 3, bottom), which make them suitable as host materials for blue organic light-emitting devices.

Scheme 6. Plausible Reaction Mechanism

Scheme 7. Synthetic Applications
Reaction conditions: (a) LiHMDS (8.0 equiv.), Mel (8.0 equiv.), in THF under Ar, refluxing for 24 h ; (b) PIDA (4.0 equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.5 equiv.), in TFE, at $70^{\circ} \mathrm{C}$ for 6 h ; (c) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (3.0 equiv.), in $\mathrm{CH}_{3} \mathrm{CN}$, under Ar , at $80^{\circ} \mathrm{C}$ for 24 h .

Conclusion

In conclusion, we have presented an unprecedented [3+2] annulation of CF_{3}-ketimines with isocyanates via rhenium-catalyzed C-H activation. This approach demonstrated good functional group tolerance and broad substrate scope both on ketimines and isocyanates. A series of novel CF_{3}-containing iminoisoindolinones were constructed in decent to excellent yield. This is the first example on functionalization of unactivated $\mathrm{sp}^{2} \mathrm{C}$ - H bonds of CF_{3}-ketimines, leading to the simultaneous formation of new $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bonds by one simple operation. The imino group being intact during the annulations process in the absence of leaving group highlights the ability for trifluoromethylated amine synthesis of the catalytic protocol. The preliminary mechanistic studies indicated that $\operatorname{Re}(\mathrm{CO})_{5}$ radicals and dinuclear rhenium species were likely involved in the annulation process. Furthermore, the capability for gram scale synthesis, the diverse transformations of the annulation adduct, the derivation of the natural products and the ability for the construction of polyamides show the cases for synthetic applications of current strategy. Further employment of CF_{3}-ketimines as the annulations partner with other unsaturated bonds and the systematic mechanistic study are ongoing in our laboratory.

Limitations of the Study

The catalyst loading was a little high compared with previously reported Re systems, and lower catalyst loading (<10 mol\%) was detrimental for reaction efficiency.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Guangwu Zhang (gw.zhangchem@hotmail.com).

Materials Availability

All unique/stable reagents generated in this study are available from the Lead Contact without restriction.

Data and Code Availability

The structure of 3-((4,4-bis(2,2,2-trifluoroethoxy)cyclohexa-2,5-dien-1-ylidene)amino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one (5, CCDC, 2016466), 3-hydroxy-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one (6, CCDC, 2016473), 3-((4-bromophenyl)amino)-5,5-dimethyl-2-(p-tolyl)-3-(trifluoromethyl)-2,3,4,5,6,7-

\qquad

\qquad

Scheme 8. Derivation of Complex Molecules
Reaction conditions: (a) TMSCF_{3} (2.2 equiv.), TBAF (0.5 equiv.), in THF under $\mathrm{Ar},-40^{\circ} \mathrm{C}$ to rt ; (b) DMP (1.2 equiv.), in DCM, rt for 30 min ; (c) $4-\mathrm{Br}$-aniline (2.0 equiv.), $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (0.2 equiv.), in toluene, at $140^{\circ} \mathrm{C}$ for 48 h ; (d) $\mathrm{Tf}_{2} \mathrm{O}$ (1.3 equiv.), $\mathrm{Et}_{3} \mathrm{~N}(2.5$ equiv.), in DCM , at $0^{\circ} \mathrm{C}$ for 30 min ; (e) $\mathrm{B}_{2} \mathrm{pin}_{2}$ (2.0 equiv.), PdCl_{2} (dppf) ($10 \mathrm{~mol} \%$), $\mathrm{Et}_{3} \mathrm{~N}\left(3.0\right.$ equiv.), in dioxane, at $100^{\circ} \mathrm{C}$ for 4 h ; (f) CuBr_{2} (3.0 equiv.), in MeOH , at $90^{\circ} \mathrm{C}$ for 72 h ; (g) n - BuLi (2.0 equiv.), DMF (5.0 equiv.) in THF, at $-78^{\circ} \mathrm{C}$.
hexahydro-1H-4,6-methanoisoindol-1-one (10, CCDC, 2035920), 3-((4-bromophenyl)amino)-6-(prop-1-en-2-yl)-2-(p-tolyl)-3-(trifluoromethyl)-2,3,4,5,6,7-hexahydro-1H-isoindol-1-one (14, CCDC, 2033918) in this article have been deposited in the Cambridge Crystallographic Data Center.

Figure 3. The Synthesis of CF_{3}-Containing Polyamides and Optical Fluorescence Spectra of 24a-d in DCM Solution ($1 \mathrm{mg} / \mathrm{mL}$) (Insets Show the Respective Photographs under UV Illumination)

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101705.

ACKNOWLEDGMENTS

This research was supported by Henan University, the National Natural Science Foundation of China (21801061), the Natural Science Foundation of Shandong Province (ZR2019MEM026, ZR2019BB026). Professor Pengtao Ma is thanked for the X-ray structure.

AUTHOR CONTRIBUTIONS

G.Z. directed and coordinated the project. S.Z., X.-Y.L., Z.C., X.Q., and H.-Y.X. performed the experiments, analyzed the data, and prepared the Supplementary Information. G.Z., S.Z., X.-Y.L., Z.C., X.Q., and H.-Y.X. wrote the paper.

DECLARATION OF INTERESTS

The authors declare no competing financial interests.

Received: August 12, 2020
Revised: September 26, 2020
Accepted: October 15, 2020
Published: November 20, 2020

REFERENCES

Ackermann, L. (2011). Carboxylate-assisted transition-metal-catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalizations: mechanism and scope. Chem. Rev. 111, 1315-1345.

Blaskovits, J.T., and Leclerc, M. (2019). C-H activation as a shortcut to conjugated polymer synthesis. Macromol. Rapid Commun. 40, 1800512.

Blicke, F.F. (2011). The Mannich Reaction Organic Reactions (John Wiley and Sons, Inc.), p. 303.

Bloch, R. (1998). Additions of organometallic reagents to $\mathrm{C}=\mathrm{N}$ Bonds: reactivity and selectivity. Chem. Rev. 98, 1407-1438.

Chen, H., and Hartwig, J.F. (1999). Catalytic, regiospecific end-functionalization of alkanes: rhenium-catalyzed borylation under photochemical conditions. Angew. Chem. Int. Ed. 38, 3391-3393.

Chen, Z., Wang, B., Zhang, J., Yu, W., Liu, Z., and Zhang, Y. (2015). Transition metal-catalyzed C-H bond functionalizations by the use of diverse directing groups. Org. Chem. Front. 2, 11071295.

Dong, Z., Ren, Z., Thompson, S.J., Xu, Y., and Dong, G. (2017). Transition-metal-catalyzed C-H alkylation using alkenes. Chem. Rev. 117, 93339403.

Engle, K.M., Mei, T.-S., Wasa, M., and Yu, J.-Q. (2012). Weak coordination as a powerful means for developing broadly useful C-H
functionalization reactions. Acc. Chem. Res. 45, 788-802.

Fukumoto, Y., Daijo, M., and Chatani, N. (2012). Rhenium-catalyzed regio- and stereoselective addition of imines to terminal alkynes leading to N -alkylideneallylamines. J. Am. Chem. Soc. 134, 8762-8765.

Gandeepan, P., Muller, T., Zell, D., Cera, G., Warratz, S., and Ackermann, L. (2019). 3d transition metals for $\mathrm{C}-\mathrm{H}$ activation. Chem. Rev. 119, 2192-2452.

Gensch, T., Hopkinson, M.N., Glorius, F., and Wencel-Delord, J. (2016). Mild metal-catalyzed $\mathrm{C}-\mathrm{H}$ activation: examples and concepts. Chem. Soc. Rev. 45, 2900-2936.

He, J., Wasa, M., Chan, K.S.L., Shao, Q., and Yu, J.-Q. (2017). Palladium-catalyzed transformations of alkyl C-H bonds. Chem. Rev. 117, 8754-8786.

Hou, W., Zhou, B., Yang, Y., Feng, H., and Li, Y. (2013). Rh(III)-Catalyzed addition of alkenyl C-H bond to isocyanates and intramolecular cyclization: direct synthesis 5 -ylidenepyrrol-2(5H)ones. Org. Lett. 15, 1814-1817.

Hummel, J.R., Boerth, J.A., and Ellman, J.A. (2017). Transition-metal-catalyzed C-H bond addition to carbonyls, imines, and related polarized π bonds. Chem. Rev. 117, 9163-9227.

Hurley, T.B., Peukert, S., and Wattanasin, S. (2009). Inhibitors of Undecaprenyl Pyrophosphate Synthase (Novartis Institutes for Biomedical Research, Inc.).

Ivin, K.J., and Mol, J.C. (1997). Olefin Metathesis and Metathesis Polymerisation (Academic Press).

Jiao, J., Murakami, K., and Itami, K. (2016).
Catalytic methods for aromatic C-H amination: an ideal strategy for nitrogen-based functional molecules. ACS Catal. 6, 610-633.

Jin, H., Xie, J., Pan, C., Zhu, Z., Cheng, Y., and Zhu, C. (2013). Rhenium-catalyzed acceptorless dehydrogenative coupling via dual activation of alcohols and carbonyl compounds. ACS Catal. 3, 2195-2198.

Kobayashi, S., and Ishitani, H. (1999). Catalytic enantioselective addition to imines. Chem. Rev. 99, 1069-1094.

Kuninobu, Y., and Takai, K. (2011). Organic reactions catalyzed by rhenium carbonyl complexes. Chem. Rev. 111, 1938-1953.

Kuninobu, Y., Kawata, A., and Takai, K. (2005). Rhenium-catalyzed formation of indene frameworks via C-H bond Activation: [3+2] annulation of aromatic aldimines and acetylenes. J. Am. Chem. Soc. 127, 13498-13499.

Kuninobu, Y., Tokunaga, Y., Kawata, A., and Takai, K. (2006). Insertion of polar and nonpolar unsaturated molecules into carbon-rhenium bonds generated by $\mathrm{C}-\mathrm{H}$ bond activation: synthesis of phthalimidine and indene derivatives. J. Am. Chem. Soc. 128, 202-209.

Kuninobu, Y., Nishina, Y., Matsuki, T., and Takai, K. (2008). Synthesis of Cp-Re complexes via olefinic $\mathrm{C}-\mathrm{H}$ activation and successive formation of cyclopentadienes. J. Am. Chem. Soc. 130, 14062-14063.

Kuninobu, Y., Yu, P., and Takai, K. (2010). Rhenium-catalyzed diastereoselective synthesis of aminoindanes via the insertion of allenes into a $\mathrm{C}-\mathrm{H}$ bond. Org. Lett. 12, 4274-4276.

Lapointe, D., and Fagnou, K. (2010). Overview of the mechanistic work on the concerted metallation-deprotonation pathway. Chem. Lett. 39, 1118-1126.

Layer, R.W. (1963). The chemistry of imines. Chem. Rev. 63, 489-510.

Leitch, J.A., and Frost, C.G. (2017). Rutheniumcatalysed σ-activation for remote meta-selective C-H functionalization. Chem. Soc. Rev. 46, 71457153.

Li, B., and Shi, Z. (2012). From C(sp $\left.{ }^{2}\right)-H$ to $C\left(s p^{3}\right)-$ H : systematic studies on transition metalcatalyzed oxidative C-C formation. Chem. Soc. Rev. 41, 5588-5598.

Liang, Y.-F., Mgller, V., Liu, W., Mgnch, A., Stalke, D., and Ackermann, L. (2017).

Methylenecyclopropane annulation by manganese(l)-Catalyzed stereoselective $\mathrm{C}-\mathrm{H} /$ C-C activation. Angew. Chem. Int. Ed. 56, 94159419.

Liu, W., Zell, D., John, M., and Ackermann, L. (2015). Manganese-catalyzed synthesis of cis- β-Amino acid esters through organometallic C-H activation of ketimines. Angew. Chem. Int. Ed. 54, 4092-4096.

Martin, S.F. (2009). Recent applications of imines as key intermediates in the synthesis of alkaloids and novel nitrogen heterocycles. Pure Appl. Chem. 81, 195-204.

Meanwell, N.A. (2018). Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design, of bioisosteres for drug design. J. Med. Chem. 61, 5822-5880.

Park, Y., Kim, Y., and Chang, S. (2017). Transition metal-catalyzed C-H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247-9301.

Petrov, V.A. (2009). Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and Applications (DuPont Central Research and Development).

Reynolds, M.A., Guzei, I.A., and Angelici, R.J. (2001). $\operatorname{Re}_{2}(\mathrm{CO})_{10}$-Mediated carbon-hydrogen and carbon-sulfur bond cleavage of dibenzothiophene and 2,5-dimethylthiophene. Organometallics 20, 1071-1078.

Rouquet, G., and Chatani, N. (2013). Catalytic functionalization of $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ and $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bonds by using bidentate directing groups. Angew. Chem. Int. Ed. 52, 11726-11743.

Sambiagio, C., Schonbauer, D., Blieck, R.,
DaoHuy, T., Pototschnig, G., Schaaf, P.,
Wiesinger, T., Zia, M.F., WencelDelord,' J., Besset, T., et al. (2018). A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem. Soc. Rev. 47, 6603-6743.

Sani, M., Volonterio, A., and Zanda, M. (2007). The trifluoroethylamine function as peptide bond replacement. ChemMedChem 2, 1693-1700.

Satoshi, H., Shingo, Y., Kazushi, W., Nobuyuki, S., Daisuke, S., Hiroaki, H., Junya, O., and Takatoshi, K. (2008). AminoindanDerivative or Salt Thereof (Astellas Pharma Inc.).

Sueki, S., Guo, Y., Kanai, M., and Kuninobu, Y. (2013). Rhenium-catalyzed synthesis of 3-imino-1isoindolinones by $\mathrm{C}-\mathrm{H}$ bond activation: application to the synthesis of polyimide derivatives. Angew. Chem. Int. Ed. 52, 1187911883.

Suraru, S.-L., Lee, J.A., and Luscombe, C.K. (2016). C-H arylation in the synthesis of π conjugated polymers. ACS Macro Lett. 5, 724-729.

Tang, Q., Xia, D., Jin, X., Zhang, Q., Sun, X.-Q., and Wang, C. (2013). Re/Mg bimetallic tandem catalysis for [4+2] annulation of benzamides and alkynes via C-H/N-H functionalization. J. Am. Chem. Soc. 135, 4628-4631.

Tran, D.N., and Cramer, N. (2010). syn-Selective rhodium(I)-Catalyzed allylations of ketimines proceeding through a directed C-H activation/ allene addition sequence. Angew. Chem. Int. Ed. 49, 8181-8184.

Tran, D.N., and Cramer, N. (2011).
Enantioselective rhodium(I)-Catalyzed [3+2] annulations of aromatic ketimines induced by directed C-H activations. Angew. Chem. Int. Ed. 50, 11098-11102.

Tsuchiya, K., Shibasaki, Y., Aoyagi, M., and Ueda, M. (2006). Synthesis of a novel poly(binaphthylene ether) containing trifluoromethyl groups with a low dielectric constant. Macromolecules 39, 3964-3966.

Wang, W.-C., Vora, R.H., Kang, E.-T., Neoh, K.-G., Ong, C.-K., and Chen, L.-F. (2004). Nanoporous ultra-low-к films prepared from fluorinated polyimide with grafted poly(acrylic acid) side chains. Adv. Mater. 16, 54-57

Wang, H., Zhao, X., Li, Y., and Lu, L. (2006).
Solvent-controlled asymmetric strecker
Reaction: stereoselective synthesis of
α-trifluoromethylated α-amino acids. Org. Lett. 8, 1379-1381.

Wang, Y., Zhang, L., Yang, Y., Zhang, P., Du, Z., and Wang, C. (2013). Alkene oxyalkylation
enabled by merging rhenium catalysis with hypervalent iodine(III) reagents via decarboxylation. J. Am. Chem. Soc. 135, 1804818051.

Yang, L., and Huang, H. (2015). Transition-metalcatalyzed direct addition of unactivated $\mathrm{C}-\mathrm{H}$ bonds to polar unsaturated bonds. Chem. Rev. 115, 3468-3517.

Yang, Y., Lan, J., and You, J. (2017). Oxidative C-H/C-H coupling reactions between two (Hetero) arenes. Chem. Rev. 117, 8787-8863.

Yang, Y., Nishiura, M., Wang, H., and Hou, Z. (2018). Metal-catalyzed $\mathrm{C}-\mathrm{H}$ activation for polymer synthesis and functionalization. Coord. Chem. Rev. 376, 506-532.

Zhang, J., Ugrinov, A., and Zhao, P. (2013) Ruthenium(II)/N-Heterocyclic carbene catalyzed [3+2]Carbocyclization
with aromatic N-H ketimines and internal alkynes. Angew. Chem. Int. Ed. 52, 66816684.

Zhang, M., Zhang, Y., Jie, X., Zhao, H., Li, G., and Su, W. (2014a). Recent advances in directed C-H functionalizations using monodentate nitrogenbased directing groups. Org. Chem. Front. 1, 843-895.

Zhang, X.-S., Chen, K., and Shi, Z.-J. (2014b). Transition metal-catalyzed direct nucleophilic addition of $\mathrm{C}-\mathrm{H}$ bonds to carbonheteroatom double bonds. Chem. Sci. 5, 2146-2159

Supplemental Information

The [3+2] Annulation of CF_{3}-Ketimines

by Re Catalysis: Access to CF_{3}-Containing
Amino Heterocycles and Polyamides
Saisai Zhang, Xun-Yong Liu, Zhenbang Chang, Xinxin Qiao, Heng-Ying Xiong, and Guangwu Zhang

Supporting Information

The [3+2] Annulation of CF_{3}-Ketimines by Re Catalysis: Access to CF_{3}-Containing Amino Heterocycles and Polyamides

Saisai Zhang, Xun-Yong Liu, Zhenbang Chang, Xinxin Qiao, Heng-Ying Xiong and Guangwu Zhang

Supplementary Figures

Figure S1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1a, related to Table 1

1a

Figure S2. ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{M H z}, \mathbf{C D C l}_{3}$) spectrum of compound 1a, related to Table 1

Figure S3. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1a, related to Table 1

Figure S4. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{(4 0 0 ~ M H z , ~} \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 b}$, related to Scheme 2

1b

Figure S5. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 b}$, related to Scheme 2

Figure S6. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 b}$, related to Scheme 2

Figure S7. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1c, related to Scheme 2

$$
\stackrel{+}{+}
$$

1c

Figure S8. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 c , related to Scheme 2

Figure S9. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1c, related to Scheme 2

Figure S10. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 d , related to Scheme 2
(d)

Figure S11. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1d, related to Scheme 2

Figure S12. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1d, related to Scheme 2

Figure S13. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 e , related to Scheme 2

1 e

Figure S14. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1e, related to Scheme 2

$1 e$

Figure $\mathrm{S} 15 .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1e, related to Scheme 2

Figure S16. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 f}$, related to Scheme 2

$1 f$

Figure S17. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 f}$, related to Scheme 2

Figure S18. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1f, related to Scheme 2

Figure S19. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 g , related to Scheme 2

Figure $\mathbf{S 2 0} .{ }^{19} \mathrm{~F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 g}$, related to Scheme 2

Figure S22. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 h}$, related to Scheme 2

Figure S23. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 h , related to Scheme 2

Figure S24. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 h , related to Scheme 2

Figure S25. ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1i, related to Scheme 2

$1 i$

Figure S26. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1i, related to Scheme 2

Figure S28. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 j}$, related to Scheme 2

Figure S29. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 j , related to Scheme 2

Figure S30. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 j , related to Scheme 2

Figure S31. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 k , related to Scheme 2

Figure S32. ${ }^{19} \mathrm{~F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectrum of compound 1 k , related to Scheme 2

Figure S33. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 k}$, related to Scheme 2

Figure S34. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 11 , related to Scheme 2

Figure S35. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 11, related to Scheme 2

Figure S36. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 11, related to Scheme 2

1 m

Figure S37．${ }^{\mathbf{1}} \mathrm{H}$ NMR（ $\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}$ ）spectrum of compound $\mathbf{1 m}$ ，related to Scheme 2

1m

Figure S38．${ }^{19} \mathrm{~F}$ NMR（ $\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ）spectrum of compound $\mathbf{1 m}$ ，related to Scheme 2

$1 m$

 f1 (ppm)

Figure S39. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) spectrum of compound 1m, related to Scheme 2

Figure S40. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 n , related to Scheme 2

1n

Figure S41. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 n , related to Scheme 2

Figure $\mathrm{S} 42 .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 n , related to Scheme 2

10

Figure S43．${ }^{\mathbf{1}} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 10 ，related to Scheme 2

10

Figure S44．${ }^{19}$ F NMR（ $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 10 ，related to Scheme 2

10

Figure S45. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 10 , related to Scheme 2

Figure S46. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 p , related to Scheme 2

Figure S47. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 p , related to Scheme 2

Figure S48. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 p , related to Scheme 2

Figure S49. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 q}$, related to Scheme 2

Figure S50. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1q, related to Scheme 2

Figure $\mathrm{S}_{51}{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 q , related to Scheme 2
 $\xrightarrow{\mathrm{NNNNNNONO}}$

1r

Figure S52. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 r}$, related to Scheme 2

Figure S53. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 r , related to Scheme 2

Figure S54. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1r, related to Scheme 2

Figure S55. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 s , related to Scheme 2

Figure S56. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 s , related to Scheme 2

1s

Figure S57. ${ }^{13}$ C NMR (101 MHz, CDCl_{3}) spectrum of compound 1 s , related to Scheme 2

1t

$$
\begin{aligned}
& \text { NNNNNNN }
\end{aligned}
$$

Figure S58. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 t , related to Scheme 2

Figure S59. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 t , related to Scheme 2

Figure S60. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 t , related to Scheme 2

Figure $\mathrm{S} 61 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 u , related to Scheme 2

Figure $\mathbf{S 6 2}^{19}{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 u , related to Scheme 2

Figure $\operatorname{S64} .{ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 v}$, related to Scheme 2

$$
--70.2
$$

Figure S65. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 v , related to Scheme 2

Figure S66. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 v , related to Scheme 2

Figure S67. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 w}$, related to Scheme 2

Figure S68. ${ }^{19} \mathrm{~F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 w}$, related to Scheme 2

Figure S70. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 x , related to Scheme 2

Figure S71. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 x}$, related to Scheme 2

Figure $S 72 .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 x , related to Scheme 2

Figure S73. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 y , related to Scheme 2

Figure S74. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 y , related to Scheme 2

Figure S76. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 z}$, related to Scheme 2

Figure S77. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 z , related to Scheme 2

Figure S78. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 z , related to Scheme 2

NNNNNN

1aa

Figure S79．${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 1aa，related to Scheme 2

Figure S80．${ }^{19}$ F NMR（ $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 1aa，related to Scheme 2

1aa

Figure S81. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) spectrum of compound 1aa, related to Scheme 2

Figure S82. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1ab, related to Scheme 2

Figure S83. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1ab, related to Scheme 2

Figure S84. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1ab, related to Scheme 2

1ac

Figure S85. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 ac , related to Scheme 2

Figure S86. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1ac, related to Scheme 2

Figure S87．${ }^{13} \mathrm{C}$ NMR（101 MHz， CDCl_{3} ）spectrum of compound 1ac，related to Scheme 2

$$
\begin{aligned}
& \text { へ人N人NNNNN。 }
\end{aligned}
$$

1ad

Figure S88．${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 1ad，related to Scheme 2

$$
\begin{aligned}
& --70.5 \\
& \text { 1ad }
\end{aligned}
$$

Figure S89. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1ad, related to Scheme 2

Figure S90. ${ }^{13}$ C NMR (101 MHz, CDCl_{3}) spectrum of compound 1ad, related to Scheme 2

Figure $\mathrm{S} 91 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1ae, related to Scheme 2

Figure S92. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1ae, related to Scheme 2

Figure S93. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) spectrum of compound 1ae, related to Scheme 2

1af

Figure $S 94 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1af, related to Scheme 2

1af

Figure S95. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1af, related to Scheme 2

Figure S96. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1af, related to Scheme 2

Figure S97. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1ag, related to Scheme 2

Figure S98. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1ag, related to Scheme 2

Figure S99. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1ag, related to Scheme 2
$\stackrel{\circ}{\circ} \stackrel{0}{\infty} \stackrel{0}{\square}$
$\stackrel{y}{\top}$

1ah

Figure S100. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1 ah , related to Scheme 2

Figure S101. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1ah, related to Scheme 2

Figure $\operatorname{S102} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1ah, related to Scheme 2

Figure S103. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1ai, related to Figure 2

1ai

Figure S104. ${ }^{19} \mathrm{~F}$ NMR ($\mathbf{3 7 6} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1ai, related to Figure 2

Figure S105. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1ai, related to Figure 2

Figure S106. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1aj, related to Scheme 5

Figure S107. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1aj, related to Scheme 5

1ak

Figure S108. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1ak, related to Figure 3
(ak

Figure S109. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1ak, related to Figure 3

Figure S110. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1ak, related to Figure 3

1al

Figure S111．${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 1al，related to Figure 3

Figure S112．${ }^{19}$ F NMR（ $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 1al，related to Figure 3
パ

Figure S113. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1al, related to Figure 3

Figure S114. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1am, related to Figure 3

Figure S115. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1am, related to Figure 3

Figure S116. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1am, related to Figure 3

Figure S117. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1an, related to Figure 3

Figure S118. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1an, related to Figure 3

Figure S119. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 1an, related to Figure 3

Figure S120. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3a, related to Table 1

Figure S121. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3a, related to Table 1

Figure S122. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3a, related to Table 1

Figure S123. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 b}$, related to Scheme 2
$\stackrel{n}{i}$

3b

Figure S124. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3b, related to Scheme 2

Figure S125. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3b, related to Scheme 2

3c

Figure S126. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 c}$, related to Scheme 2

3c

Figure S129. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3d, related to Scheme 2

Figure S130. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3d, related to Scheme 2

Figure S131. ${ }^{13}$ C NMR (101 MHz, CDCl_{3}) spectrum of compound 3d, related to Scheme 2

Figure S132. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3e, related to Scheme 2

Figure S133. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3e, related to Scheme 2

Figure S134. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3e, related to Scheme 2

Figure S135. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3f, related to Scheme 2

Figure S136. ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) spectrum of compound 3f, related to Scheme 2

$3 f$

Figure S137. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3f, related to Scheme 2

$3 \mathbf{g}$

Figure S138. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 g}$, related to Scheme 2

$3 g$

Figure S139. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 g}$, related to Scheme 2

$$
\stackrel{\Gamma}{\stackrel{\Gamma}{N}}
$$

3g

Figure S140. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 g}$, related to Scheme 2

3h

Figure S141. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 h}$, related to Scheme 2

$$
\begin{aligned}
& \circ \\
& \stackrel{\circ}{e} \\
& \stackrel{i}{i}
\end{aligned}
$$

3h

Figure S142. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 h , related to Scheme 2

3h

Figure S143. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 h}$, related to Scheme 2

Figure $S 144 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3i, related to Scheme 2
ceses)

Figure S145. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 i}$, related to Scheme 2

Figure S146. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3i, related to Scheme 2

Figure S147. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3j, related to Scheme 2

3j

Figure S148. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 j}$, related to Scheme 2

Figure S149. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3j, related to Scheme 2

Figure S150. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 k , related to Scheme 2

3k
\qquad

Figure S151. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3k, related to Scheme 2

Figure S152. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 k , related to Scheme 2

Figure S153. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 31, related to Scheme 2

Figure S154. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3l, related to Scheme 2

31

1 (ppm)

Figure S155. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 31, related to Scheme 2

Figure S156. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 m}$, related to Scheme 2

Figure S157. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 m , related to Scheme 2

Figure S158. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 m , related to Scheme 2

Figure S159. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 n}$, related to Scheme 2

Figure S160. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3n, related to Scheme 2

Figure S161. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 n , related to Scheme 2

$\stackrel{\underset{\sim}{n}}{\substack{n}}$

30

Figure S162. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3o, related to Scheme 2

30

Figure S163. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3o, related to Scheme 2

Figure S164. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3o, related to Scheme 2

[^1]
3p

Figure S165. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3p, related to Scheme 2

3p

Figure S166. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3p, related to Scheme 2

Figure S167. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3p, related to Scheme 2

Figure S168. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 q}$, related to Scheme 2

3q
\qquad

Figure S169. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 q}$, related to Scheme 2

Figure S170. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 q}$, related to Scheme 2

Figure S171. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3r, related to Scheme 2

Figure S172. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3r, related to Scheme 2

$\stackrel{\sim}{\stackrel{N}{\perp}}$

$3 r$

Figure S173. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) spectrum of compound 3r, related to Scheme 2

Figure S174. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3s, related to Scheme 2

Figure S175. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 s , related to Scheme 2

Figure S176. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 s , related to Scheme 2

ヘヘヘNヘNへへへへべ

3t

Figure S177．${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 3t，related to Scheme 2

Figure S178．${ }^{19}$ F NMR（ $\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$ ）spectrum of compound 3t，related to Scheme 2

3t

Figure S179. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) spectrum of compound 3t, related to Scheme 2

Figure S180. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 u , related to Scheme 2

Figure S181. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3u, related to Scheme 2

Figure S182. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3u, related to Scheme 2

Figure S183. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 v}$, related to Scheme 2
$\stackrel{\bullet}{\stackrel{\circ}{i}}$

3v

Figure S184. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3v, related to Scheme 2

Figure $\operatorname{S185}$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 v , related to Scheme 2

Figure S186. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 3 w , related to Scheme 2

Figure S187. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 w , related to Scheme 2

OMOMO
OMOMO
$\stackrel{\infty}{\stackrel{\infty}{\sim}} \stackrel{\Gamma}{i}$

3w

Figure S188. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 w , related to Scheme 2

Figure S189. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 x , related to Scheme 2

Figure S190. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3x, related to Scheme 2

Figure S191. ${ }^{13}$ C NMR (101 MHz, CDCl_{3}) spectrum of compound 3x, related to Scheme 2

Figure S192. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3y, related to Scheme 2
$--77.5$

$3 y$

Figure S193. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 y , related to Scheme 2

Figure S194. ${ }^{13}$ C NMR (101 MHz, CDCl_{3}) spectrum of compound 3y, related to Scheme 2

$\stackrel{\text { N N N }}{\substack{~}}$

$3 z 1$

Figure S195. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 z 1}$, related to Scheme 2

$3 z 1$

Figure S196. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 z 1 , related to Scheme 2

$\stackrel{\varrho}{\stackrel{\pi}{\mathrm{N}}}$

$3 z 1$

Figure S197. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 z 1}$, related to Scheme 2

Figure S198. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 z 2}$, related to Scheme 2

Figure S199. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $3 z 2$, related to Scheme 2

Figure S200. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 zz , related to Scheme 2

3aa

Figure S201. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aa, related to Scheme 2

$$
\stackrel{\bullet}{i}
$$

3aa

Figure S202. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aa, related to Scheme 2

Figure S203. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aa, related to Scheme 2

Figure S204. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ab, related to Scheme 2

Figure S205. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ab, related to Scheme 2

Figure S206. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ab, related to Scheme 2

Figure S207. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ac, related to Scheme 2

Figure S208. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ac, related to Scheme 2

Figure S209. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ac, related to Scheme 2

$\stackrel{セ}{\infty} \dot{+}$
$\stackrel{+}{\text { N }}$

Figure S210. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ad, related to Scheme 2

Figure S211. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ad, related to Scheme 2

Figure $\mathbf{S 2 1 2 .}{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ad, related to Scheme 2

Figure S213. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ae, related to Scheme 2
$\stackrel{\infty}{\stackrel{\infty}{i}}$

3ae

Figure S214. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ae, related to Scheme 2

3ae

Figure S215. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ae, related to Scheme 2

Figure S216. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3af, related to Scheme 2

Figure S217. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3af, related to Scheme 2

Figure S218. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3af, related to Scheme 2

Figure S219. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ag, related to Scheme 2

Figure S220. ${ }^{19} \mathrm{~F}$ NMR ($\mathbf{3 7 6} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ag, related to Scheme 2

Figure S221．${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 3ag，related to Scheme 2

$$
\begin{aligned}
& \text { へべ心。゚ }
\end{aligned}
$$

$\stackrel{\leftrightarrow}{i}$

3ah

Figure S222．${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 3ah，related to Scheme 2

Figure S223. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ah, related to Scheme 2

Figure S224. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ah, related to Scheme 2
$\stackrel{+}{\infty}$

3ai

Figure S225. ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ai, related to Scheme 3

Figure S226. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ai, related to Scheme 3

3ai

Figure S227. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ai, related to Scheme 3

3aj

Figure S228. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aj, related to Scheme 3

Figure S229. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aj, related to Scheme 3
(1)

3aj

1 (ppm)

Figure S230. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aj, related to Scheme 3

3ak

Figure S231. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ak, related to Scheme 3

3ak

Figure S232. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ak, related to Scheme 3

3ak

Figure S233. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ak, related to Scheme 3
$\stackrel{+\infty}{+}$

3al

Figure S234. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3al, related to Scheme 3

3al

Figure S235. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3al, related to Scheme 3

Figure S236. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3al, related to Scheme 3
 $\stackrel{\infty}{\substack{\infty}} \stackrel{N}{i}$

3am

Figure S237. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3am, related to Scheme 3

3am

Figure S238. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3am, related to Scheme 3

3am

Figure S239. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) spectrum of compound 3am, related to Scheme 3

Figure S240. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3an, related to Scheme 3

3an

Figure S241. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3an, related to Scheme 3

0
10
10
1

3an

${ }_{\mathrm{f} 1}^{90}$ (ppm)

Figure $\mathbf{S 2 4 2} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3an, related to Scheme 3

3 ao

Figure S243. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ao, related to Scheme 3

$\stackrel{\bullet}{\stackrel{\circ}{i}}$
$--111.7$
3 ao

Figure S244. ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) spectrum of compound 3ao, related to Scheme 3

3 ao

Figure S245. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) spectrum of compound 3ao, related to Scheme 3

∞
∞
$\dot{+}$
\mid

Figure S246. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ap, related to Scheme 3

Figure S247. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ap, related to Scheme 3

Figure S248. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ap, related to Scheme 3

$3 a q$

Figure S249. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aq, related to Scheme 3

$$
\stackrel{N}{i}
$$

$3 a q$

Figure S250. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aq, related to Scheme 3

Figure $\mathbf{S 2 5 1}$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aq, related to Scheme 3

$$
\begin{aligned}
& \underbrace{\infty} \underbrace{\circ \hat{N} N 人 \underbrace{\circ}}
\end{aligned}
$$

3ar (mixture of isomer)

Figure S252. ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ar, related to Scheme 3

3ar (mixture of isomer)

Figure S253. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ar, related to Scheme 3

Figure S254. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ar, related to Scheme 3

Figure S255. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3as, related to Scheme 3
$\stackrel{\infty}{i} \stackrel{\stackrel{\pi}{+}}{\stackrel{\infty}{\Gamma}}$

3as

Figure S256. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3as, related to Scheme 3

Figure S257. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3as, related to Scheme 3

Figure S258. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3at, related to Scheme 3

Figure S259. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3at, related to Scheme 3

Figure S260. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3at, related to Scheme 3

Figure S261. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3au, related to Scheme 3

Figure S262. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3au, related to Scheme 3

3au

Figure S263. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3au, related to Scheme 3

Figure S264. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3av, related to Scheme 3

Figure S265. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3av, related to Scheme 3

Figure S266. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3av, related to Scheme 3

3aw

Figure S267. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aw, related to Scheme 3

Figure S268. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aw, related to Scheme 3

3aw

Figure S269. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) spectrum of compound 3aw, related to Scheme 3

3ax

Figure S270. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ax, related to Scheme 3

Figure S271. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ax, related to Scheme 3

3ax

Figure S272. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ax, related to Scheme 3

Figure S273. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ay, related to Scheme 3

Figure S274. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ay, related to Scheme 3

Figure S275. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ay, related to Scheme 3

Figure S276. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3az, related to Scheme 3

$3 a z$

Figure S277. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3az, related to Scheme 3

Figure S278. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 az , related to Scheme 3

Figure S279. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ba, related to Scheme 3

Figure S280. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ba, related to Scheme 3

Figure S281. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ba, related to Scheme 3

$\stackrel{+}{+}$

3bb

Figure S282. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3bb, related to Scheme 3

3bb

Figure S283. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3bb, related to Scheme 3

Figure $\mathrm{S} 284 .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3bb, related to Scheme 3

3bc

Figure $\mathrm{S} 285 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 bc , related to Scheme 3

Figure S286. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 bc , related to Scheme 3

3bc

Figure S287. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3bc, related to Scheme 3

$\stackrel{\sim}{\infty}$

3bd

Figure S288. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3bd, related to Scheme 3
隹

Figure S289. ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectrum of compound 3bd, related to Scheme 3

Figure S290. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3bd, related to Scheme 3

Figure S291. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3be, related to Scheme 3

Figure S292. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3be, related to Scheme 3

Figure S293. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3be, related to Scheme 3

Figure S294. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3bf, related to Scheme 5

N
®
O

$\stackrel{\Gamma}{\stackrel{-}{i}}$

3bf

Figure S295. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 bf , related to Scheme 5

4

Figure S296. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4, related to Scheme 7

Figure S297. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4, related to Scheme 7

Figure S298. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4, related to Scheme 7

Figure S299. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5, related to Scheme 7

Figure S300. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5, related to Scheme 7

Figure S301. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) spectrum of compound 5, related to Scheme 7

Figure S302. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 6, related to Scheme 7

6

Figure S303. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 6, related to Scheme 7

$\stackrel{\sim}{\stackrel{N}{\sim}}$

6

Figure $\operatorname{S304} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 6, related to Scheme 7

Figure S305. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9, related to Scheme 8

Figure S306. ${ }^{19} \mathrm{~F}$ NMR ($\mathbf{3 7 6} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9, related to Scheme 8

Figure S307. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) spectrum of compound 9, related to Scheme 8

Figure S308. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 10 related to Scheme 8

Figure S309. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 10 , related to Scheme 8

Figure $\mathrm{S} 310 .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 10 (major), related to Scheme 8

Figure S311. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 10 (minor), related to Scheme 8

Figure S312. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 13 , related to Scheme 8

Figure S313. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 13, related to Scheme 8

Figure S314. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 13 (major), related to Scheme 8

13 (minor)

Figure S315. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 13 (minor), related to Scheme 8

Figure S316. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 14 , related to Scheme 8

Figure S317. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 14, related to Scheme 8

Figure S318. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 14 , related to Scheme 8
「

20

Figure S319. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 20, related to Scheme 8

20

Figure S320. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 20, related to Scheme 8

20

Figure S321. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 20, related to Scheme 8

へ人

$\underbrace{\text { نیN N N N }}$

21

Figure S322. ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 21, related to Scheme 8

Figure S323. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 21, related to Scheme 8

21

Figure S324. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 21, related to Scheme 8

Figure S325. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 22, related to Scheme 8

Figure S326. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 22, related to Scheme 8

Figure S327. ${ }^{13}$ C NMR (101 MHz, CDCl_{3}) spectrum of compound 22, related to Scheme 8

Figure S328. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 23 , related to Scheme 8

Figure S329. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 23, related to Scheme 8

Figure S330. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 23, related to Scheme 8

$\underbrace{\infty} \underbrace{\infty}$ 人Nへ人N

Figure S331．${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 24a，related to Figure 3

Figure S332．${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound $\mathbf{2 4 a}$ ，related to Figure 3

24b

Figure S333. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{2 4 b}$, related to Figure 3

Figure S334. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 24b, related to Figure 3

Figure S335. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 24c, related to Figure 3

Figure S336. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 24 c , related to Figure 3

Figure S337. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 24d, related to Figure 3

Figure S338. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 24 d , related to Figure 3

Figure S339. \mathbf{H}^{1} NMR spectra copy of $[D]_{5}-1 a$, related to Scheme 4

1a

1b

1c

1d

1 e

$1 f$

1g

1h

$1 i$

$1 n$

1 s

$1 t$

1j

1x

1y

14

1v

1w

1ab

1ac

1k

11

1 m

$1 r$

$1 z$

1aa

1ag

1ah

1ai

1aj

Figure S340. List of the derivatives 1, related to Table 1 and Scheme 2

Figure S341. Parallel reactions Kinetic Isotope Effect (KIE) measurements, related to Scheme 4

Figure S342. Molecular weight (Mn) and molecular weight distribution ($\mathbf{M w} / \mathbf{M n}$) values of 24a, related to Figure 3

Figure S343. Molecular weight (Mn) and molecular weight distribution (Mw/Mn) values of 24b, related to Figure 3

Figure S344. Molecular weight (Mn) and molecular weight distribution (Mw/Mn) values of 24c, related to Figure 3

Figure S345. Molecular weight (Mn) and molecular weight distribution (Mw/Mn) values of 24d, related to Figure 3

Figure S346. Absorption spectra (UV) of $24 a-d\left([C]=1 \times 10^{-5} \mathrm{M}\right.$, related to Figure 3

Supplementary Schemes

Scheme S1. General procedure for the synthesis of $\mathbf{1 a - 1 u}, \mathbf{1 w}-1 \mathbf{y}, 1 \mathrm{af}$, 1ai and 1 aj , related to Table 1 and Scheme 2

Scheme S2. General procedure for the synthesis of 1aa and 1ae, related to Scheme 2

Scheme S3. General procedure for the synthesis of $1 \mathrm{v}, 1 \mathrm{z}, 1 \mathrm{ab}-1 \mathrm{ad}$, related to Scheme 2

Scheme S4. Procedure for the synthesis of 1ah, related to Scheme 2

Scheme S5. Procedure for the synthesis of 1ag, related to Scheme 2

Scheme S6. General procedure for the synthesis of 1ak-1an, related to Scheme 2

Scheme S7. General procedure for the synthesis of 3a-3be, related to Scheme 2, Scheme 3 and Figure 2

Scheme S8. Procedure for the synthesis of [D] $]_{5}$-1a, related to Scheme 4

Scheme S9. Procedure for the synthesis of [D] $\mathbf{5}_{5}$-1a, related to Scheme 4

Scheme S10. Control experiments under different additives, related to Scheme 5

Scheme S11. Control experiments use 1aj instead of 1a, related to Scheme 5

Scheme S12. Procedure for the gram synthesis of 3a, related to Scheme 7

Scheme S13. Procedure for the synthesis of 4, related to Scheme 7

Scheme S14. Procedure for the synthesis of 5, related to Scheme 7

Scheme S15. Procedure for the synthesis of 6, related to Scheme 7

Scheme S16. Procedure for the synthesis of 10, related to Scheme 8

Scheme S17. Procedure for the synthesis of 14, related to Scheme 8

20
p-tolyl- $\mathrm{N}=\mathrm{C}=\mathrm{O}$
(10 mol $\%$) $\mathrm{Re}_{2}(\mathrm{CO})_{10}(10 \mathrm{~mol} \%)$

22

21

23

Scheme S18. Procedure for the synthesis of 22 and 23, related to Scheme 8

Scheme S19. Procedure for the synthesis of 24a-d, related to Figure 3

Supplementary Table

Table S1. ${ }^{19}$ F NMR yield in different time, related to Scheme 4

Time (h)	1	2	3	4	5
3a	0	2.2	5.5	9.5	13.5
$[D] 5-3 a$	0	3.5	6.9	11.4	16.5

Transparent Methods

General Methods for Experiments

Anhydrous o-xylene was purchased from Innochem Ltd (Extra Dry, with molecular sieves, Water $\leqslant 50 \mathrm{ppm}$, in resealable bottle), anhydrous PhCl was purchased from Energy Chemical Ltd (Extra Dry, with molecular sieves, Water $\leqslant 50 \mathrm{ppm}$, Energyseal), and these were degassed before using. Anhydrous THF was purchased from J\&K Scientific Ltd (Super Dry, with molecular sieves, Water $\leqslant 50 \mathrm{ppm}$, J\&K seal). Diethyl ether was distilled over sodium prior to use. $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ was purchased from Strem chemicals, Inc. All the isocyanates were commercially available and were used as received unless otherwise stated

All reactions were carried out using oven-dried glassware and magnetic stirring under argon gas unless otherwise stated. Reaction temperatures are reported as the temperature of the bath surrounding the vessel. Analytical thin layer chromatography was performed on silica gel aluminum plates with F-254 indicator and visualized by UV light (254 nm). Column chromatography was performed using 200-300 mesh silica gel. NMR spectra were recorded on AVANCE III HD 400 MHz . Chemical shifts (δ) are quoted in ppm relative to TMS $\left({ }^{1} \mathrm{H}\right)$ and $\mathrm{CFCl}_{3}\left({ }^{19} \mathrm{~F}\right)$. Coupling constants (J) are quoted in Hz . The following abbreviations were used to show the multiplicities: s: singlet, d : doublet, t : triplet, q: quadruplet, dd: doublet of doublet, m: multiplet. The residual solvent signals were used as references $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm}, \delta_{\mathrm{C}}=77.00 \mathrm{ppm}\right.$ or relative to external $\mathrm{CFCl}_{3}, \delta_{\mathrm{F}}=0 \mathrm{ppm}$). High-resolution mass spectrometry (HRMS) was carried out on a Waters Xevo G2-XS QTof. IR spectra were recorded on a VERTEX 70, the wave numbers of recorded IR-signals are quoted in cm^{-1}. Ultraviolet-visible-near infrared spectrophotometer (UV-vis) were recorded on a UH4150. Molecular weight (Mn) and molecular weight distribution ($\mathrm{Mw} / \mathrm{Mn}$) values were determined by Advanced Polymer Chromatographyy (ACQUITY APC). The APC system used THF as the eluent at a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ at $40^{\circ} \mathrm{C}$ using linear PMMA standards.

General procedure for the synthesis of derivatives

General procedure A (1a-1u, 1w-1y, 1af, 1ai, 1aj) (Scheme S1) (Elliott et al., 2019; Dai and Cahard, 2014)

To a solution of 2,2,2-trifluoroacetephenone ($10 \mathrm{mmol}, 1$ equiv) in toluene (90 mL) was added aniline (13.9 mmol , 1.39 equiv) followed by p-toluenesulfonic acid monohydrate
($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}, 5 \mathrm{~mol} \%$). The resulting reaction mixture was heated at $140^{\circ} \mathrm{C}$ for 24 h with removal of water via Dean-Stark trap. After cooling to room temperature, the reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography on silica gel to give the corresponding ketimine $\mathbf{1 a - 1 u}, \mathbf{1 w} \mathbf{- 1 \mathbf { y }}$, 1af, 1ai and 1aj.

General procedure B (1aa, 1ae) (Scheme S2) (Strømgaard et al., 2002)

To a solution of bromobenzene ($10 \mathrm{mmol}, 1$ equiv) in dry $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was slowly added $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, 1.1 equiv). After that, the reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred at that temperature for 2 h . Then the reaction mixture was cooled down to $-60^{\circ} \mathrm{C}$ and a solution of N-trifluoroacetylpiperidine ($2.2 \mathrm{~mL}, 15 \mathrm{mmol}$, 1.5 equiv) in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added in portions. The resulting reaction mixture was stirred at $-60^{\circ} \mathrm{C}$ for 3 h and then warmed to room temperature. The reaction mixture was then quenched by the addition of the saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and the organic phase was subsequently washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \times 50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic layers was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the volatiles were removed under vacuum. The crude was used directly for the synthesis of 1aa or 1ae without further purification according to procedure A (2 equiv of aniline and $10 \mathrm{~mol} \%$ of p-toluenesulfonic acid monohydrate were used).

General procedure C (1v, 1z, 1ab-1ad) (Scheme S3) (Fujita et al., 2017)
To a solution of ethyl trifluoroacetate (1.2 equiv) in dry $\mathrm{Et}_{2} \mathrm{O}(1.2 \mathrm{M})$ at $-78{ }^{\circ} \mathrm{C}$ was slowly added Grignard reagent (1 equiv), and the resulting reaction mixture was stirred at that temperature for 1.5 h . Then, the reaction mixture was warmed to $-50^{\circ} \mathrm{C}$ and stirred for another 2 h . The reaction mixture was then quenched by the addition of the saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$. The organic layer were washed with brine (3×20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The volatiles were removed under vacuum, and the crude was used directly for the synthesis of $\mathbf{1 v}, \mathbf{1 z}, \mathbf{1 a b}-\mathbf{1 a d}$ without further purification according to procedure A.

Procedure D (1ah) (Scheme S4) (Trost and Debien, 2015)
To a solution of cyclohex-1-ene-1-carbaldehyde ($1.54 \mathrm{~g}, 14 \mathrm{mmol}, 1$ equiv) in THF (42 mL) was slowly added TBAF (1 M in THF, $9.8 \mathrm{~mL}, 0.7$ equiv) and $\mathrm{TMSCF}_{3}(4.6 \mathrm{~mL}$, $30.8 \mathrm{mmol}, 2.2$ equiv) at $-40{ }^{\circ} \mathrm{C}$ under Ar. After addition completed, the reaction mixture was slowly warmed to room temperature and stirred at that temperature for 20 h. The yellow reaction mixture was quenched by the addition of $\mathrm{HCl}(2 \mathrm{M}, 7 \mathrm{~mL})$ and then separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$ and the combined organic layers was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under
vacuum. The crude was used directly for the next step without further purification.

To a solution of DMP ($15.6 \mathrm{~g}, 36.7 \mathrm{mmol}$, 1.2 equiv) in DCM (20 mL) was added the solution of 1-(cyclohex-1-en-1-yl)-2,2,2-trifluoroethan-1-ol in DCM (20 mL) at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred at room temperature for 12 h . Then aqueous $\mathrm{NaOH}(0.5 \mathrm{M}, 10 \mathrm{~mL})$ was added to quench the reaction and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum to give the crude 1-(cyclohex-1-en-1-yl)-2,2,2-trifluoroethan-1-one which was used directly for the synthesis of 1ah without further purification according to procedure A .

Procedure E (1ag) (Scheme S5) (Chen et al., 1983)
To a solution of 1,4-dibromobenzene ($17 \mathrm{mmol}, 1$ equiv) in THF and $\mathrm{Et}_{2} \mathrm{O}(76 \mathrm{~mL}, 1: 1)$ was slowly added n - BuLi (2.5 M in hexane, 1 equiv) at $-78{ }^{\circ} \mathrm{C}$. Then the reaction mixture was warmed to $-75^{\circ} \mathrm{C}$ and stirred at that temperature for 10 min . After that, the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$, and ethyl trifluoroacetate ($2.02 \mathrm{~mL}, 17 \mathrm{mmol}, 1$ equiv) was slowly added. Then the reaction mixture was warmed to $-70^{\circ} \mathrm{C}$ and stirred at that temperature for 30 min . After that the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ again, and $n-\operatorname{BuLi}(2.5 \mathrm{M}$ in hexane, 1 equiv) was added. The obtained reaction mixture was allowed to warm to $-73^{\circ} \mathrm{C}$ and stirred at that temperature for 10 min . Then the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ again, and ethyl trifluoroacetate ($2.02 \mathrm{~mL}, 17 \mathrm{mmol}, 1$ equiv) was slowly added. After that, the obtained solution was warmed to $-66^{\circ} \mathrm{C}$ and stirred at that temperature for 10 min . Precooled mixture of $\mathrm{HCl}(2 \mathrm{M}, 10 \mathrm{~mL})$ and $\mathrm{EtOH}(5 \mathrm{~mL})$ was added to the reaction mixture to quench the reaction. The obtained organic layer was washed with aqueous $\mathrm{HCl}(2 \mathrm{M}, 3 \times 50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered. After concentrated under vacuum, the crude was used directly for the next step without further purification according to procedure A (2 mmol of $1,1^{\prime}-(1,4-$ phenylene)bis(2,2,2-trifluoroethan-1-one), 4 equiv of aniline and $20 \mathrm{~mol} \%$ of p toluenesulfonic acid monohydrate were used).

General procedure F (1ak-1an) (Scheme S6) (Chen et al., 1983)
The 1,1'-([1,1'-biphenyl]-4,4'-diyl)bis(2,2,2-trifluoroethan-1-one) was synthesized according to procedure E on a 20 mmol scale. The residue was purified by flash column chromatography on silica gel to give the corresponding product, yield $=69 \%(4.8 \mathrm{~g})$.

To a solution of 1,1'-([1,1'-biphenyl]-4,4'-diyl)bis(2,2,2-trifluoroethan-1-one) (1.04 g , $3 \mathrm{mmol}, 1$ equiv) in toluene (90 mL) was added aniline ($12 \mathrm{mmol}, 4$ equiv) followed by p-toluenesulfonic acid monohydrate ($114.1 \mathrm{mg}, 0.6 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was heated at $140^{\circ} \mathrm{C}$ for 48 h with removal of water via Dean-Stark trap. After
cooling to room temperature, the reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography on silica gel to give 1ak-1an.

Purification and characterization of derivatives 1

1a
2,2,2-trifluoro-N,1-diphenylethan-1-imine 1a. (Elliott et al., 2019; Abid et al., 2007). Following general procedure A , on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 16 cm , width 4.5 cm , eluent: petroleum ether $+3 \% \mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, yield $=74 \%(1.85 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): $0.5 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.09(\mathrm{~m}, 7 \mathrm{H}), 7.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.5$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 157.0 (q, $J=34.3 \mathrm{~Hz}$), 147.1, 130.1, 130.0, 128.7, 128.6, 128.4, 125.3, 120.5, 119.9 (q, $J=279.8 \mathrm{~Hz})$. IR (KBr, cm^{-1}) v: 3404, 3069, 2928, 1664, 1591, 1487, 1330, 1194, 1135, 971, 773, 697. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}^{+} m / z 250.0838[\mathrm{M}+\mathrm{H}]^{+}$, Found 250.0842

1b
2,2,2-trifluoro-1-phenyl- N-(p-tolyl)ethan-1-imine 1b. Following general procedure A, on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $+3 \% \mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, yield $=77 \%(2.03 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.6. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36$ - 7.15 (m, 5H), 6.96 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.64 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.21 (s, 3H). ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.4$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.4(\mathrm{q}, J=34.3$ Hz), 144.4, 135.3, 130.4, 130.1, 129.4, 128.6, 128.5, 120.9, 120.0 (q, $J=279.8 \mathrm{~Hz}$), 20.8. IR (KBr, cm ${ }^{-1}$) v: 3452, 3034, 2926, 1659, 1502, 1449, 1331, 1234, 1194, 1133, 972, 826, 697. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}^{+} m / z 264.0995[\mathrm{M}+\mathrm{H}]^{+}$, Found 264.0998.

1c
N-(4-(tert-butyl)phenyl)-2,2,2-trifluoro-1-phenylethan-1-imine 1c. Following general procedure A , on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $+3 \%$ $\mathrm{Et}_{3} \mathrm{~N}$) as an orange solid, yield $=62 \%(1.89 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.5. ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 4 \mathrm{H}), 6.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.26$ (s, 9 H). ${ }^{\mathbf{1 9}}{ }^{\mathbf{F}}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.4$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.1$ (q, $J=33.3 \mathrm{~Hz}$), 148.7, 144.2, 130.4, 130.1, 128.6, 128.5, 125.6, 120.8, 120.0 (q, $J=$ 280.8 Hz), 34.4, 31.2. IR (KBr, cm ${ }^{-1}$) v: 3432, 3070, 2961, 1665, 1501, 1325, 1197, 1128, 970, 836, 702. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}^{+} m / z 306.1464[\mathrm{M}+\mathrm{H}]^{+}$, Found 306.1467 .

1d

2,2,2-trifluoro-1-phenyl- N-(4-(trifluoromethyl)phenyl)ethan-1-imine

Following general procedure A , on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 20 cm , width 3.5 cm , eluent: petroleum ether $+3 \% \mathrm{Et}_{3} \mathrm{~N}$) as a yellow solid, yield $=46 \%(1.46 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): $0.6 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.8(\mathrm{~s}),-70.6$ (s). ${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.5(\mathrm{q}, J=34.3 \mathrm{~Hz}), 150.3,130.7,129.3,128.7$, 128.5, $127.2(\mathrm{q}, ~ J=33.3 \mathrm{~Hz}), 126.1(\mathrm{q}, J=3.0 \mathrm{~Hz}), 124.0(\mathrm{q}, J=272.7 \mathrm{~Hz}), 120.3$, $119.6(\mathrm{q}, J=280.8 \mathrm{~Hz})$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v: 3395,3069,1669,1612,1326,1196,1133$, 971, 846, 699. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{~N}^{+} m / z 318.0712[\mathrm{M}+\mathrm{H}]^{+}$, Found 318.0721 .

1e

2,2,2-trifluoro- N -(4-methoxyphenyl)-1-phenylethan-1-imine 1e. (Henseler et al., 2011). Following general procedure A , on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 16 cm , width 3.5 cm , eluent: petroleum ether $+3 \% \mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, yield $=85 \%(2.36 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.2. ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.79$ $-6.63(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.4(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.8,155.4(\mathrm{q}, J=34.3 \mathrm{~Hz}), 139.7,130.7,130.1,128.7,128.6,123.3$, $120.0(\mathrm{q}, J=279.8 \mathrm{~Hz}), 114.0,55.2$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) \mathrm{v}: 3457,3063,2954,1653,1600$, 1502, 1294, 1193, 1034, 971, 838, 774, 697. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}^{+} m / z$ $280.0944[\mathrm{M}+\mathrm{H}]^{+}$, Found 280.0945 .

$1 f$
2,2,2-trifluoro- N -(4-fluorophenyl)-1-phenylethan-1-imine 1f. Following general procedure A, on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 14 cm , width 3.5 cm , eluent: petroleum ether $+3 \%$ $\mathrm{Et}_{3} \mathrm{~N}$) as a yellow solid, yield $=85 \%(2.28 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.6. ${ }^{1} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.74$ (dd, $J=8.4,4.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.6$ (s), -117.5 (s). ${ }^{13} \mathbf{C} \mathbf{~ N M R}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.5(\mathrm{~d}, J=246.4 \mathrm{~Hz}$), $157.4(\mathrm{q}, J=33.3 \mathrm{~Hz}$), 143.0, 130.4, $130.0,128.7,128.5,122.6(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 119.7(\mathrm{q}, ~ J=279.8 \mathrm{~Hz}), 115.7$ (d, $J=23.2$ $\mathrm{Hz})$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3452, 3066, 2926, 1661, 1500, 1330, 1206, 1137, 972, 843, 782, 699. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{~N}^{+} m / z 268.0744[\mathrm{M}+\mathrm{H}]^{+}$, Found 268.0749.

19
\boldsymbol{N}-(4-chlorophenyl)-2,2,2-trifluoro-1-phenylethan-1-imine $\mathbf{1 g}$. (Li et al., 2010). Following general procedure A , on a 14.5 mmol scale. The product was purified by flash column chromatography on silica gel (height 14 cm , width 3.5 cm , eluent: petroleum ether $+3 \% \mathrm{Et}_{3} \mathrm{~N}$) as a pale yellow solid, yield $=23 \%(0.94 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.8. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.10(\mathrm{~m}, 4 \mathrm{H})$, $6.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-70.6(\mathrm{~s}) .{ }^{13} \mathbf{C} \mathbf{N M R}(101 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 157.7(\mathrm{q}, J=34.3 \mathrm{~Hz}), 145.5,131.0,130.5,129.7,129.0,128.7,128.5,122.1$, $119.7(\mathrm{q}, J=280.8 \mathrm{~Hz})$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3432, 3070, 1663, 1485, 1330, 1195, 1135, 971, 834, 704. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClF}_{3} \mathrm{~N}^{+} m / z 284.0448[\mathrm{M}+\mathrm{H}]^{+}$, Found 284.0459.

1h
N-(4-bromophenyl)-2,2,2-trifluoro-1-phenylethan-1-imine $\mathbf{1 h}$. Following general procedure A, on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 14 cm , width 3.5 cm , eluent: petroleum ether $+3 \%$ $\mathrm{Et}_{3} \mathrm{~N}$) as a pale yellow solid, yield $=59 \%(1.92 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.6. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 2H). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.6$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.7$ (q, $J=34.3 \mathrm{~Hz}$), $146.0,131.9,130.5,129.6,128.7,128.5,122.3,119.7(\mathrm{q}, J=279.8 \mathrm{~Hz})$, 118.8. IR (KBr, cm ${ }^{-1}$) v: 3441, 3077, 1661, 1480, 1332, 1199, 1132, 969, 823, 707. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrF}_{3} \mathrm{~N}^{+} m / z 327.9943[\mathrm{M}+\mathrm{H}]^{+}$, Found 327.9953.

$1 i$
2,2,2-trifluoro-1-phenyl- N-(m-tolyl)ethan-1-imine 1i. Following general procedure A, on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $+3 \% \mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, yield $=45 \%(1.19 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): $0.9 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41$ $-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.5(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.7(\mathrm{q}, J=34.3 \mathrm{~Hz}), 147.1,138.7,130.1$, 128.6, 128.55, 128.54, 128.4, 126.1, 121.4, 119.9 (q, $J=279.8 \mathrm{~Hz}$), 117.4, 21.2. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ v: 3446, 3060, 2925, 1663, 1595, 1485, 1328, 1199, 1134, 972, 873, 782. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}^{+} \mathrm{m} / \mathrm{z} 264.0995[\mathrm{M}+\mathrm{H}]^{+}$, Found 264.1001.

1j
2,2,2-trifluoro- N -(3-methoxyphenyl)-1-phenylethan-1-imine $\mathbf{1 j}$. Following general procedure A, on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $+3 \%$ $\mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, yield $=38 \%(1.07 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.4. ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.33(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-70.5(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1,157.1(\mathrm{q}, J=33.3 \mathrm{~Hz}$), $148.4,130.2,130.1,129.6,128.5,128.5,112.7,119.9$ (q, $J=279.8 \mathrm{~Hz}$), 111.2, 106.2, 54.8. IR (KBr, cm^{-1}) v: 3416, 3069, 2953, 1594, 1481, 1327, 1200, 1136, 1043, 973, 777, 698. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}^{+} \mathrm{m} / \mathrm{z} 280.0944[\mathrm{M}+\mathrm{H}]^{+}$, Found 280.0945.

1k
\boldsymbol{N}-(3-chlorophenyl)-2,2,2-trifluoro-1-phenylethan-1-imine 1k. Following general procedure A, on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $+3 \%$ $\mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, yield $=61 \%(1.74 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): $0.5 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.79(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-70.6$ (s). ${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.1(\mathrm{q}, J=34.3 \mathrm{~Hz}), 148.3,134.5,130.6,129.9$, $129.4,128.6,128.5,125.3,120.6,119.7(\mathrm{q}, J=280.8 \mathrm{~Hz}), 118.4$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v$: 3403, 3069, 1666, 1583, 1464, 1330, 1195, 1137, 971, 877, 783, 701. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClF}_{3} \mathrm{~N}^{+} m / z 284.0448[\mathrm{M}+\mathrm{H}]^{+}$, Found 284.0456.

1
2,2,2-trifluoro-1-phenyl- N-(0-tolyl)ethan-1-imine 11. (Kiselyov, 1999). Following general procedure A , on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $+3 \%$
$\mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, yield $=63 \%(1.65 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): $0.9 .{ }^{1} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.37$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-70.0(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.5(\mathrm{q}, J=33.3 \mathrm{~Hz}$), 146.1, 130.4, 130.3, 130.1, 128.4, 128.4, $128.2,126.1,125.1,119.8(\mathrm{q}, J=280.8 \mathrm{~Hz}), 118.5,17.7$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) \mathrm{v}: 3401,3067$, 2925, 1664, 1486, 1330, 1195, 1136, 970, 771, 697. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}^{+}$ $m / z 264.0995[\mathrm{M}+\mathrm{H}]^{+}$, Found 264.0999.

1m
2,2,2-trifluoro-1-phenyl- N-(2-(trifluoromethyl)phenyl)ethan-1-imine $\mathbf{1 m}$. (Patterson et al., 1992). Following general procedure A, on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $\left.+3 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ as a yellow oil, yield $=36 \%(1.15 \mathrm{~g})$. R_{f} (petroleum ether): $0.6 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ $-7.06(\mathrm{~m}, 7 \mathrm{H}), 6.43(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-70.6(\mathrm{~s}),-61.7$ (s). ${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.4(\mathrm{q}, J=35.4 \mathrm{~Hz}), 145.4,132.4,130.7,129.4$, 128.6, 128.4, $126.4(\mathrm{q}, J=5.1 \mathrm{~Hz}), 124.9,123.8(\mathrm{q}, J=274.7 \mathrm{~Hz}), 121.4(\mathrm{q}, J=30.3$ $\mathrm{Hz}), 119.6,119.6(\mathrm{q}, J=280.8 \mathrm{~Hz})$. IR (KBr, cm $\left.{ }^{-1}\right)$ v: $3323,3073,1673,1594,1451$, 1324, 1198, 1125, 1046, 968, 768, 699. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{~N}^{+} m / z$ $318.0712[\mathrm{M}+\mathrm{H}]^{+}$, Found 318.0714.

1n
2,2,2-trifluoro- N -(2-methoxyphenyl)-1-phenylethan-1-imine 1n. Following general procedure A, on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $+3 \%$ $\left.\mathrm{Et}_{3} \mathrm{~N}\right)$ as a yellow solid, yield $=65 \%(1.81 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.3. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.63$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-70.1(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.4(\mathrm{q}, J=34.3 \mathrm{~Hz}), 148.6,136.8,130.8,130.1,128.2,127.8$, $126.1,120.6,120.5,117.1(\mathrm{q}, J=280.8 \mathrm{~Hz}), 111.4,55.2 . \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v: 3306,3067$,

2952, 1666, 1590, 1491, 1453, 1332, 1191, 1131, 1033, 971, 750, 698. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}^{+} m / z 280.0944[\mathrm{M}+\mathrm{H}]^{+}$, Found 280.0945.

10
\boldsymbol{N}-(2-bromophenyl)-2,2,2-trifluoro-1-phenylethan-1-imine 10. (Wang et al., 2013). Following general procedure A , on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $+3 \% \mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, yield $=44 \%(1.46 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): $0.5 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.01(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19}$ F NMR $(376 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-70.2(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.7(\mathrm{q}, J=34.3 \mathrm{~Hz}), 146.3,132.6$, $130.5,129.5,128.4,127.9,127.7,125.9,119.7,119.6$ (q, $J=279.8 \mathrm{~Hz}$), 114.0. IR (KBr, cm^{-1}) v: 3392, 3066, 1672, 1464, 1332, 1193, 1140, 1035, 970, 703. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrF}_{3} \mathrm{~N}^{+} m / z 327.9943[\mathrm{M}+\mathrm{H}]^{+}$, Found 327.9946.

1p
N-(3,4-dimethylphenyl)-2,2,2-trifluoro-1-phenylethan-1-imine 1p. Following general procedure A , on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 15 cm , width 8 cm , eluent: petroleum ether $+3 \%$ $\mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, yield $=32 \%(0.89 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.9. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J$ $=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-70.4(\mathrm{~s})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.0(\mathrm{q}, J=33.3 \mathrm{~Hz}$), 144.6, 137.8, 137.0, 133.9, $130.5,130.0,129.8,129.0,128.55,128.45,128.2,125.2,122.6,120.0(\mathrm{q}, J=280.8 \mathrm{~Hz})$, 118.1, 21.3, 19.5, 19.1. IR (KBr, cm ${ }^{-1}$) v: 3460, 3027, 2932, 1660, 1495, 1328, 1198, 1133, 973, 820, 697. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}^{+} m / z 278.1151[\mathrm{M}+\mathrm{H}]^{+}$, Found 278.1159.

19
N-(3,5-dimethoxyphenyl)-2,2,2-trifluoro-1-phenylethan-1-imine 1q. Following general procedure A , on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $+3 \%$ $\mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, yield $=29 \%(0.90 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.2. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.15(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.62(\mathrm{~s}, 6 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.5$ (s). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $160.9,157.0(\mathrm{q}, J=33.3 \mathrm{~Hz}), 148.8,130.1,129.9,128.3,128.2,119.8$ (q, $J=280.8$ $\mathrm{Hz}), 98.6,97.4,54.8$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3463, 3007, 2953, 2843, 1666, 1597, 1462, $1329,1204,1134,1062,984,836,705,645$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+} \mathrm{m} / \mathrm{z}$ $310.1049[\mathrm{M}+\mathrm{H}]^{+}$, Found 310.1055.

1 r
N-(benzo[d][1,3]dioxol-5-yl)-2,2,2-trifluoro-1-phenylethan-1-imine 1r. Following general procedure A , on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $+3 \%$ $\mathrm{Et}_{3} \mathrm{~N}$) as an pale yellow solid, yield $=38 \%(1.11 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.2. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.35-6.21(\mathrm{~m}, 2 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.4(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.0(\mathrm{q}, J=33.3 \mathrm{~Hz}), 147.8,145.7,141.1,130.4,130.2$, 128.7, 128.5, 119.9 (q, $J=280.8 \mathrm{~Hz}$), 115.3, 108.1, 103.0, 101.3. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v$: 3435, 3071, 2905, 1652, 1479, 1320, 1203, 1130, 1033, 972, 925, 850, 812, 702, 625. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+} m / z 294.0736[\mathrm{M}+\mathrm{H}]^{+}$, Found 294.0741.

1s
2,2,2-trifluoro- N -(naphthalen-2-yl)-1-phenylethan-1-imine 1s. (Dai and Cahard,
2014). Following general procedure A , on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 4.5 cm , eluent: petroleum ether $+3 \% \mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, yield $=43 \%(1.30 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): $0.5{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.08(\mathrm{~m}, 8 \mathrm{H}), 6.86(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-70.3(\mathrm{~s}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 157.1(\mathrm{q}, J=34.3 \mathrm{~Hz}), 144.6,133.5,131.2,130.3,130.0,128.67,128.65,128.57$, $127.8,127.7,126.5,125.6,120.4,119.9(\mathrm{q}, J=280.8 \mathrm{~Hz}), 118.2$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v$: 3402, 3061, 1664, 1328, 1195, 1135, 972, 755, 700. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}^{+}$ $\mathrm{m} / \mathrm{z} 300.0995[\mathrm{M}+\mathrm{H}]^{+}$, Found 300.1002.

1 t
2,2,2-trifluoro- N-pentyl-1-phenylethan-1-imine 1t. Following general procedure A, on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $+3 \% \mathrm{Et}_{3} \mathrm{~N}$) as a colorless oil, yield $=59 \%(1.44 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.6. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51$ $-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.31(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.34-$ $1.18(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-71.5(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.9(\mathrm{q}, J=34.3 \mathrm{~Hz}), 130.5,129.8,128.6,127.5,119.7(\mathrm{q}$, $J=279.8 \mathrm{~Hz}), 53.2,29.8,29.3,22.2,13.7$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3449, 3066, 2936, 2866, 1668, 1457, 1334, 1197, 1133, 1008, 956, 704. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}^{+} m / z$ $244.1308[\mathrm{M}+\mathrm{H}]^{+}$, Found 244.1317.

1u
2,2,2-trifluoro- N-phenyl-1-(p-tolyl)ethan-1-imine 1u. Following general procedure A, on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $+3 \% \mathrm{Et}_{3} \mathrm{~N}$) as an orange oil, yield $=43 \%(1.14 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.7. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.01(\mathrm{~m}, 5 \mathrm{H}), 6.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-70.4(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.0(\mathrm{q}, J=33.3 \mathrm{~Hz})$, 147.3, 140.6, 129.2, 128.8, 128.6, 126.9, 125.1, 120.4, 119.9 (q, $J=280.8 \mathrm{~Hz}$), 21.3. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3402, 3035, 2928, 1662, 1601, 1329, 1234, 1192, 1133, 971, 819, 766, 695. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}^{+} m / z 264.0995[\mathrm{M}+\mathrm{H}]^{+}$, Found 264.1002.

1v
1-(4-(tert-butyl)phenyl)-2,2,2-trifluoro- \boldsymbol{N}-phenylethan-1-imine $\mathbf{1 v}$. Following general procedure C, on a 15 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $+3 \%$ $\mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, overall yield $=17 \%(0.76 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.4. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.2(\mathrm{~s})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.8(\mathrm{q}, ~ J=34.3 \mathrm{~Hz}), 153.7,147.4,128.8,128.6$, $126.8,125.4,125.1,120.5,120.0(\mathrm{q}, J=280.8 \mathrm{~Hz}), 34.8,31.0 . \mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v: 3432$, 2966, 1716, 1605, 1194, 1139, 972, 838, 702. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}^{+} m / z$ $306.1464[\mathrm{M}+\mathrm{H}]^{+}$, Found 306.1471.

2,2,2-trifluoro-1-(4-methoxyphenyl)- N-phenylethan-1-imine $\mathbf{1 w} \quad$ Following general procedure A, on a 3 mmol scale. The product was purified by flash column chromatography on silica gel (height 20 cm , width 3.5 cm , eluent: petroleum ether $+3 \%$ $\mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, yield $=44 \%(0.37 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.3. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.68(\mathrm{~m}, 4 \mathrm{H}), 3.73$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR (376 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-70.0(\mathrm{~s}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.9$, $156.3(\mathrm{q}, ~ J=33.3 \mathrm{~Hz}), 147.5,130.6,128.9,125.0,121.7,120.3,120.0(\mathrm{q}, J=280.8$ $\mathrm{Hz}), 113.9,55.1 . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ v: 3397, 3017, 2941, 1707, 1602, 1514, 1460, 1325, 1269, 1167, 1027, 941, 843, 768. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}^{+} \mathrm{m} / \mathrm{z} 280.0944$ $[\mathrm{M}+\mathrm{H}]^{+}$, Found 280.0951.

1x
2,2,2-trifluoro-1-(4-fluorophenyl)- N-phenylethan-1-imine 1x. Following general procedure A , on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $+3 \%$
$\mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, yield $=32 \%(0.85 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.7 . ${ }^{1} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.4(\mathrm{~s}),-108.9(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.4(\mathrm{~d}, J=253.5 \mathrm{~Hz}), 155.9(\mathrm{q}, J=34.3 \mathrm{~Hz}), 147.0,131.0$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}), 128.9,126.0,125.4,120.3,119.8(\mathrm{q}, J=280.8 \mathrm{~Hz}), 115.8(\mathrm{~d}, J=22.2$ Hz). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3452, 3072, 1664, 1600, 1504, 1330, 1236, 1195, 1135, 972, 838, 769, 696. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{~N}^{+} m / z 268.0744[\mathrm{M}+\mathrm{H}]^{+}$, Found 268.0746 .

1y
1-(4-chlorophenyl)-2,2,2-trifluoro- N-phenylethan-1-imine 1y. Following general procedure A, on a 3 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $+3 \%$ $\left.\mathrm{Et}_{3} \mathrm{~N}\right)$ as a yellow oil, yield $=31 \%(0.26 \mathrm{~g}) . \mathrm{R}_{f}($ petroleum ether/ethyl acetate $=91: 9)$: 0.9. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.10(\mathrm{~m}, 6 \mathrm{H}), 7.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-70.4(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR $(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 155.8(\mathrm{q}, J=34.3 \mathrm{~Hz}), 146.8,136.6,130.1,128.95,128.92,128.2,125.6$, $120.3,119.7$ ($q, J=279.8 \mathrm{~Hz}$). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: $3410,3073,1662,1592,1488,1329$, 1232, 1195, 1136, 971, 832, 745, 693. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClF}_{3} \mathrm{~N}^{+} m / z$ $284.0448[\mathrm{M}+\mathrm{H}]^{+}$, Found 284.0453.

12
2,2,2-trifluoro- N-phenyl-1-(m-tolyl)ethan-1-imine 1z. Following general procedure C , on a 15 mmol scale. The product was purified by flash column chromatography on silica gel (height 20 cm , width 3.5 cm , eluent: petroleum ether $+3 \% \mathrm{Et}_{3} \mathrm{~N}$) as an orange oil, overall yield $=8 \%(0.33 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): $0.7 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.11-6.98(\mathrm{~m}, 4 \mathrm{H}), 6.97-6.82(\mathrm{~m}, 3 \mathrm{H}), 6.64(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.4$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2(\mathrm{q}, J=$ 34.3 Hz), 147.2, 138.3, 131.0, 129.9, 128.9, 128.7, 128.3, 125.8, 125.2, 120.5, 119.9 (q, $J=280.8 \mathrm{~Hz}), 21.2$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3449, 3065, 2926, 1664, 1593, 1485, 1329, 1185, $1138,1015,984,769,696$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}^{+} m / z 264.0995[\mathrm{M}+\mathrm{H}]^{+}$, Found 264.0998.

1aa
2,2,2-trifluoro-1-(3-isopropylphenyl)- N-phenylethan-1-imine 1aa. Following general procedure B , on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $+3 \%$ $\mathrm{Et}_{3} \mathrm{~N}$) as an orange oil, overall yield $=69 \%(2.01 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.6. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.08(\mathrm{~m}, 5 \mathrm{H}), 7.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.72$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.80-2.68(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-70.2(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.4(\mathrm{q}, J=34.3 \mathrm{~Hz}), 149.1,147.4$, $129.8,128.7,128.5,128.4,127.2,125.9,125.1,120.4,119.9$ ($q, J=280.8 \mathrm{~Hz}$), 33.8 , 23.5. IR (KBr, cm^{-1}) v: 3409, 3069, 2964, 1660, 1593, 1479, 1328, 1231, 1185, 1135, 996, 899, 805, 696. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}^{+} m / z 292.1308[\mathrm{M}+\mathrm{H}]^{+}$, Found 292.1317.

2,2,2-trifluoro-1-(3-methoxyphenyl)-N-phenylethan-1-imine 1ab. Following general procedure C , on a 15 mmol scale. The product was purified by flash column chromatography on silica gel (height 20 cm , width 3.5 cm , eluent: petroleum ether $+3 \%$ $\mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, overall yield $=16 \%(0.69 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.3. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.70(\mathrm{~m}$, $5 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.3$ (s). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.3,156.5(\mathrm{q}, J=33.3 \mathrm{~Hz}), 147.1,131.0,129.6,128.8,125.3,120.8,120.3$, $119.8(\mathrm{q}, J=280.8 \mathrm{~Hz}), 116.1,114.1,55.0 . \mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v: 3474,3071,2954,2841$, 1666, 1592, 1483, 1330, 1256, 1136, 1044, 992, 842, 776, 696. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}^{+} m / z 280.0944[\mathrm{M}+\mathrm{H}]^{+}$, Found 280.0950 .

2,2,2-trifluoro-1-(3-fluorophenyl)- N-phenylethan-1-imine 1ac. Following general procedure C , on a 15 mmol scale, 2 equiv of aniline and $10 \mathrm{~mol} \%$ of p-toluenesulfonic
acid monohydrate were used. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $+3 \%$ $\mathrm{Et}_{3} \mathrm{~N}$) as an orange oil, overall yield $=41 \%(1.64 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.6. ${ }^{1} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.09-6.91(\mathrm{~m}, 4 \mathrm{H}), 6.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.6,-111.5$ (s) (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $162.3(\mathrm{~d}, J=249.5 \mathrm{~Hz}), 155.5(\mathrm{q}, J=34.3 \mathrm{~Hz}), 146.7,131.8(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 130.4(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}), 128.9,125.7,124.6(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 120.4,119.6(\mathrm{q}, J=280.8 \mathrm{~Hz}), 117.5$ (d, $J=21.2 \mathrm{~Hz}$), 115.9 (d, $J=23.2 \mathrm{~Hz}$). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3441, 3074, 2926, 1668, 1588, 1487, 1440, 1332, 1251, 1138, 1000, 870, 778, 696. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{~N}^{+} \mathrm{m} / \mathrm{z} 268.0744[\mathrm{M}+\mathrm{H}]^{+}$, Found 268.0754.

1-(3-chlorophenyl)-2,2,2-trifluoro- N-phenylethan-1-imine 1ad. Following general procedure C , on a 10 mmol scale, 2 equiv of aniline and $5 \mathrm{~mol} \%$ of p-toluenesulfonic acid monohydrate were used. The product was purified by flash column chromatography on silica gel (height 20 cm , width 3.5 cm , eluent: petroleum ether $+3 \%$ $\mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, overall yield $=7 \%(0.21 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.6. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.25(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.11$ (m, 3H), 7.04 $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.5(\mathrm{~s})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.3(\mathrm{q}, J=34.3 \mathrm{~Hz}), 146.6,134.7,131.6,130.4$, $129.8,128.9,128.5,126.9,125.7,120.4,119.6(\mathrm{q}, J=280.8 \mathrm{~Hz}) . \mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v:$ 3396, 3071, 2927, 1666, 1578, 1481, 1329, 1196, 1137, 988, 796, 692. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClF}_{3} \mathrm{~N}^{+} \mathrm{m} / \mathrm{z} 284.0448[\mathrm{M}+\mathrm{H}]^{+}$, Found 284.0456.

1 ae
2,2,2-trifluoro-1-(naphthalen-2-yl)- N-phenylethan-1-imine 1ae. Following general procedure B , on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 20 cm , width 3.5 cm , eluent: petroleum ether $+3 \%$ $\mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, overall yield $=34 \%(1.01 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): $0.5 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.1(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$156.8(\mathrm{q}, J=33.3 \mathrm{~Hz}), 147.1,133.5,132.5,129.2,128.9,128.6,128.3,127.8,127.7$, $127.4,126.8,125.4,125.1,120.7,120.0(\mathrm{q}, J=279.8 \mathrm{~Hz})$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v: 3292$, 3064, 2928, 2859, 1948, 1659, 1588, 1491, 1320, 1128, 992, 819, 759. HRMS (MALDI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}^{+} m / z 300.0995[\mathrm{M}+\mathrm{H}]^{+}$, Found 300.0999.

1af
2,2,2-trifluoro- N -phenyl-1-(thiophen-2-yl)ethan-1-imine 1af. Following general procedure A , on a 6 mmol scale, 3 equiv of aniline and $10 \mathrm{~mol} \%$ of p-toluenesulfonic acid monohydrate were used. The product was purified by flash column chromatography on silica gel (height 20 cm , width 3.5 cm , eluent: petroleum ether + 3% $\mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, yield $=16 \%(0.25 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): $0.5 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ $(\mathrm{dd}, J=5.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ $68.6(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.8(\mathrm{q}, J=34.3 \mathrm{~Hz}), 148.2,133.6(\mathrm{q}, J=3.0$ $\mathrm{Hz}), 132.6,129.7,129.2,126.6,125.2,119.8(\mathrm{q}, J=280.8 \mathrm{~Hz}), 118.3$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ v: 3395, 3091, 1640, 1594, 1420, 1324, 1201, 1141, 1073, 919, 720. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NS}^{+} \mathrm{m} / \mathrm{z} 256.0402[\mathrm{M}+\mathrm{H}]^{+}$, Found 256.0414.

1ag
2,2,2-trifluoro- N-phenyl-1-(thiophen-2-yl)ethan-1-imine 1ag. Following procedure E , on a 2 mmol scale. The product was purified by flash column chromatography on silica gel (height 20 cm , width 3.5 cm , eluent: petroleum ether $+3 \% \mathrm{Et}_{3} \mathrm{~N}$) as a yellow solid, yield $=34 \%(0.29 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): $0.5 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.22-7.11(\mathrm{~m}, 8 \mathrm{H}), 7.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{19}$ F NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-70.5(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.8(\mathrm{q}, J=34.3 \mathrm{~Hz}), 146.5$, $131.8,128.9,128.8,125.7,120.5,119.6(\mathrm{q}, J=279.8 \mathrm{~Hz}) . \mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v: 3419,3072$, 2924, 1664, 1486, 1328, 1195, 1121, 967, 774, 703. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{~N}_{2}{ }^{+}$ $m / z 421.1134[\mathrm{M}+\mathrm{H}]^{+}$, Found 421.1139.

1ah
N-(4-bromophenyl)-1-(cyclohex-1-en-1-yl)-2,2,2-trifluoroethan-1-imine
1ah.
Following general procedure D , on a 14 mmol scale. The product was purified by flash column chromatography on silica gel (height 18 cm , width 3.5 cm , eluent: petroleum ether $+5 \% \mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, overall yield $=16 \%(0.74 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.6. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.96(\mathrm{~s}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 4 \mathrm{H}) .{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 71.3 (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8(\mathrm{q}, J=33.3 \mathrm{~Hz}$), 146.7, 135.0, 131.8, $129.3,121.5,119.7(\mathrm{q}, J=280.8 \mathrm{~Hz}), 118.5,26.3,25.0,21.7,21.0 . \mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v$: 3437, 2936, 2865, 1657, 1408, 1319, 1228, 1185, 1137, 1071, 982, 922, 832, 720. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{BrF}_{3} \mathrm{~N}^{+} m / z 332.0256[\mathrm{M}+\mathrm{H}]^{+}$, Found 332.0261.

1ai
N-(2-benzylphenyl)-2,2,2-trifluoro-1-phenylethan-1-imine 1ai. Following general procedure A, on a 10 mmol scale. The product was purified by flash column chromatography on silica gel (height 16 cm , width 4.5 cm , eluent: petroleum ether $+3 \%$ $\mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, yield $=94 \%(3.18 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.2. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.05(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.3(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.3$ (q, $J=$ $34.3 \mathrm{~Hz}), 145.6,140.1,133.5,130.1,130.0,129.8,129.3,128.4,128.2,128.1,126.6$, 126.1, 125.7, 119.9 (q, $J=279.8 \mathrm{~Hz}), 119.1,38.5$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) ~ v: 3442,3032,2922$, 1907, 1660, 1592, 1486, 1442, 1327, 1193, 1139, 964, 737, 695, 612. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}^{+} m / z 340.1308[\mathrm{M}+\mathrm{H}]^{+}$, Found 340.1310 .

1aj
$\mathbf{N , 1 - d i p h e n y l e t h a n - 1 - i m i n e ~ 1 a j . ~ F o l l o w i n g ~ g e n e r a l ~ p r o c e d u r e ~ A , ~ o n ~ a ~} 10 \mathrm{mmol}$ scale. The product was purified by flash column chromatography on silica gel (height 20 cm , width 3.5 cm , eluent: petroleum ether $\left.+3 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ as a yellow solid, yield $=50 \%(0.98$ g). R_{f} (petroleum ether/ethyl acetate $=98: 2$): 0.3. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00$ (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.4,151.7$, $139.5,130.4,128.9,128.3,127.1,123.2,119.3,17.3$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3458, 3370, 3036, 2925, 1682, 1610, 1496, 1444, 1362, 1269, 1175, 1077, 1026, 959, 757, 691. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}^{+} \mathrm{m} / \mathrm{z} 196.1121[\mathrm{M}+\mathrm{H}]^{+}$, Found 196.1127.

1ak

1,1'-([1,1'-biphenyl]-4,4'-diyl)bis(2,2,2-trifluoro- N-hexylethan-1-imine)

1ak.
Following general procedure F , on a 3 mmol scale. The product was purified by flash column chromatography on silica gel (height 20 cm , width 3.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 100:0 to $98: 2+3 \% \mathrm{Et}_{3} \mathrm{~N}$) as a colorless oil, yield $=61 \%$ $(0.94 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=98: 2$): $0.2 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.71 (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.44(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.73-1.63$ $(\mathrm{m}, 4 \mathrm{H}), 1.34-1.19(\mathrm{~m}, 12 \mathrm{H}), 0.86(\mathrm{t}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-71.4(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.5(\mathrm{q}, J=34.3 \mathrm{~Hz}), 141.6,130.0,128.4$, $127.5,119.7$ (q, $J=279.8 \mathrm{~Hz}), 53.5,31.4,30.2,26.9,22.5,14.0$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v:$ 3314, 3040, 2931, 2862, 1919, 1666, 1609, 1460, 1335, 1198, 1124, 1005, 956, 825, 736, 684. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~F}_{6} \mathrm{~N}_{2}{ }^{+} \mathrm{m} / \mathrm{z} 513.2699[\mathrm{M}+\mathrm{H}]^{+}$, Found 513.2703.

1al

1,1'-([1,1'-biphenyl]-4,4'-diyl)bis(N-dodecyl-2,2,2-trifluoroethan-1-imine) 1al.

 Following general procedure F , on a 3 mmol scale. The product was purified by flash column chromatography on silica gel (height 20 cm , width 3.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 100:0 to $99: 1+3 \% \mathrm{Et}_{3} \mathrm{~N}$) as a white solid, yield $=83 \%$ $(1.69 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=98: 2$): $0.3 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.49-3.39(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.63(\mathrm{~m}$,$4 \mathrm{H}), 1.30-1.19(\mathrm{~m}, 36 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-$ $71.4(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.5(\mathrm{q}, J=34.3 \mathrm{~Hz}), 141.6,130.0,128.4$, $127.5,119.7$ (q, $J=279.8 \mathrm{~Hz}$), $53.5,31.9,30.2,29.62,29.61,29.57,29.5,29.32,29.27$, 27.3, 22.7, 14.1. IR (KBr, cm ${ }^{-1}$) v: 3434, 2923, 2853, 1669, 1467, 1330, 1195, 1123, 1041, 995, 819, 732, 679. HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{59} \mathrm{~F}_{6} \mathrm{~N}_{2}{ }^{+} \mathrm{m} / \mathrm{z} 681.4577[\mathrm{M}+\mathrm{H}]^{+}$, Found 681.4581.

1,1'-([1,1'-biphenyl]-4,4'-diyl)bis(2,2,2-trifluoro- N-(4-hexylphenyl)ethan-1-imine)
1am. Following general procedure F, on a 3 mmol scale. The product was purified by flash column chromatography on silica gel (height 20 cm , width 3.5 cm , eluent: petroleum ether $+3 \% \mathrm{Et}_{3} \mathrm{~N}$) as an orange solid, yield $=92 \%(1.83 \mathrm{~g})$. R_{f} (petroleum ether/ethyl acetate $=98: 2): 0.4 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H})$, 7.31 (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.51(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.61-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.21(\mathrm{~m}, 12 \mathrm{H}), 0.85(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.2(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.7(\mathrm{q}, J=$ 34.3 Hz), 144.5, 141.2, 140.5, 129.8, 129.4, 128.8, 127.1, 120.8, 119.9 (q, $J=279.8$ $\mathrm{Hz}), 35.3,31.6,31.1,28.8,22.6,14.0$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3431, 3038, 2928, 2860, 1670, 1502, 1331, 1237, 1196, 1136, 1022, 969, 831, 736. HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{~F}_{6} \mathrm{~N}_{2}{ }^{+}$ $m / z 665.3325[\mathrm{M}+\mathrm{H}]^{+}$, Found 665.3331.

1,1'-([1,1'-biphenyl]-4,4'-diyl)bis((4-dodecylphenyl)-2,2,2-trifluoroethan-1-imine)
1an. Following general procedure F, on a 3 mmol scale. The product was purified by flash column chromatography on silica gel (height 20 cm , width 3.5 cm , eluent: petroleum ether $+3 \% \mathrm{Et}_{3} \mathrm{~N}$) as an orange oil, yield $=95 \%(2.37 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=98: 2$): $0.5 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $4 \mathrm{H}), 7.31$ (d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.02$ (d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.52$
($\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$), $1.61-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.21(\mathrm{~m}, 36 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.2(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.6(\mathrm{q}, J$ $=34.3 \mathrm{~Hz}$), 144.5, 141.2, 140.5, 129.8, 129.4, 128.8, 127.1, 120.9, 119.9 (q, $J=279.8$ Hz), 35.3, 31.9, 31.2, 29.7, 29.63, 29.59, 29.4, 29.3, 29.2, 22.7, 14.1. one carbon was overlapped. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3289, 3034, 2927, 1906, 1790, 1658, 1607, 1501, 1456, 1328, 1192, 1022, 967, 909, 830, 734, 620. HRMS (ESI) calcd for $\mathrm{C}_{52} \mathrm{H}_{67} \mathrm{~F}_{6} \mathrm{~N}_{2}{ }^{+} m / z$ $833.5203[\mathrm{M}+\mathrm{H}]^{+}$, Found 833.5207.

General procedure G: synthesis of derivatives 3a-3be (Scheme S7)

An oven-dried 25 mL schlenk tube equipped with a stirring bar was transferred into a glovebox (through standard glovebox operation), where $\operatorname{Re}_{2}(\mathrm{CO})_{10}(19.6 \mathrm{mg}, 0.03$ mmol, 0.1 equiv) was added. The tube was then removed from the glovebox and placed under Ar. Then the ketimine $\mathbf{1}$ ($0.3 \mathrm{mmol}, 1$ equiv), isocyanate $\mathbf{2}$ ($0.6 \mathrm{mmol}, 2$ equiv), and o-xylene (or PhCl$)(3 \mathrm{~mL})$ were added subsequently to the test tube under Ar. The resulting reaction mixture was then stirred at $150{ }^{\circ} \mathrm{C}$ (or indicated temperature) for 60 h (or indicated time). After reaction completed (by TLC monitoring), the mixture was cooled down to room temperature and concentrated under vacuum. The residue was then purified by flash column chromatography on silica gel to give the desired product 3a-3be. Note that, in the case of solid $\alpha-\mathrm{CF}_{3}$ ketimine, these were added in the tube before the solvent.

Purification and characterization of derivatives 3a-3be

3-(phenylamino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3a. Starting from 1a and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=$ $82 \%(93.6 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: 0.3 . ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ ($\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$), $6.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 2.37$ (s, 3H). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.5$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4$, $141.7,138.5,138.3,132.9,132.8,131.3,131.1,129.9,129.3,128.8,124.7,124.6,123.3$
(q, $J=288.9 \mathrm{~Hz}), 120.7,116.4,80.7(\mathrm{q}, J=29.3 \mathrm{~Hz}), 21.1 . \mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ v: 3356 , 3058, 2924, 1919, 1705, 1606, 1507, 1361, 1257, 1180, 1065, 975, 812, 720. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 383.1366[\mathrm{M}+\mathrm{H}]^{+}$, Found 383.1373.

3b
2-(p-tolyl)-3-(p-tolylamino)-3-(trifluoromethyl)isoindolin-1-one 3b. Starting from $\mathbf{1 b}$ and p-tolyl isocyanate (Cas: 622-58-2), PhCl as solvent, 48 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 97:3) as a white solid, yield $=$ $81 \% ~(95.8 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=91: 9$): 0.3 . ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 2.37$ (s, 3H), $2.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.5$ (s). ${ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.4,139.1,138.5,138.4,132.9,132.8,131.4,131.1,130.2,129.9,129.8$, $128.8,124.7,124.6,123.4(\mathrm{q}, J=288.9 \mathrm{~Hz}), 116.6,80.9(\mathrm{q}, J=29.3 \mathrm{~Hz}), 21.1,20.3$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3322, 3070, 2923, 1700, 1614, 1517, 1465, 1370, 1261, 1180, 1053, 903, 813, 724. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z} 397.1522[\mathrm{M}+\mathrm{H}]^{+}$, Found 397.1526.

3 c
3-((4-(tert-butyl)phenyl)amino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3c. Starting from 1c and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 97:3) as a white solid, yield $=70 \%(92.7 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: $0.4 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), $7.12-6.97(\mathrm{~m}, 4 \mathrm{H}), 6.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.23$ (s,

9H). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.5(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5$, $143.5,139.0,138.5,138.4,132.8,132.8,131.4,131.1,129.9,128.8,126.1,124.8,124.6$, $123.4(\mathrm{q}, J=288.9 \mathrm{~Hz}), 116.1,80.8(\mathrm{q}, J=29.3 \mathrm{~Hz}), 33.9,31.3,21.1$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ v: 3338, 3044, 2961, 1712, 1614, 1522, 1468, 1365, 1263, 1185, 1053, 973, 820, 727. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z} 439.1992[\mathrm{M}+\mathrm{H}]^{+}$, Found 439.1997.

2-(p-tolyl)-3-(trifluoromethyl)-3-((4-(trifluoromethyl)phenyl)amino)isoindolin-1one 3d. Starting from 1d and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, $160{ }^{\circ} \mathrm{C}, 60 \mathrm{~h}$. The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=65 \%(87.6 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: 0.3. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.30$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.3(\mathrm{~s}),-77.5(\mathrm{~s})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,144.7,138.9,137.7,133.2,132.7,131.5,131.1$, $130.1,128.8,126.6(\mathrm{q}, J=3.0 \mathrm{~Hz}), 124.9,124.6,124.2(\mathrm{q}, J=272.7 \mathrm{~Hz}), 123.2(\mathrm{q}, J=$ 289.9 Hz), $122.6(\mathrm{q}, J=33.3 \mathrm{~Hz}), 115.7,80.3(\mathrm{q}, J=29.3 \mathrm{~Hz}), 21.1$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) \mathrm{v}$: 3327, 3069, 2928, 1702, 1619, 1518, 1369, 1326, 1267, 1181, 1127, 1064, 843, 724. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 451.1240[\mathrm{M}+\mathrm{H}]^{+}$, Found 451.1240.

3e
3-((4-methoxyphenyl)amino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3e. Starting from 1e and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: $99: 1$ to $95: 5$) as a white solid, yield $=75 \%(92.2 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=91: 9$): $0.3 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.06$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.62$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.59$ $(\mathrm{s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-77.5(\mathrm{~s}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,154.2,138.6,138.3,135.0,133.0,132.8,131.4,131.1$, $130.0,128.8,124.8,124.6,123.4(\mathrm{q}, J=289.9 \mathrm{~Hz}), 118.4,114.6,80.8(\mathrm{q}, J=29.3 \mathrm{~Hz})$, 55.4, 21.2. IR (KBr, cm^{-1}) v: 3357, 3069, 2947, 1707, 1513, 1466, 1369, 1254, 1180, 1045, 825, 721. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \mathrm{m} / \mathrm{z} 413.1471[\mathrm{M}+\mathrm{H}]^{+}$, Found 413.1478.

3f
3-((4-fluorophenyl)amino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3f.
Starting from 1f and p-tolyl isocyanate (Cas: $622-58-2$), PhCl as solvent, 48 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: $99: 1$ to $96: 4$) as a white solid, yield $=81 \%(97.7 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right): 0.3 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.04$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.39-6.17(\mathrm{~m}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.5(\mathrm{~s}),-123.4(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.4,157.4(\mathrm{~d}, J=241.4 \mathrm{~Hz}), 156.2,138.7(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 138.0,137.7$, $132.9,132.9,131.3,131.2,130.0,128.7,124.7,123.3$ (q, $J=289.9 \mathrm{~Hz}), 117.9$ (d, $J=$ $8.1 \mathrm{~Hz}), 115.4(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 80.8(\mathrm{q}, J=29.3 \mathrm{~Hz}), 21.1 . \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) \mathrm{v}: 3358$, 3061, 2929, 1705, 1613, 1513, 1362, 1259, 1224, 1179, 1055, 977, 824, 773, 723. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 401.1272[\mathrm{M}+\mathrm{H}]^{+}$, Found 401.1275.

3-((4-chlorophenyl)amino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one $\quad \mathbf{3 g}$. Starting from 1 g and p-tolyl isocyanate (Cas: 622-58-2), PhCl as solvent, 48 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white
solid, yield $=82 \%(102.9 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=91: 9$): 0.3. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2 H), 7.02 (dd, $J=12.0,8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.4$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,140.3$, 138.7, 137.9, 133.0, 132.7, 131.3, 131.2, 130.0, 129.2, 128.7, 125.7, 124.7, 124.6, 123.1 $(\mathrm{q}, J=289.9 \mathrm{~Hz}), 117.6,80.6(\mathrm{q}, J=30.3 \mathrm{~Hz}), 21.1$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ v: 3353, 3043 , 2925, 1706, 1606, 1503, 1361, 1259, 1182, 1058, 976, 815, 725. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 417.0976[\mathrm{M}+\mathrm{H}]^{+}$, Found 417.0980 .

3h
3-((4-bromophenyl)amino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3h. Starting from 1h and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=66 \%(90.8 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: $0.3 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.17$ (dd, $J=20.4$, $8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 2.37$ (s, $3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-76.9$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3$, $140.8,138.7,137.8,133.0,132.7,132.2,131.3,131.2,130.0,128.8,124.8,124.6,123.2$ (q, $J=289.9 \mathrm{~Hz}$), 118.0, 113.1, $80.5(\mathrm{q}, J=29.3 \mathrm{~Hz}), 21.1 . \mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) \mathrm{v}: 3330$, 3046, 2926, 1702, 1599, 1501, 1366, 1261, 1180, 1065, 971, 817, 723. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 463.0450[\mathrm{M}+\mathrm{H}]^{+}$, Found 463.0457.

$3 i$
2-(p-tolyl)-3-(m-tolylamino)-3-(trifluoromethyl)isoindolin-1-one 3i. Starting from 1 i and p-tolyl isocyanate (Cas: $622-58-2$), PhCl as solvent, 48 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=$
$94 \% ~(111.3 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=91: 9$): $0.3 .{ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.06$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-77.6$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,141.6,139.1,138.5,138.4,138.3$, $132.8,131.4,131.0,129.9,129.1,128.8,124.7,124.5,123.3$ (q, $J=289.9 \mathrm{~Hz}$), 121.6, $117.4,113.2,80.7(\mathrm{q}, J=29.3 \mathrm{~Hz}), 21.4,21.1$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ v: 3375, 2975, 2889, 1706, 1373, 1267, 1186, 1050, 881, 720. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z}$ $397.1522[\mathrm{M}+\mathrm{H}]^{+}$, Found 397.1527.

3j
3-((3-methoxyphenyl)amino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3j. Starting from $\mathbf{1 j}$ and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 20 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 97:3) as a white solid, yield $=73 \%(90.5 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: $0.2 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.05$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.38$ (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.94(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 2.37$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-77.5(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.3$, 160.4, 142.9, 138.6, 138.4, 133.0, 132.7, 131.3, 131.2, 130.1, 130.0, 128.8, 124.7, 124.6, 123.3 (q, $J=289.9 \mathrm{~Hz}$), 108.9, 106.5, 102.1, 80.6 (q, $J=29.3 \mathrm{~Hz}$), 54.8, 21.1. IR (KBr, cm^{-1}) v: 3347, 3047, 2946, 1707, 1609, 1507, 1357, 1268, 1175, 1052, 722. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} m / z 413.1471[\mathrm{M}+\mathrm{H}]^{+}$, Found 413.1474.

3k
3-((3-chlorophenyl)amino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3k.
Starting from $\mathbf{1 k}$ and p-tolyl isocyanate (Cas: 622-58-2), PhCl as solvent, 48 h . The
product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: $99: 1$ to $97: 3$) as a white solid, yield $=73 \%(91.8 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: $0.3 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.02$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.41$ (s, $1 \mathrm{H}), 6.10(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-77.5(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,142.9,138.8,137.8,135.0$, 133.0, 132.7, 131.4, 131.2, 130.3, 130.0, 128.8, 124.8, 124.6, 123.2 (q, $J=288.9 \mathrm{~Hz}$), $120.9,116.7,114.1,80.4(\mathrm{q}, J=29.3 \mathrm{~Hz}), 21.2$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v: 3314,3068,1702$, $1598,1475,1373,1261,1184,1058,729$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z$ $417.0976[\mathrm{M}+\mathrm{H}]^{+}$, Found 417.0981.

31
2-(p-tolyl)-3-(o-tolylamino)-3-(trifluoromethyl)isoindolin-1-one 31. Starting from 11 and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 98:2) as a white solid, yield $=$ $54 \%(64.5 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: $0.4 .{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{dd}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.04$ - $6.93(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.99-5.85(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 2.37$ $(\mathrm{s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.7(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.4,139.8,138.5,138.3,132.87,132.85,131.3,131.1,130.6,130.0,128.6$, $127.0,125.1,124.7,124.6,123.5(\mathrm{q}, J=289.9 \mathrm{~Hz}), 120.8,115.0,80.8(\mathrm{q}, J=29.3 \mathrm{~Hz})$, 21.2, 17.5. IR (KBr, cm ${ }^{-1}$) v: 3343, 3029, 2925, 1706, 1606, 1520, 1469, 1360, 1260, 1183, 1052, 975, 808, 718. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z} 397.1522[\mathrm{M}+\mathrm{H}]^{+}$, Found 397.1526.

2-(p-tolyl)-3-(trifluoromethyl)-3-((2-(trifluoromethyl)phenyl)amino)isoindolin-1one $\mathbf{3 m}$. Starting from $\mathbf{1 m}$ and p-tolyl isocyanate (Cas: $622-58-2$), PhCl as solvent, 48
h. The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 97:3) as a white solid, yield $=22 \%$ (29.9 mg). R_{f} (petroleum ether/ethyl acetate $=91: 9$): $0.2 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.30(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.4(\mathrm{~s}),-78.0(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 167.1,139.8,138.8,137.4,133.1,133.0,132.9,131.4,131.2$, $130.1,128.4,126.9(\mathrm{q}, J=5.1 \mathrm{~Hz}), 124.8,124.7,124.4(\mathrm{q}, J=273.7 \mathrm{~Hz}), 123.2(\mathrm{q}, J=$ $288.9 \mathrm{~Hz}), 120.6,118.2(\mathrm{q}, J=29.3 \mathrm{~Hz}), 117.3,80.5(\mathrm{q}, J=29.3 \mathrm{~Hz}), 21.2$. IR (KBr , $\left.\mathrm{cm}^{-1}\right) \mathrm{v}: 3468,3046,2921,1729,1605,1517,1475,1363,1312,1267,1173,1133,1106$, 1032, 974, 764, 722, 517. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 451.1240[\mathrm{M}+\mathrm{H}]^{+}$, Found 451.1242.

3n
3-((2-methoxyphenyl)amino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3n. Starting from 1 n and p-tolyl isocyanate (Cas: $622-58-2$), PhCl as solvent, 48 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 96:4) as a white solid, yield $=74 \%$ (91.0 mg). R_{f} (petroleum ether/ethyl acetate $=91: 9$): 0.3. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.00(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-$ 77.4 (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5,147.6,138.8,138.3,132.9,132.7,131.5$, 131.4, 131.1, 129.8, 128.7, 124.6, 123.4 (q, $J=288.9 \mathrm{~Hz}$), 121.0, 120.11, 120.08, 113.9, 110.1, $80.7(\mathrm{q}, J=29.3 \mathrm{~Hz}), 55.7,21.1 . \mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v: 3375,3036,2931,1710,1603$, 1522, 1362, 1179, 1025, 975, 735. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \mathrm{m} / \mathrm{z} 413.1471$ $[\mathrm{M}+\mathrm{H}]^{+}$, Found 413.1476.

3-((2-bromophenyl)amino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one

Starting from 10 and p-tolyl isocyanate (Cas: $622-58-2$), PhCl as solvent, 48 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: $99: 1$ to $97: 3$) as a white solid, yield $=57 \%(78.3 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right): 0.3 .{ }^{1} \mathbf{H} \mathbf{~ N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 2 \mathrm{H})$, $7.02-6.55(\mathrm{~m}, 4 \mathrm{H}), 6.06-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19}$ F NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-77.5(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,139.2,138.6,137.9$, 133.1, 132.9, 132.7, 131.3, 131.1, 130.0, 128.4, 124.7, 124.5, 123.2 (q, $J=289.9 \mathrm{~Hz}$), 121.6, 115.4, 112.4, $80.7(\mathrm{q}, J=29.3 \mathrm{~Hz}), 21.2$, one carbon is overlapped. $\mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-}\right.$ ${ }^{1}$) v: 3391, 3063, 1720, 1599, 1519, 1466, 1362, 1261, 1184, 1020, 734. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 461.0471[\mathrm{M}+\mathrm{H}]^{+}$, Found 461.0480.

3-((3,4-dimethylphenyl)amino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3p. Starting from 1p and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 98:2) as a white solid, yield $=77 \%(95.0 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right): 0.4 .{ }^{1} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.31-6.93(\mathrm{~m}, 4 \mathrm{H})$, $6.78(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}$, $3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.6$ (s). ${ }^{13} \mathbf{C} \mathbf{~ N M R ~ (~} 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,139.4,138.4,137.5,132.9,132.8,131.5,131.4,131.0,130.2,129.9,128.9$, $128.8,124.8,124.5,123.4(\mathrm{q}, J=288.9 \mathrm{~Hz}), 118.4,113.7,80.8(\mathrm{q}, J=28.3 \mathrm{~Hz}), 21.1$, 19.8, 18.6. IR (KBr, cm ${ }^{-1}$) v: $3348,3052,2965,1696,1618,1516,1366,1265,1179$, 1052, 804, 718. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 411.1679[\mathrm{M}+\mathrm{H}]^{+}$, Found 411.1681 .

3-((3,5-dimethoxyphenyl)amino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one

3q. Starting from 1q and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 18 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=68 \%(90.6 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: $0.4 .{ }^{1} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H})$, $3.52(\mathrm{~s}, 6 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.5(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.2,161.4,143.5,138.6,138.5,133.0,132.7,131.3,131.2,130.0$, $128.8,124.8,124.5,123.3(\mathrm{q}, J=288.9 \mathrm{~Hz}), 94.9,93.3,80.6(\mathrm{q}, J=29.3 \mathrm{~Hz}), 54.9$, 21.1. IR (KBr, cm ${ }^{-1}$) v: 3322, 3105, 2946, 1706, 1612, 1459, 1368, 1210, 1150, 1062, 815, 731. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} \mathrm{m} / \mathrm{z} 443.1577$ [M+H] , Found 443.1585.

3-(benzo[d][1,3]dioxol-5-ylamino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one
3r. Starting from $1 \mathbf{r}$ and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, 60 h .
The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=73 \%(93.3 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right): 0.2 .{ }^{1} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), 7.13 - 7.03 (m, 2H), 6.49 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ (s, 1H), $5.86-5.74$ (m, 3H), $4.66(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-76.9(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,148.3,142.1,138.6,138.2,136.4,132.9,131.4,131.2,130.0$, $128.8,124.8,124.7,123.3(\mathrm{q}, J=288.9 \mathrm{~Hz}), 109.4,108.4,101.0,99.7,81.0(\mathrm{q}, J=29.3$ $\mathrm{Hz}), 21.2$, one C is overlapped. $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v: 3323,3093,2891,1699,1620,1502$, 1370, 1189, 1041, 916, 813, 724. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} m / z 427.1264$ $[\mathrm{M}+\mathrm{H}]^{+}$, Found 427.1271.

3s
3-(naphthalen-2-ylamino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3s. Starting from 1s and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: $99: 1$ to 98:2) as a white solid, yield $=71 \%(92.5 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: $0.3 .{ }^{1} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.58(\mathrm{~m}, 5 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 3 \mathrm{H})$, 7.20 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.39$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.5(\mathrm{~s})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,139.1,138.6,138.1,134.0,133.0,132.9,131.3$, $131.2,130.0,129.3,128.8,128.6,127.4,126.7,126.5,124.7,124.7,123.8,123.3$ (q, J $=288.9 \mathrm{~Hz}), 118.8,110.7,80.7(\mathrm{q}, J=29.3 \mathrm{~Hz}), 21.1$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) \mathrm{v}: 3334,3055$, 2925, 1709, 1633, 1517, 1364, 1266, 1184, 1055, 826, 720. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 433.1522[\mathrm{M}+\mathrm{H}]^{+}$, Found 433.1532.

3t
3-(pentylamino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3t. Starting from 1t and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 20 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=$ $74 \%(83.1 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=91: 9$): 0.4. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.37$ $(\mathrm{m}, 2 \mathrm{H}), 1.33-1.18(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -76.7 (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.0,138.7,138.3,132.8,132.5,131.5$, $130.8,130.3,128.7,124.7,124.3,123.5(\mathrm{q}, J=287.9 \mathrm{~Hz}), 83.6(\mathrm{q}, J=29.3 \mathrm{~Hz}), 41.6$, 29.5, 29.2, 22.4, 21.2, 13.9. IR (KBr, cm^{-1}) v: 3341, 2930, 2864, 1703, 1512, 1466,

1361, 1282, 1176, 1034, 726. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z} 377.1835$ $[\mathrm{M}+\mathrm{H}]^{+}$, Found 377.1842.

6-methyl-3-(phenylamino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3u. Starting from 1u and p-tolyl isocyanate (Cas: 622-58-2), PhCl as solvent, 48 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 97:3) as a white solid, yield $=89 \%(105.8 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: $0.3 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-6.97(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.7$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,141.8,141.7,138.5,135.4,133.8,132.9$, $131.4,129.9,129.3,128.8,125.0,124.4,123.4(\mathrm{q}, J=288.9 \mathrm{~Hz}), 120.7,116.4,80.5(\mathrm{q}$, $J=29.3 \mathrm{~Hz}), 21.5,21.1$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v: 3337,3055,2924,1703,1609,1507,1364$, 1265, 1186, 1061, 742. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z} 397.1522[\mathrm{M}+\mathrm{H}]^{+}$, Found 397.1530. Contaminated with trace inseparable impurity.

6-(tert-butyl)-3-(phenylamino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3v. Starting from 1v and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, $140^{\circ} \mathrm{C}$, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 98:2) as a white solid, yield $=71 \%(93.7 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right): 0.5 .{ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-6.98(\mathrm{~m}, 4 \mathrm{H}), 6.82(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.6$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9,155.1,141.8$, $138.5,135.4,132.6,131.5,130.3,129.9,129.3,128.9,124.3,123.4$ (q, $J=288.9 \mathrm{~Hz}$), 121.6, 120.7, 116.4, $80.5(\mathrm{q}, J=29.3 \mathrm{~Hz}), 35.3,31.3,21.2$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v: 3309$,

3035, 2963, 1698, 1604, 1508, 1359, 1262, 1176, 1038, 977, 819, 744. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 439.1992[\mathrm{M}+\mathrm{H}]^{+}$, Found 439.1989.

3w
6-methoxy-3-(phenylamino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3w. Starting from 1w and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, $130^{\circ} \mathrm{C}$, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=84 \%(103.8 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right): 0.3 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-$ $6.97(\mathrm{~m}, 7 \mathrm{H}), 6.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}$, 3H), $2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.7$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,162.2,141.8,138.6,134.4,131.4,130.0,129.9,129.3,128.8,125.7,123.3(\mathrm{q}$, $J=288.9 \mathrm{~Hz}), 120.7,120.6,116.5,107.9,80.4(\mathrm{q}, ~ J=29.3 \mathrm{~Hz}), 55.8,21.1 . \mathbf{I R}(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right) v: 3346,3048,2926,1711,1609,1503,1364,1261,1178,1132,1082,972,827$, 740. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \mathrm{m} / \mathrm{z} 413.1471[\mathrm{M}+\mathrm{H}]^{+}$, Found 413.1476.

6-fluoro-3-(phenylamino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3x. Starting from 1x and p-tolyl isocyanate (Cas: 622-58-2), PhCl as solvent, 48 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 96:4) as a white solid, yield $=75 \%(90.4 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: $0.4 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 1 \mathrm{H})$, 7.20 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.13$ - 6.98 (m, 4H), 6.86 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.35$ (t, $J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.5(\mathrm{~s}),-108.3(\mathrm{~s})$. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,164.5(\mathrm{~d}, J=253.5 \mathrm{~Hz}), 141.5,138.7,135.2$ (d, $J=9.1 \mathrm{~Hz}), 133.7,131.1,130.0,129.4,128.6,126.6(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 123.2$ (q, $J=289.9$ $\mathrm{Hz}), 121.0,120.3(\mathrm{~d}, J=23.2 \mathrm{~Hz}), 116.5,111.7(\mathrm{~d}, J=24.2 \mathrm{~Hz}), 80.5(\mathrm{q}, J=29.3 \mathrm{~Hz})$,
21.07. IR (KBr, cm $\left.{ }^{-1}\right) v: 3440,3349,3066,1713,1609,1502,1363,1261,1177,1117$, 728. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 401.1272[\mathrm{M}+\mathrm{H}]^{+}$, Found 401.1274.

6-chloro-3-(phenylamino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3y. Starting from 1y and p-tolyl isocyanate (Cas: $622-58-2$), PhCl as solvent, 48 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=74 \%(92.5 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: $0.4 .{ }^{1} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), $7.14-6.97(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{~s}$, $1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.5$ (s). ${ }^{13} \mathbf{C} \mathbf{~ N M R ~ (~} 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,141.4,138.8,137.7,136.5,134.6,133.1,131.0,130.0,129.4,128.7,126.0$, $124.9,123.1(\mathrm{q}, J=289.9 \mathrm{~Hz}), 121.1,116.5,80.6(\mathrm{q}, J=29.3 \mathrm{~Hz}), 21.1 . \mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-}\right.$ $\left.{ }^{1}\right)$ v: 3320, 3072, 2925, 1706, 1606, 1508, 1429, 1360, 1268, 1186, 1062, 972, 744. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 417.0976[\mathrm{M}+\mathrm{H}]^{+}$, Found 417.0988.

5-methyl-3-(phenylamino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3z1. Starting from $\mathbf{1 z}$ and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=61 \%$ (73.1 mg). R_{f} (petroleum ether/ethyl acetate $=91: 9$): $0.3 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H})$, 7.16 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.12-7.03$ (m, 2H), 6.99 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.83$ (t, $J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-77.6(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,143.9,141.8$, 138.7, 138.4, 132.1, 131.5, 130.2, 129.9, 129.3, 128.9, 125.0, 124.5, 123.4 (q, $J=288.9$ $\mathrm{Hz}), 120.6,116.3,80.5(\mathrm{q}, J=29.3 \mathrm{~Hz}), 21.9$, 21.1. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ v: 3443, 3312, 3077, 2924, 1703, 1611, 1505, 1367, 1265, 1178, 1066, 905, 745. HRMS (ESI) calcd for
$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 397.1522[\mathrm{M}+\mathrm{H}]^{+}$, Found 397.1531.

$3 z 2$
7-methyl-3-(phenylamino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3z2. Starting from $\mathbf{1 z}$ and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 98:2) as a white solid, yield $=17 \%(19.8 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right): 0.5 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 77.51-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-6.94(\mathrm{~m}$, $4 \mathrm{H}), 6.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.35$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-77.2(\mathrm{~s}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.3$, $141.8,139.0,138.7,138.4,133.4,132.3,131.5,129.9,129.7,129.3,129.0,125.4,123.4$ $(\mathrm{q}, J=289.9 \mathrm{~Hz}), 120.7,116.4,79.9(\mathrm{q}, J=29.3 \mathrm{~Hz}), 21.2,17.5 . \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v:$ 3347, 3053, 2923, 1697, 1604, 1508, 1358, 1262, 1170, 1024, 735, 688. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 397.1522[\mathrm{M}+\mathrm{H}]^{+}$, Found 397.1533.

5-isopropyl-3-(phenylamino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3aa. Starting from 1aa and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: $99: 1$ to $98: 2$) as a white solid, yield $=58 \%(49.4 \mathrm{mg}, 0.2 \mathrm{mmol}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right): 0.5$. ${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.82(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.30 (d, J= $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.77 ($\mathrm{s}, 1 \mathrm{H}$), 3.07 - 2.92 (m, 1H), 2.36 (s, 3H), 1.26 - 1.16 (m, $6 \mathrm{H}) .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.6$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6$, $154.8,141.8,138.6,138.4,131.5,130.5,129.9,129.4,129.2,128.9,124.6,123.4$ (q, J $=288.9 \mathrm{~Hz}), 122.8,120.7,116.5,80.6(\mathrm{q}, J=30.3 \mathrm{~Hz}), 34.5,29.6,23.7$, 21.1. IR $(\mathrm{KBr}$,
$\left.\mathrm{cm}^{-1}\right)$ v: $3368,2967,2924,1703,1610,1508,1360,1261,1176,1139,1051,749$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 425.1835[\mathrm{M}+\mathrm{H}]^{+}$, Found 425.1844.

5-methoxy-3-(phenylamino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3ab. Starting from 1ab and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 18 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 91:9) as a white solid, yield $=85 \%(105.5 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=91: 9$): 0.2. ${ }^{1} \mathbf{H} \mathbf{~ N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 3 \mathrm{H})$, $7.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.7$ (s$) .{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,163.6,141.7,140.7,138.3,131.5,129.8,129.3,128.9,126.0$, $125.0,123.3(\mathrm{q}, J=288.9 \mathrm{~Hz}), 120.7,117.3,116.3,109.7,80.2(\mathrm{q}, J=29.3 \mathrm{~Hz}), 55.7$, 21.1. IR (KBr, cm ${ }^{-1}$) v: 3348, 3060, 2933, 1702, 1607, 1504, 1362, 1262, 1180, 1070, 724. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \mathrm{m} / \mathrm{z} 413.1471[\mathrm{M}+\mathrm{H}]^{+}$, Found 413.1474.

5-fluoro-3-(phenylamino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3ac. Starting from 1ac and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 18 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=85 \%(102.0 \mathrm{mg}$, mixture of isomer, ratio $=\mathbf{1 : 0 . 2 0}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=91: 9)$: $0.3 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{dd}, J=8.0,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 0.22 \mathrm{H}), 7.43-7.28(\mathrm{~m}, 2.45 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2.41 \mathrm{H})$, $7.14-7.06(\mathrm{~m}, 2.45 \mathrm{H}), 7.03(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 2.37 \mathrm{H}), 6.86(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1.20 \mathrm{H})$, $6.42-6.31(\mathrm{~m}, 2.38 \mathrm{H}), 4.83(\mathrm{~s}, 1.19 \mathrm{H}), 2.36(\mathrm{~s}, 3.60 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.5$ (s, major), -77.6 (s, minor), -104.5 (s, major), -115.2 (s , minor). ${ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, major) $\delta 166.3,165.6(\mathrm{~d}, J=255.5 \mathrm{~Hz}), 141.4,141.0(\mathrm{~d}, J=10.1 \mathrm{~Hz})$, 138.7, 131.1, 130.0, 129.4, 128.7, 126.8 (d, $J=24.2 \mathrm{~Hz}), 123.1$ (q, $J=288.9 \mathrm{~Hz}), 121.1$,
$118.9(\mathrm{~d}, J=255.5 \mathrm{~Hz}), 116.4,112.6,112.3,80.2(\mathrm{q}, J=30.3 \mathrm{~Hz}), 21.1$. IR ($\mathrm{KBr}, \mathrm{cm}^{-}$ $\left.{ }^{1}\right) \mathrm{v}: 3350,3069,2925,1720,1609,1492,1360,1261,1175,1071,987,794,743$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z} 401.1272[\mathrm{M}+\mathrm{H}]^{+}$, Found 401.1276.

5-chloro-3-(phenylamino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3ad. Starting from 1ad and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 18 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: $99: 1$ to $97: 3$) as a white solid, yield $=57 \%$ (71.0 mg , mixture of isomer, ratio $=\mathbf{1 : 0 . 2 4}$). R_{f} (petroleum ether/ethyl acetate $=91: 9): 0.3 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65-7.55(\mathrm{~m}, 2.20 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 0.42 \mathrm{H}), 7.20-6.96(\mathrm{~m}, 7.74 \mathrm{H}), 6.85(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1.24 \mathrm{H}), 6.33(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2.46 \mathrm{H}), 4.91-4.72(\mathrm{~m}, 1.24 \mathrm{H}), 2.34(\mathrm{~s}, 3.70 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.47$ (s, major), -77.54 (s, minor). ${ }^{13} \mathbf{C}$ NMR (101 MHz , CDCl_{3}, major) $\delta 166.4,141.4,140.1,139.5,138.8,131.8,131.3,131.0,130.0,129.5$, $128.7,125.8,125.0,123.1(\mathrm{q}, J=288.9 \mathrm{~Hz}), 121.1,116.3,80.3(\mathrm{q}, ~ J=29.3 \mathrm{~Hz}), 21.1$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, minor) $\delta 164.9,141.4,140.7,140.1,138.6,133.5,133.0$, $132.6,129.9,129.4,128.8,125.2,123.2,121.0,116.4,29.6$, two carbon were overlapped. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v: 3338,3068,2923,1705,1607,1507,1366,1260,1174$, 1061, 745. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 417.0976[\mathrm{M}+\mathrm{H}]^{+}$, Found 417.0986.

3-(phenylamino)-2-(p-tolyl)-3-(trifluoromethyl)-2,3-dihydro-1H-benzo[f]isoindol-1-one 3ae. Starting from 1ae and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 97:3) as a white solid, yield $=80 \%(103.8 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: 0.2. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{t}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.95-7.86$ (m, 1H), $7.70-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-6.98(\mathrm{~m}, 4 \mathrm{H}), 6.80(\mathrm{t}, J$
$=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-77.8(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.5,141.6,138.6,135.3,134.2$, $132.8,131.5,129.9,129.7,129.3,129.2,129.0,128.8,128.4,127.8,125.6,124.8,123.5$ (q, $J=289.9 \mathrm{~Hz}), 120.6,116.3,80.7(\mathrm{q}, J=29.3 \mathrm{~Hz}), 21.1 . \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ v: 3337, 3054, 2924, 1710, 1604, 1508, 1363, 1263, 1174, 1061, 961, 903, 743. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 433.1522[\mathrm{M}+\mathrm{H}]^{+}$, Found 433.1527.

3af
6-(phenylamino)-5-(p-tolyl)-6-(trifluoromethyl)-5,6-dihydro-4H-thieno[2,3-c]pyrrol-4-one 3af. Starting from 1af and p-tolyl isocyanate (Cas: 622-58-2), o-xylene as solvent, $110^{\circ} \mathrm{C}, 60 \mathrm{~h}$. The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to $97: 3$) as a pale solid, yield $=24 \%(28.3 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate = 91:9): $0.3 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20-7.09(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.1(\mathrm{~s})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 163.7,147.1,142.7,141.5,138.8,133.9,131.4,130.0$, $129.5,129.2,122.7$ (q, $J=288.9 \mathrm{~Hz}$), 121.4, 121.1, 116.6, 79.8 (q, $J=30.3 \mathrm{~Hz}$), 21.2. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3419, 3086, 2925, 1705, 1609, 1507, 1397, 1337, 1256, 1187, 1060, 961, 723. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{OS}^{+} \mathrm{m} / \mathrm{z} 389.0930[\mathrm{M}+\mathrm{H}]^{+}$, Found 389.0929.

3-(phenylamino)-2-(p-tolyl)-6-(2,2,2-trifluoro-1-(phenylimino)ethyl)-3-(trifluoromethyl)isoindolin-1-one 3ag. Starting from 1ag and p-tolyl isocyanate (Cas: $622-58-2$), on a 0.15 mmol scale, o-xylene as solvent, $160^{\circ} \mathrm{C}, 72 \mathrm{~h}$. The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 97:3) as a white solid, yield $=$ 72% (59.9 mg). R_{f} (petroleum ether/ethyl acetate $=91: 9$): $0.2 .{ }^{1} \mathbf{H} \mathbf{~ N M R ~ (~} 400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.14$ $(\mathrm{m}, 4 \mathrm{H}), 7.11-6.94(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{t}$,
$J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.8(\mathrm{~s}),-$ 77.4 (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,155.8(\mathrm{q}, J=35.4 \mathrm{~Hz}), 146.3,141.2$, 139.9, 139.0, 133.53, 133.48, 133.1, 130.8, 130.1, 129.4, 128.9, 128.7, 126.0, 125.2, $124.9,123.0(\mathrm{q}, J=289.9 \mathrm{~Hz}), 121.2,120.5,119.5(\mathrm{q}, J=279.8 \mathrm{~Hz}), 116.4,80.6(\mathrm{q}, J$ $=29.3 \mathrm{~Hz}), 21.2$. $\mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v: 3345,3068,1707,1606,1505,1436,1367,1326$, 1269, 1187, 1143, 1051, 985, 737, 686. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}^{+} \mathrm{m} / \mathrm{z}$ $554.1662[\mathrm{M}+\mathrm{H}]^{+}$, Found 554.1671.

3ah
3-((4-bromophenyl)amino)-2-(p-tolyl)-3-(trifluoromethyl)-2,3,4,5,6,7-hexahydro-1H-isoindol-1-one 3ah. Starting from 1ah and p-tolyl isocyanate (Cas: 622-58-2), on a 0.2 mmol scale, o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 18 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=55 \%(50.9 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=91: 9): 0.2 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H})$, $2.55-2.35$ (m, 2H), 2.33 (s, 3H), 2.26-2.19 (s, 1H), 2.12-2.01 (m, 1H), $1.91-1.79$ (m, 2H), $1.74-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 1 \mathrm{H}) .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-$ 76.8 (s). ${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.5,148.6,141.5,139.3,138.2,132.4,131.5$, $129.9,128.6,123.0(\mathrm{q}, J=290.9 \mathrm{~Hz}), 117.6,113.2,81.7$ ($\mathrm{q}, ~ J=29.3 \mathrm{~Hz}$), 22.6, 22.0, 21.4, 21.1, 20.8. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3451, 2929, 1698, 1602, 1501, 1399, 1353, 1259, 1167, 1068, 961, 815, 731. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 465.0784$ $[\mathrm{M}+\mathrm{H}]^{+}$, Found 465.0788.

3ai
2-(4-isopropylphenyl)-3-(phenylamino)-3-(trifluoromethyl)isoindolin-1-one 3ai. Starting from 1a and 4-isopropylphenyl isocyanate (Cas: 31027-31-3), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to

98:2) as a pale yellow solid, yield $=75 \%(92.6 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate = 91:9): 0.3. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.56(\mathrm{~m}$, $3 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 2.98-2.86(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=67.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-77.6$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,149.2,141.7$, $138.3,132.9,131.5,131.1,129.3,128.7,127.3,124.70,124.68,124.66,123.3$ (q, $J=$ $289.9 \mathrm{~Hz}), 120.8,116.4,80.7(\mathrm{q}, J=29.3 \mathrm{~Hz}), 33.8,23.79,23.77$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v$: 3312, 3048, 2960, 2877, 1699, 1604, 1509, 1367, 1318, 1260, 1140, 1048, 827, 756. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z} 411.1679[\mathrm{M}+\mathrm{H}]^{+}$, Found 411.1687.

3aj
3-(phenylamino)-3-(trifluoromethyl)-2-(4-(trifluoromethyl)phenyl)isoindolin-1-
one 3aj. Starting from 1a and 4-(trifluoromethyl)phenyl isocyanate (Cas: 1548-13-6), PhCl as solvent, 48 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to $97: 3$) as a white solid, yield $=91 \%(119.2 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate = 91:9): 0.4. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.53(\mathrm{~m}$, $5 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.2(\mathrm{~s}),-77.6(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.1,141.3,138.2,137.7,133.4,132.2,131.4,130.4(\mathrm{q}, J$ $=32.3 \mathrm{~Hz}), 129.5,129.2,126.4(\mathrm{q}, J=4.0 \mathrm{~Hz}), 124.8,124.7,123.8(\mathrm{q}, J=273.7 \mathrm{~Hz})$, $123.2(\mathrm{q}, J=288.9 \mathrm{~Hz}), 121.2,116.3,81.1(\mathrm{q}, J=29.3 \mathrm{~Hz})$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) \mathrm{v}: 3320$, 3067, 1710, 1608, 1507, 1362, 1324, 1265, 1172, 1127, 1074, 837, 724. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 437.1083[\mathrm{M}+\mathrm{H}]^{+}$, Found 437.1090.

3ak
2-(4-phenoxyphenyl)-3-(phenylamino)-3-(trifluoromethyl)isoindolin-1-one 3ak. Starting from 1a and 4-phenoxyphenyl isocyanate (Cas: 59377-19-4), PhCl as solvent, 48 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a
white solid, yield $=74 \%(102.3 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right): 0.3 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-6.88(\mathrm{~m}, 9 \mathrm{H}), 6.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.01$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.6(\mathrm{~s}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.4$, 157.6, 156.2, 141.6, 138.2, 133.0, 132.6, 131.1, 130.4, 129.8, 129.3, 128.5, 124.64, $124.60,123.8,123.3(\mathrm{q}, J=288.9 \mathrm{~Hz}), 120.7,119.6,118.6,116.2,80.7(\mathrm{q}, J=29.3 \mathrm{~Hz})$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3327, 3068, 1711, 1600, 1499, 1367, 1256, 1181, 1061, 834, 757. HRMS (ESI) calcd for $\mathrm{C}_{2} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} m / z 461.1471[\mathrm{M}+\mathrm{H}]^{+}$, Found 461.1480.

3al
2-(4-chlorophenyl)-3-(phenylamino)-3-(trifluoromethyl)isoindolin-1-one 3al. Starting from 1a and 4-chlorophenyl isocyanate (Cas: 104-12-1), PhCl as solvent, 48 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 2.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=92 \%(111.0 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=91: 9$): 0.6. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), 7.17 - 7.00 (m, 4H), 6.84 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.33 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.84 (s, 1H). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.7$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.2$, 141.4, 138.2, 134.5, 133.2, 132.7, 132.4, 131.3, 130.3, 129.54, 129.46, 124.8, 124.7, $123.2(\mathrm{q}, J=288.9 \mathrm{~Hz}), 121.0,116.3,80.8(\mathrm{q}, J=29.3 \mathrm{~Hz}) . \mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) \mathrm{v}: 3354$, 3063, 2924, 1707, 1606, 1497, 1360, 1259, 1183, 1090, 975, 822, 720. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 403.0820[\mathrm{M}+\mathrm{H}]^{+}$, Found 403.0825 .

3-(phenylamino)-2-(m-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3am. Starting from 1a and m-tolyl isocyanate (Cas: 621-29-4), PhCl as solvent, 48 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid,, yield = $68 \%(78.5 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=91: 9$): 0.3. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-76.9$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,141.7,139.1,138.3$, $134.0,132.9,132.8,131.2,129.7,129.4,129.3,129.0,125.9,124.71,124.67,123.3(\mathrm{q}$, $J=289.9 \mathrm{~Hz}), 120.8,116.4,80.8(\mathrm{q}, J=29.3 \mathrm{~Hz}), 21.2 . \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) \mathrm{v}: 3329,3143$, 1703, 1603, 1496, 1369, 1322, 1261, 1186, 1062, 720. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z} 383.1366[\mathrm{M}+\mathrm{H}]^{+}$, Found 383.1378.

3an
2-(3-methoxyphenyl)-3-(phenylamino)-3-(trifluoromethyl)isoindolin-1-one 3an. Starting from 1a and 3-methoxyphenyl isocyanate (Cas: 18908-07-1), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: $99: 1$ to 95:5) as a white solid, yield $=61 \%(73.4 \mathrm{mg}) . \mathrm{R}_{f}($ petroleum ether $/$ ethyl acetate $=91: 9)$: 0.4. ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.29$ ($\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.75$ $(\mathrm{m}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-77.1(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,160.1,141.7$, $138.3,135.1,133.0,132.7,131.3,129.9,129.4,124.79,124.76,123.3(\mathrm{q}, J=288.9 \mathrm{~Hz})$, $121.3,120.9,116.3,115.1,114.1,80.8(\mathrm{q}, J=29.3 \mathrm{~Hz}), 55.0$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ v: 3439 , 3328, 3087, 1702, 1604, 1498, 1370, 1261, 1180, 1044, 722. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \mathrm{m} / \mathrm{z} 399.1315[\mathrm{M}+\mathrm{H}]^{+}$, Found 399.1316.

$3 a 0$
2-(3-fluorophenyl)-3-(phenylamino)-3-(trifluoromethyl)isoindolin-1-one
3 3o.
Starting from 1a and 3-fluorophenyl isocyanate (Cas: 404-71-7), PhCl as solvent, 48 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 97:3) as a white solid, yield $=90 \%(104.5 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right): 0.3 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}$
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 1 \mathrm{H})$, $7.14-7.03(\mathrm{~m}, 3 \mathrm{H}), 7.00-6.78(\mathrm{~m}, 3 \mathrm{H}), 6.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.6$ (s), -111.7 (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1$, $162.8(\mathrm{~d}, J=248.5 \mathrm{~Hz}), 141.3,138.2,135.7(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 133.2,132.4,131.3,130.3$ (d, $J=9.1 \mathrm{~Hz}$), 129.5, 124.8, 124.7, 124.6 (d, $J=3.0 \mathrm{~Hz}$), 123.2 (q, $J=289.9 \mathrm{~Hz}$), 121.1, 116.4, 116.3 (d, $J=23.2 \mathrm{~Hz}$), 115.6 (d, $J=21.2 \mathrm{~Hz}$), 81.0 (q, $J=29.3 \mathrm{~Hz}$). IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) \mathrm{v}: 3435,3336,1707,1606,1495,1363,1263,1183,1049,756,720$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z} 387.1115[\mathrm{M}+\mathrm{H}]^{+}$, Found 387.1123.

2-(3-chlorophenyl)-3-(phenylamino)-3-(trifluoromethyl)isoindolin-1-one 3ap. Starting from 1a and 3-chlorophenyl isocyanate (Cas: 2909-38-8), PhCl as solvent, 48 h. The product was purified by flash column chromatography on silica gel (height 16 cm , width 2.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=91 \%(109.5 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right): 0.3 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.74 - 7.55 (m, 3H), $7.41-7.27$ $(\mathrm{m}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.34$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}) .{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.6(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 167.1,141.3,138.2,135.4,134.7,133.3,132.3,131.3,130.2$, $129.5,129.2,128.8,127.5,127.2,124.8,124.74,124.73,123.2$ (q, $J=288.9 \mathrm{~Hz}), 121.1$, 116.4, $81.0\left(\mathrm{q}, J=29.3 \mathrm{~Hz}\right.$). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3331, 3144, 3093, 1703, 1603, 1486, 1366, 1323, 1260, 1186, 1048, 969, 899, 723. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}$ $m / z 403.0820[\mathrm{M}+\mathrm{H}]^{+}$, Found 403.0821.

$3 a q$
3-(phenylamino)-2-(o-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3aq. Starting from 1a and o-tolyl isocyanate (Cas: 614-68-6), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 20 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 97:3) as a white solid, yield $=$ $36 \%(40.9 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: $0.4 .{ }^{1} \mathbf{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{q}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.92-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), $4.79(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.2(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 166.4,141.7,138.4,138.3,133.0,132.9,132.6,131.6,131.2$, $129.4,128.6,126.4,124.8,124.4,123.6(\mathrm{q}, ~ J=288.9 \mathrm{~Hz}), 120.8,116.6,80.5$ (q, $J=$ $29.3 \mathrm{~Hz}), 18.1$, one carbon is overlapped. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3440, 3334, 3089, 2929, 1702, 1608, 1497, 1362, 1265, 1182, 1045, 974, 758, 722. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z} 383.1366[\mathrm{M}+\mathrm{H}]^{+}$, Found 383.1368.

2-(2-methoxyphenyl)-3-(phenylamino)-3-(trifluoromethyl)isoindolin-1-one 3ar. Starting from 1a and 2-methoxyphenyl isocyanate (Cas: 700-87-8), PhCl as solvent, 48 h. The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=81 \%(96.4 \mathrm{mg}$, mixture of isomer, ratio $=\mathbf{1 : 0 . 3 0}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=91: 9)$: $0.1 .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 1.30 H), $7.74-7.51(\mathrm{~m}, 3.90 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 1.60 \mathrm{H}), 7.13-6.64$ (m, 7.50 H$), 6.41-$ $6.08(\mathrm{~m}, 2.60 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 0.30 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~s}, 0.90 \mathrm{H}) .{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.1$ (s, minor), -78.3 (s, major). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major) $\delta 166.6,157.1,141.9,138.8,132.8,132.7,131.0,130.2,130.1,129.4,124.7$, $124.3,123.4(\mathrm{q}, J=289.9 \mathrm{~Hz}), 122.8,120.6,120.4,116.2,112.3,80.3(\mathrm{q}, J=29.3 \mathrm{~Hz})$, 55.8. IR (KBr, cm^{-1}) v: $3309,3072,1706,1604,1501,1370,1266,1177,1042,880$, 755. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \mathrm{m} / \mathrm{z} 399.1315[\mathrm{M}+\mathrm{H}]^{+}$, Found 399.1318.

2-(2-fluorophenyl)-3-(phenylamino)-3-(trifluoromethyl)isoindolin-1-one 3as. Starting from 1a and 2-fluorophenyl isocyanate (Cas: 16744-98-2), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 98:2) as a
white solid, yield $=99 \%(115.0 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: $0.3 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.32$ $(\mathrm{m}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-6.90(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.6(\mathrm{~s}),-117.4(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,159.5(\mathrm{~d}, J=254.5 \mathrm{~Hz}), 141.5,138.5,133.1,132.2$, $131.2,130.6,130.5,129.3,124.8,124.5,124.4(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 123.2(\mathrm{q}, J=289.9 \mathrm{~Hz})$, $121.8(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 120.8,116.7(\mathrm{~d}, J=20.2 \mathrm{~Hz}), 116.3,80.5(\mathrm{q}, ~ J=29.3 \mathrm{~Hz})$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) \mathrm{v}: 3336,3085,1712,1606,1502,1367,1264,1182,1048,879,758$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z} 387.1115[\mathrm{M}+\mathrm{H}]^{+}$, Found 387.1122.

2-(2-bromophenyl)-3-(phenylamino)-3-(trifluoromethyl)isoindolin-1-one 3at. Starting from 1a and 2-bromophenyl isocyanate (Cas: 1592-00-3), PhCl as solvent, 48 h. The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=76 \%(101.6 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right): 0.2 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.11-6.90(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-76.7(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.8,141.5,138.3,134.3,133.7,133.2,132.2,131.2$, 130.6, 129.8, 129.5, 127.9, 124.9, 124.8, 124.2, 123.3 (q, $J=288.9 \mathrm{~Hz}$), 120.8, 116.3, 80.6 (q, $J=30.3 \mathrm{~Hz}$). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3306, 3071, 1709, 1605, 1477, 1364, 1267, 1180, 1067, 882, 758, 721. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z} 447.0314$ $[\mathrm{M}+\mathrm{H}]^{+}$, Found 447.0320.

2-(3,4-dichlorophenyl)-3-(phenylamino)-3-(trifluoromethyl)isoindolin-1-one 3au.
Starting from 1a and 3,4-dichlorophenyl isocyanate (Cas: 102-36-3), PhCl as solvent, 48 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 97:3) as a
white solid, yield $=91 \%(119.7 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: $0.4 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.17-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.5$ (s). ${ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.0,141.2,138.2,133.7,133.4,133.1,132.9,132.1,131.4,130.9,130.9$, $129.5,128.3,124.8,124.7,123.2(\mathrm{q}, J=288.9 \mathrm{~Hz}), 121.2,116.3,80.98(\mathrm{q}, J=29.3 \mathrm{~Hz})$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3340, 3061, 1713, 1603, 1472, 1359, 1260, 1186, 1049, 970, 893, 756, 716. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 437.0430[\mathrm{M}+\mathrm{H}]^{+}$, Found 437.0437.

3av
2-(3,5-dimethylphenyl)-3-(phenylamino)-3-(trifluoromethyl)isoindolin-1-one 3av. Starting from 1a and 3,5-dimethylphenyl isocyanate (Cas: 54132-75-1), PhCl as solvent, 48 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 97:3) as a white solid, yield $=83 \%(98.5 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=91: 9$): $0.4 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 2 \mathrm{H}), 6.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), $4.71(\mathrm{~s}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 6 \mathrm{H}) .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.5(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5,141.8,138.8,138.5,133.8,132.9,132.8,131.2,130.4$, $129.3,126.8,124.8,124.7,123.4$ (q, $J=288.9 \mathrm{~Hz}$), $120.9,116.5,80.8(\mathrm{q}, J=30.3 \mathrm{~Hz})$, 21.2. IR (KBr, cm^{-1}) v: 3329, 3084, 2919, 1700, 1604, 1471, 1369, 1264, 1185, 1074, 836, 754, 722, 685. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z} 397.1522[\mathrm{M}+\mathrm{H}]^{+}$, Found 397.1527.

3aw

2-(4-chloro-2-methylphenyl)-3-(phenylamino)-3-(trifluoromethyl)isoindolin-1-

 one 3aw. Starting from 1a and 4-chloro-1-isocyanato-2-methylbenzene (Cas: 37408-18-7), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethylacetate, gradient: 99:1 to 97:3) as a white solid, yield $=74 \%(93.1 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=91: 9): 0.4 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-6.95(\mathrm{~m}, 3 \mathrm{H}), 6.87-6.75(\mathrm{~m}, 2 \mathrm{H})$, $6.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 77.7 (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,141.5,140.4,138.2,134.2,133.1,132.3$, 131.6, 131.4, 131.3, 129.9, 129.5, 126.5, 124.7, 124.4, 123.5 (q, $J=288.9 \mathrm{~Hz}$), 120.9 , 116.4, 80.5 ($\mathrm{q}, ~ J=30.3 \mathrm{~Hz}$), 18.0. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3326, 3060, 2973, 1706, 1605, 1490, 1361, 1266, 1176, 1089, 1041, 878, 723. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}$ $m / z 417.0976[\mathrm{M}+\mathrm{H}]^{+}$, Found 417.0982.

2-(naphthalen-1-yl)-3-(phenylamino)-3-(trifluoromethyl)isoindolin-1-one 3ax. Starting from 1a and 1-naphthyl isocyanate (Cas: 86-84-0), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=68 \%(85.4 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: $0.4 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.75-7.49(\mathrm{~m}, 5 \mathrm{H})$, 7.33 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.11 (dd, $J=14.4,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.87$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.39$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-76.7 .{ }^{13} \mathbf{C}$ NMR $(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.9,167.2,141.7,138.4,134.6,133.1,132.5,131.3,131.1,130.9$, $129.5,128.4,126.7,126.6,126.2,125.1,124.9,124.6,123.8,123.5$ (q, $J=288.9 \mathrm{~Hz}$), $120.9,116.6,80.9(\mathrm{q}, J=29.3 \mathrm{~Hz})$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: $3328,3056,2926,1697,1606$, 1501, 1359, 1265, 1180, 1087, 872, 764. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z}$ $419.1366[\mathrm{M}+\mathrm{H}]^{+}$, Found 419.1367.

2-benzyl-3-(phenylamino)-3-(trifluoromethyl)isoindolin-1-one 3ay. Starting from 1a and benzyl isocyanate (Cas: 3173-56-6), o-xylene as solvent, 60 h . The product was
purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to $95: 5$) as a white solid, yield $=$ 89% (102.3 mg). R_{f} (petroleum ether/ethyl acetate $=91: 9$): 0.3. ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~s}$, $2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.6 .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6,141.4$, 139.1, 136.4, 132.7, 132.6, 131.0, 128.9, 128.0, 127.8, 127.0, 124.3, 124.1, 123.5 (q, J $=289.9 \mathrm{~Hz}), 120.6,116.2,79.6(\mathrm{q}, J=29.3 \mathrm{~Hz}), 43.4 . \mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v: 3325,3062$, 2931, 1697, 1605, 1500, 1389, 1265, 1182, 1085, 976, 735, 695. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 383.1366[\mathrm{M}+\mathrm{H}]^{+}$, Found 383.1378.

$3 a z$
2-octyl-3-(phenylamino)-3-(trifluoromethyl)isoindolin-1-one 3az. Starting from 1a and 1-octyl isocyanate (Cas: 3158-26-7), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=$ $86 \%(104.6 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: $0.5 .{ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.48(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.76$ (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 3.47-3.31(\mathrm{~m}, 2 \mathrm{H}), 1.77-$ $1.52(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.13(\mathrm{~m}, 10 \mathrm{H}), 0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-78.3 .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.2,141.5,139.1,133.2,132.4,130.9$, $129.2,124.2,123.9,123.8(\mathrm{q}, J=288.9 \mathrm{~Hz}), 120.9,116.4,79.4$ (q) $J=30.3 \mathrm{~Hz}$), 40.3, 31.8, 29.11, 29.10, 27.7, 27.3, 22.6, 14.1. IR (KBr, cm ${ }^{-1}$) v: 3322, 3074, 2929, 1695, $1605,1499,1379,1321,1259,1165,1079,736$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}$ $m / z 405.2148[\mathrm{M}+\mathrm{H}]^{+}$, Found 405.2152.

3ba
2-cyclopentyl-3-(phenylamino)-3-(trifluoromethyl)isoindolin-1-one 3ba. Starting from 1a and cyclopentyl isocyanate (Cas: 4747-71-1), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm ,
width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 98:2) as a white solid, yield $=61 \%(66.4 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: $0.4 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.93(\mathrm{~m}, 2 \mathrm{H})$, $6.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.93-4.71(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.79$ $(\mathrm{m}, 1 \mathrm{H}), 2.40-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.16-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.17(\mathrm{~m}$, 1H). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.8$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.2$, 141.6, 139.0, 133.8, 132.2, 130.9, 129.1, 124.1, 123.8 (q, $J=288.9 \mathrm{~Hz}$), 123.6, 120.8, 116.2, 79.6 ($\mathrm{q}, J=30.3 \mathrm{~Hz}), 53.4,29.1,28.5,25.2,25.1$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3319, 3062, 2955, 1687, 1608, 1502, 1357, 1258, 1166, 1078, 721. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 361.1522[\mathrm{M}+\mathrm{H}]^{+}$, Found 361.1529

3bb
2-cyclohexyl-3-(phenylamino)-3-(trifluoromethyl)isoindolin-1-one 3bb. Starting from 1a and cyclohexyl isocyanate (Cas: 3173-53-3), o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: $99: 1$ to $98: 2$) as a white solid, yield $=69 \%(77.1 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right): 0.5 .{ }^{1} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.40(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.75$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 3.43-3.24$ (m, 1H), $2.53-2.19$ (m, 2H), 1.93 - 1.52 (m, 4H), $1.33-0.99$ (m, 4H). ${ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.4$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5,141.8,138.6,133.9$, 132.2, 130.9, 129.0, 124.2, 123.8 (q, $J=288.9 \mathrm{~Hz}$), 123.7, 120.7, 116.2, 79.4 (q, $J=$ $30.3 \mathrm{~Hz}), 53.6,29.0,28.8,26.4,26.4,25.2$. IR (KBr, cm ${ }^{-1}$) v: 3316, 3080, 2860, 1687, 1607, 1501, 1413, 1358, 1322, 1260, 1185, 1072, 980, 896, 721. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} m / z 375.1679[\mathrm{M}+\mathrm{H}]^{+}$, Found 375.1684

3bc
3-((4-bromophenyl)amino)-2-(4-phenoxyphenyl)-3-(trifluoromethyl)-2,3,4,5,6,7-hexahydro-1H-isoindol-1-one 3bc. Starting from 1ah and 4-phenoxyphenyl
isocyanate (Cas: 59377-19-4), on a 0.2 mmol scale, o-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 18 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=49 \%(53.5 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=91: 9$): $0.2 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $4 \mathrm{H}), 6.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 2.55-2.20(\mathrm{~m}$, $3 \mathrm{H}), 2.14-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.40(\mathrm{~m}$, 1H). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-76.8$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5$, $157.4,156.3,148.8,141.4,139.2,132.5,130.2,129.8,128.8,123.9,122.9$ (q, $J=290.9$ $\mathrm{Hz}), 119.6,118.7,117.5,113.3,81.7(\mathrm{q}, J=29.3 \mathrm{~Hz}), 22.6,22.0,21.4,20.8$. IR (KBr , $\left.\mathrm{cm}^{-1}\right) \mathrm{v}: 3444,3313,2934,1696,1595,1497,1398,1254,1234,1165,1120,1064,872$, 822, 736, 698. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \mathrm{m} / \mathrm{z} 543.0890[\mathrm{M}+\mathrm{H}]^{+}$, Found 543.0897 .

3,7-bis(phenylamino)-3,7-bis(trifluoromethyl)-2,6-bis(4-(trifluoromethyl)phenyl)-2,3,6,7-tetrahydropyrrolo[3,4-f]isoindole-1,5-dione 3bd. Starting from 1ag and 4(trifluoromethyl)phenyl isocyanate (Cas: 1548-13-6), on a 0.15 mmol scale, o-xylene as solvent, $160^{\circ} \mathrm{C}, 72 \mathrm{~h}$. The product was purified by flash column chromatography on silica gel (height 18 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to $95: 5$) as a white solid, yield $=34 \%(40.1 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate = 91:9): 0.2. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25$ (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.68 (d, $J=7.2$ $\mathrm{Hz}, 4 \mathrm{H}), 7.38$ - 7.27 (m, 4H), 7.19 - 7.03 (m, 4H), 6.99 - 6.87 (m, 2H), 6.35 (dd, $J=$ $22.4,7.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.86(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.3(\mathrm{~s}),-$ 63.4 (s), -77.0 (s), -77.4 (s). ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.08,165.06,141.84$, 141.79, 140.6, 140.5, 137.2, 137.1, 136.93, 136.92, 131.0 (q, $J=32.3 \mathrm{~Hz}$), 131.0 (q) J $=33.3 \mathrm{~Hz}), 129.82,129.79,129.02,129.00$, 126.7 (q, $J=3.0 \mathrm{~Hz}), 123.6$ (q, $J=273.7$ $\mathrm{Hz}), 122.8(\mathrm{q}, J=288.9 \mathrm{~Hz}), 122.0,121.9,121.7,121.6,116.4,81.2(\mathrm{q}, J=30.3 \mathrm{~Hz})$, 81.1 ($\mathrm{q}, ~ J=29.3 \mathrm{~Hz}$). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3370, 3064, 2927, 1720, 1612, 1509, 1328, 1260, 1175, 1064, 985, 825, 742. HRMS (ESI) calcd for $\mathrm{C}_{38} \mathrm{H}_{23} \mathrm{~F}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+} \mathrm{m} / \mathrm{z} 795.1624$ $[\mathrm{M}+\mathrm{H}]^{+}$, Found 795.1627.

3-((2-benzylphenyl)amino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 3be. Starting from 1ai and p-tolyl isocyanate (Cas: 622-58-2), on a 0.2 mmol scale, o-xylene as solvent, $150^{\circ} \mathrm{C}, 60 \mathrm{~h}$. The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 98:2 to 95:5) as a white solid, yield $=45 \%(42.7 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate = 91:9): 0.2. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.10(\mathrm{~m}, 6 \mathrm{H}), 7.03$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-6.73(\mathrm{~m}, 4 \mathrm{H}), 5.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}$, 2H), $2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.8$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.2,139.9,138.3,137.99,137.95,133.0,132.8,131.2,131.1,131.0,129.8,128.8$, $128.5,128.3,128.1,127.7,126.6,124.6,124.5,123.2$ (q, $J=289.9 \mathrm{~Hz}$), 120.8, 116.0, $80.6(\mathrm{q}, J=29.3 \mathrm{~Hz}), 39.0$, 21.1. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3455, 3361, 2922, 1701, 1600, 1520, 1457, 1364, 1260, 1176, 1134, 1045, 811, 710. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}$ $m / z 473.1835[\mathrm{M}+\mathrm{H}]^{+}$, Found 473.1843.

Mechanistic studies

Procedure for the synthesis of the deuterated ketimine [D]5-1a (Scheme S8)

To a solution of 1-bromobenzene-2,3,4,5,6- $\mathrm{d}_{5}\left(2.63 \mathrm{~mL}, 25 \mathrm{mmol}, 1\right.$ equiv) in dry $\mathrm{Et}_{2} \mathrm{O}$ (70 mL) at $-78^{\circ} \mathrm{C}$ was slowly added $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, 1.1 equiv), and then reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred at that temperature for 3 h . After that, the reaction mixture was cooled down to $-60{ }^{\circ} \mathrm{C}$ and a solution of N trifluoroacetylpiperidine ($4.4 \mathrm{~mL}, 30 \mathrm{mmol}, 1.2$ equiv) in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added in portions. The reaction mixture was allowed to stir at $-60^{\circ} \mathrm{C}$ for 3 h and then warmed to room temperature. The reaction mixture was then quenched by the addition of the saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and the organic layer was subsequently washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \times 30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was dissolved in DCM and quickly passed through a short silica gel column to give the crude 2,2,2-trifluoro-1-(phenyl-d5)ethan-1-one as a colorless oil (eluent: petroleum ether).

To a solution of the obtained 2,2,2-trifluoro-1-(phenyl-d 5)ethan-1-one $(4.48 \mathrm{~g}, 25 \mathrm{mmol}$, 1 equiv) in toluene (90 mL) was added aniline ($4.6 \mathrm{~mL}, 50 \mathrm{mmol}, 2$ equiv) followed by
p-toluenesulfonic acid monohydrate ($0.95 \mathrm{~g}, 5 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The reaction mixture was heated at $140^{\circ} \mathrm{C}$ for 48 h with removal of water via Dean-Stark trap. After cooling to room temperature, the reaction mixture was concentrated under vacuum, purification by column chromatography on silica gel (eluent: petroleum ether $+5 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded [D]5-1a (overall yield $20 \%, 1.29 \mathrm{~g}$) as yellow oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.5$ (s). HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{D}_{5} \mathrm{~F}_{3} \mathrm{~N}^{+} \mathrm{m} / \mathrm{z} 255.1152[\mathrm{M}+\mathrm{H}]^{+}$, Found 255.1163.

Kinetic Isotope Effect (KIE) measurements (Scheme S9)

Five reactions were performed for different reaction time ($1 \mathrm{~h}, 2 \mathrm{~h}, 3 \mathrm{~h}, 4 \mathrm{~h}, 5 \mathrm{~h}$). An oven-dried 25 mL schlenk tube equipped with a stirring bar was transferred into a glovebox (through standard glovebox operation), where $\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.03 \mathrm{mmol}, 19.6$ $\mathrm{mg}, 0.1$ equiv) was added. The tube was then removed from the glovebox and placed under Ar. Then the degassed o-xylene (3 mL), 2,2,2-trifluoro- $N, 1$-diphenylethan-1imine 1 a ($74.8 \mathrm{mg}, 0.3 \mathrm{mmol}, 1$ equiv) or 1 -(cyclohexa-1,5-dien-1-yl-2,3,4,5,6-d d_{5})-2,2,2-trifluoro- N-phenylethan-1-imine [D]5-1a, 1-isocyanato-4-methylbenzene 2a ($79.9 \mathrm{mg}, 0.6 \mathrm{mmol}, 2$ equiv) were added under Ar. The resulting reaction mixture was then stirred at $150{ }^{\circ} \mathrm{C}$ for different reaction time. The yield of each reaction was determined by ${ }^{19} \mathrm{~F}$ NMR analysis of the reaction mixture (Table S1). The parallel reactions provided a KIE value: $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}=0.8$

Control experiments

The reaction were carried out under different additives following general procedure

 (Scheme S10):Reaction condition 1: 1a (0.3 mmol), 2a (0.6 mmol), $\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.03 \mathrm{mmol})$, in oxylene, $150{ }^{\circ} \mathrm{C}, 60 \mathrm{~h}$, under $\mathrm{O}_{2}(1 \mathrm{~atm})$. 3a was not obtained.

Reaction condition 2: 1a $(0.3 \mathrm{mmol}), \mathbf{2 a}(0.6 \mathrm{mmol}), \operatorname{Re}_{2}(\mathrm{CO})_{10}(0.03 \mathrm{mmol})$, TEMPO (0.3 mmol), in o-xylene, $150^{\circ} \mathrm{C}, 60 \mathrm{~h}$, under Ar. 3a was not obtained.

Reaction condition 3: 1a $(0.3 \mathrm{mmol})$, 2a $(0.6 \mathrm{mmol}), \operatorname{Re}_{2}(\mathrm{CO})_{10}(0.03 \mathrm{mmol})$, in oxylene, $150{ }^{\circ} \mathrm{C}, 60 \mathrm{~h}$, under $\mathrm{CO}(1 \mathrm{~atm})$. 3a was not obtained.

Reaction condition 4: 1a $(0.3 \mathrm{mmol})$, $\mathbf{2 a}(0.6 \mathrm{mmol}), \mathrm{Re}_{2}(\mathrm{CO})_{10}(0.03 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ (0.06 mmol), in o-xylene, $150^{\circ} \mathrm{C}$, 60 h , under Ar. 3a was obtained in 85% yield.

Reaction condition 5: 1a (0.3 mmol), 2a (0.6 mmol), $\mathrm{Re}_{2}(\mathrm{CO})_{10}(0.03 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ (0.06 mmol), in o-xylene, $150^{\circ} \mathrm{C}, 60 \mathrm{~h}$, under Ar. 3a was obtained in 68% yield.

Reaction condition 6: 1a (0.3 mmol), 2a (0.6 mmol), $\mathrm{Re}_{2}(\mathrm{CO})_{10}(0.03 \mathrm{mmol}), \mathrm{NaOAc}$ (0.06 mmol), in o-xylene, $150^{\circ} \mathrm{C}, 60 \mathrm{~h}$, under Ar. 3a was obtained in 67% yield.

The reaction was carried out use laj instead of 1a following general procedure G, 3bf was obtained (Scheme S11):

3-methylene-2-(p-tolyl)isoindolin-1-one 3bf. starting from 1aj and 2a, on a 0.2 mmol scale, o-xylene as solvent, $150{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}$. The product was purified by flash column chromatography on silica gel (height 20 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 98:2 to 97:3) as a white solid, yield $=80 \%$ (37.8 mg). R_{f} (petroleum ether/ethyl acetate $=91: 9): 0.5 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.74 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.21$ $(\mathrm{m}, 4 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.6$, 143.2, 137.9, 136.2, 132.1, 131.8, 129.9, 129.6, 128.9, 127.8, 123.4, 119.9, 90.2, 21.1. IR (KBr, cm^{-1}) v: 3415, 3035, 2916, 1713, 1639, 1509, 1463, 1380, 1295, 1193, 1127, 1018, 821, 768, 695. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}^{+} m / z 236.1070[\mathrm{M}+\mathrm{H}]^{+}$, Found 236.1076.

Procedure for the gram synthesis of 3a (Scheme S12)

In a glove-box, an oven-dried 120 mL sealed tube equipped with a stirring bar was charged with $\operatorname{Re}_{2}(\mathrm{CO})_{10}(234.9 \mathrm{mg}, 0.036 \mathrm{mmol}, 0.08$ equiv), the tube was removed from the glove-box and degassed o-xylene (45 mL), 2,2,2-trifluoro- N, 1-diphenylethan-1-imine 1a ($1.122 \mathrm{~g}, 4.5 \mathrm{mmol}, 1$ equiv), 1-isocyanato-4-methylbenzene 2a (1.198 g , $9.0 \mathrm{mmol}, 2$ equiv) were added under Ar. The resulting reaction mixture was then stirred at $150^{\circ} \mathrm{C}$ for 80 h . After reaction completed, the mixture was transferred into to a roundbottom flask with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated under reduced vacuum. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate, gradient: 99:1 to $95: 5$) to afford the desired product $\mathbf{3 a}(1.39 \mathrm{~g}, 81 \%$) as a white solid.

Procedure for the synthesis of derivatives 4 (Scheme S13) (Comins

 and Hiebel, 2005)To a solution of 3a ($76.5 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) in anhydrous THF (5 mL) at $0^{\circ} \mathrm{C}$ was slowly added the LiHMDS (1 M in THF, $1.6 \mathrm{~mL}, 8$ equiv,). After stirred at $0^{\circ} \mathrm{C}$ for 10 min , methane iodide ($99.6 \mu \mathrm{~L}, 1.6 \mathrm{mmol}, 8$ equiv) was added and the reaction mixture was refluxed for 24 h . After cooling to room temperature, water (20 mL) was added to
the mixture which was further extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layers was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: $99: 1$ to $97: 3$) to afford the product $\mathbf{4}$ as a white solid, yield $=86 \%(67.8 \mathrm{mg}) . \mathrm{R}_{f}($ petroleum ether/ethyl acetate $=$ 91:9): 0.2 .

3-(methyl(phenyl)amino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 4. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.11(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-69.1$ (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7$, 148.6, $140.4,138.4,133.2,132.5,132.3,130.2,129.8,129.1,128.5,124.51,124.48,124.0$, 123.7, 123.5 ($\mathrm{q}, ~ J=289.9 \mathrm{~Hz}), 85.3(\mathrm{q}, J=29.3 \mathrm{~Hz}), 39.4(\mathrm{q}, J=3.0 \mathrm{~Hz}), 21.2$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v: 3412,3056,2924,2856,1711,1602,1506,1360,1245,1178,1120,1035$, 952, 765, 712. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z} 397.1522[\mathrm{M}+\mathrm{H}]^{+}$, Found 397.1526.

Procedure for the synthesis of derivatives 5 (Scheme S14)

In a glove-box, an oven-dried 25 mL sealed tube equipped with a stirring bar was charged with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($97.7 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), and the tube was removed from the glove-box. Then, the PIDA ($128.8 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv), 3-imino-1isoindolinones ($76.5 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and TFE (3 mL) were added under Ar. The resulting reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 2 h . Then, PIDA ($0.2 \mathrm{mmol}, 1$ equiv) was added and the mixture was stirred at $70^{\circ} \mathrm{C}$ for another 2 h . After that, an additional PIDA ($0.2 \mathrm{mmol}, 1$ equiv) was added (the starting material was completely consumed monitored by TLC after 2 h). The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL})$ and washed with brine (3 $\times 10 \mathrm{~mL}$). The combined organic layers was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to $93: 7$) afford the product $\mathbf{5}$ as a white solid, yield $=59 \%(68.3 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate =91:9): 0.2.

3-((4,4-bis(2,2,2-trifluoroethoxy)cyclohexa-2,5-dien-1-ylidene)amino)-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 5. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06-7.95(\mathrm{~m}$, $1 \mathrm{H}), 7.72-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.66$ (dd, $J=10.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.45$ (dd, $J=10.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24$ (dd, $J=$ $10.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=10.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.80(\mathrm{~m}, 4 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-74.6(\mathrm{~s}),-77.5(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $168.0,160.8,142.1,138.5,136.5,134.2,133.8,132.6,131.1,130.9,129.9,127.6,124.8$, 124.3, $123.8(\mathrm{q}, J=287.9 \mathrm{~Hz}), 123.20(\mathrm{q}, J=278.8 \mathrm{~Hz}), 123.18(\mathrm{q}, J=278.8 \mathrm{~Hz})$, $121.9,93.4,82.7(\mathrm{q}, ~ J=30.3 \mathrm{~Hz}), 60.7(\mathrm{q}, J=36.4 \mathrm{~Hz}), 60.4(\mathrm{q}, J=36.4 \mathrm{~Hz}), 21.1$, one carbon was overlapped. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v: 3417, 2926, 1733, 1599, 1517, 1468, 1350, 1285, 1171, 1006, 970, 820, 722. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~F}_{9} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} \mathrm{m} / \mathrm{z}$ $579.1325[\mathrm{M}+\mathrm{H}]^{+}$, Found 579.1318.

Procedure for the synthesis of derivative 6 (Scheme S15)

An oven-dried 25 mL sealed tube equipped with a stirring bar was charged with 3a ($38.2 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv), $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(42.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 3$ equiv) under Ar. The resulting reaction mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 24 h . After cooling down to room temperature, the volatiles were removed under vacuum. The residue was directly purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 95:5 to 83:17) to afford the product $\mathbf{6}$ as a white solid, yield $=81 \%(24.8 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=75: 25): 0.2$.

3-hydroxy-2-(p-tolyl)-3-(trifluoromethyl)isoindolin-1-one 6. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.24-$ $7.11(\mathrm{~m}, 4 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.4(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5,139.9,138.6,133.1,131.4,131.3,131.1,129.9$, 128.6, 124.1, 123.9, $122.7(\mathrm{q}, J=288.9 \mathrm{~Hz}), 88.9(\mathrm{q}, J=33.3 \mathrm{~Hz}), 21.2$. IR ($\mathrm{KBr}, \mathrm{cm}^{-}$ ${ }^{1}$) v: 3261, 3055, 2927, 1695, 1614, 1516, 1469, 1375, 1259, 1183, 1078, 946, 883, 813, 700. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+} \mathrm{m} / \mathrm{z} 308.0893[\mathrm{M}+\mathrm{H}]^{+}$, Found 308.0896.

Procedure for the synthesis of derivative 10 (Scheme S16) (Trost and

Debien, 2015)

To a solution of Myrtenal ($3.8 \mathrm{~mL}, 25 \mathrm{mmol}, 1$ equiv) in THF (30 mL) was slowly added TBAF (1 M in THF, $12.5 \mathrm{mmol}, 0.5$ equiv) and $\mathrm{TMSCF}_{3}(8.1 \mathrm{~mL}, 55 \mathrm{mmol}, 2.2$ equiv) at $-40{ }^{\circ} \mathrm{C}$ under Ar. After addition completed, the reaction mixture was slowly warmed to room temperature and stirred at that temperature for 20 h . The pale yellow reaction mixture was quenched by the addition of $\mathrm{HCl}(2 \mathrm{M}, 7 \mathrm{~mL})$ and then separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$ and the combined organic layers was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue
was purified by flash column chromatography on silica gel (height 16 cm , width 4.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 97:3) afford the product 7 as a yellow oil, yield $=51 \%(2.80 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right)$: 0.5 .

To a solution of DMP ($1.02 \mathrm{~g}, 2.4 \mathrm{mmol}, 1.2$ equiv) in DCM (3 mL) was added the solution of alcohol $7\left(440.0 \mathrm{mg}, 2 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{DCM}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred at room temperature for 30 min . Then aqueous $\mathrm{NaOH}(0.5$ $\mathrm{M}, 5 \mathrm{~mL}$) was added to quench the reaction and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3$ $\times 40 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether) afford the product 8 as a pale yellow oil, yield $=73 \%(0.32 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.8 .

The compound 9 was synthesized according to procedure A (on a 2 mmol scale, 2 equiv of 4-bromoaniline and $20 \mathrm{~mol} \%$ of p-toluenesulfonic acid monohydrate were used). Compound $\mathbf{1 0}$ was synthesized according procedure G (on a 0.3 mmol scale, o-xylene, $60 \mathrm{~h})$.

N-(4-bromophenyl)-1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-2,2,2-trifluoroethan-1-imine 9 . The product was purified by flash column chromatography on silica gel (height 16 cm , width 2.5 cm , eluent: petroleum ether) as a yellow oil, yield $=50 \%(0.37 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.6. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{t}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.24-2.16$ $(\mathrm{m}, 1 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 0.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-69.8$ (s). ${ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 157.1(\mathrm{q}, J=33.3 \mathrm{~Hz}), 147.2,138.6,133.3,131.8,121.5,119.7(\mathrm{q}, J=280.8$ $\mathrm{Hz}), 118.2,44.3,39.5,37.8,32.2,31.2,25.9,20.7$. IR $\left(\mathrm{KBr}_{\mathrm{cm}}{ }^{-1}\right)$ v: 2930, 1887, 1644, 1476, 1305, 1134, 1007, 943, 887, 827, 731, 521. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~B}_{\mathrm{r}} \mathrm{F}_{3} \mathrm{~N}^{+}$ $m / z 372.0569[\mathrm{M}+\mathrm{H}]^{+}$, Found 372.0580.

10
2-(4-bromophenyl)-5,5-dimethyl-3-(p-tolylamino)-3-(trifluoromethyl)-2,3,4,5,6,7-hexahydro-1H-4,6-methanoisoindol-1-one 10. o-xylene as solvent, 60 h . (height 18 cm, width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: $99: 1$ to $97: 3$) as a white solid, yield $=55 \%(83.4 \mathrm{mg}$, mixture of isomer, ratio $=\mathbf{1}: \mathbf{0} .4) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=91: 9): 0.3 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.27(\mathrm{~m}, 2.80 \mathrm{H})$, $7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2.80 \mathrm{H}), 7.10-7.01(\mathrm{~m}, 2.80 \mathrm{H}), 6.80-6.65(\mathrm{~m}, 2.82 \mathrm{H}), 4.49(\mathrm{~s}$, $1 \mathrm{H}), 4.45(\mathrm{~s}, 0.40 \mathrm{H}), 2.73-2.39(\mathrm{~m}, 5.81 \mathrm{H}), 2.34(\mathrm{~s}, 4.22 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1.34 \mathrm{H})$, $1.40-1.14(\mathrm{~m}, 5.63 \mathrm{H}), 0.92-0.81(\mathrm{~m}, 4.29 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-76.7$, (s , major), -76.9 (s, minor). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major) $\delta 169.2,160.5,141.6$, $138.1,135.2,132.2,131.8,129.9,128.4,122.8$ ($q, J=288.9 \mathrm{~Hz}), 118.9,113.8,81.6$ (q, $J=29.3 \mathrm{~Hz}), 41.1,40.5,40.4,32.1,26.1,21.1,20.7 .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, minor) $\delta 169.2,160.6,141.2,137.8,135.3,132.1,132.0,129.9,128.0,119.7,114.1$, $41.1,40.2,39.6,32.1,26.1,21.4,21.1, \underline{C F}_{3}$ and $\underline{C C F}_{3}$ did not observed. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-}\right.$ $\left.{ }^{1}\right) v: 3331,2927,1702,1596,1502,1387,1344,1258,1164,1063,907,815,731$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z} 505.1097[\mathrm{M}+\mathrm{H}]^{+}$, Found 505.1101.

Procedure for the synthesis of derivative 14 (Scheme S17) (Trost and

Debien, 2015)

To a solution of Perillaldehyde ($4.7 \mathrm{~mL}, 30 \mathrm{mmol}, 1$ equiv) in THF $(60 \mathrm{~mL})$ was slowly added TBAF (1 M in THF, $15 \mathrm{mmol}, 0.5$ equiv) and $\mathrm{TMSCF}_{3}(9.8 \mathrm{~mL}, 66 \mathrm{mmol}, 2.2$ equiv) at $-40^{\circ} \mathrm{C}$ under Ar. After addition completed, the reaction mixture was slowly warmed to room temperature and stirred at that temperature for 20 h . The pale yellow reaction mixture was quenched by the addition of aqueous $\mathrm{HCl}(1 \mathrm{M}, 30 \mathrm{~mL})$ and then separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$ and the combined organic layers was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (height 20 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: $99: 1$ to $95: 5$) afford the product 11 as a yellow oil, yield $=68 \%(4.50 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $\left.=91: 9\right): 0.3$. To a solution of DMP ($5.1 \mathrm{~g}, 12 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{DCM}(25 \mathrm{~mL})$ was added the
solution of alcohol $11\left(2.2 \mathrm{~g}, 10 \mathrm{mmol}\right.$, 1 equiv) in $\mathrm{DCM}(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred at room temperature for 30 min . Then aqueous $\mathrm{NaOH}(0.5$ $\mathrm{M}, 5 \mathrm{~mL}$) was added to quench the reaction and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3$ $\times 40 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether) afford the product 12 as a colorless oil, yield $=81 \%(1.76 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.9 .

The compound $\mathbf{1 3}$ was synthesized according to procedure A (on a 5 mmol scale, 2 equiv of 4-bromoaniline and $20 \% \mathrm{mmol}$ of p-toluenesulfonic acid monohydrate were used). Compound $\mathbf{1 4}$ was synthesized according procedure G (on a 0.3 mmol scale, oxylene, 60 h).

13
N-(4-bromophenyl)-2,2,2-trifluoro-1-(4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)ethan-
1-imine 13. O-xylene as solvent, 60 h . The product was purified by flash column chromatography on silica gel (height 20 cm , width 3.5 cm , eluent: petroleum ether) as an orange oil, yield $=60 \%(1.11 \mathrm{~g}$, mixture of isomer, ratio $=\mathbf{1 : 0 . 1 5}) . \mathrm{R}_{f}$ (petroleum ether): 0.6. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, major), 7.32 ($\mathrm{d}, J=$ $8.8 \mathrm{~Hz}, 0.30 \mathrm{H}$, minor), 6.77 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, major), $6.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 0.30 \mathrm{H}$, minor), $6.00(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1.15 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 2.30-2.16(\mathrm{~m}, 1.16 \mathrm{H}), 2.12-1.82$ (m, 4.30H), 1.69 (s, 3.35H), $1.38-1.19$ (m, 2.56H). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-$ 70.3 (s, minor), - 71.2 (s , major). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major) $\delta 159.5$ (q, $J=$ $33.3 \mathrm{~Hz}), 148.2,146.7,134.5,131.9,129.0,121.4,119.6(\mathrm{q}, J=280.9 \mathrm{~Hz}), 118.5,109.4$, 39.4, 30.4, 26.6, 26.5, 20.6. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, minor) $\delta 151.7,146.3,131.9$, 128.7, 126.8, 122.3, 33.9, 29.7, 23.5, six carbon did not observed. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) \mathrm{v}$: 3080, 2930, 1700, 1646, 1478, 1443, 1323, 1191, 1140, 1067, 1009, 896, 829, 716. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrF}_{3} \mathrm{~N}^{+} m / z 372.0569[\mathrm{M}+\mathrm{H}]^{+}$, Found 372.0570.

14

2-(4-bromophenyl)-6-(prop-1-en-2-yl)-3-(p-tolylamino)-3-(trifluoromethyl)-

$\mathbf{2 , 3}, \mathbf{4}, \mathbf{5}, 6,7$-hexahydro-1H-isoindol-1-one 14. O-xylene as solvent, 60 h . (height 20 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to 95:5) as a white solid, yield $=56 \%(85.0 \mathrm{mg}$, mixture of isomer, ratio $=\mathbf{1 : 0 . 1 8}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=91: 9): 0.3 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.44(\mathrm{~m}, 0.37 \mathrm{H})$, $7.33(\mathrm{dd}, J=8.8,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.07(\mathrm{~m}, 2.73 \mathrm{H}), 7.04-6.88(\mathrm{~m}, 2.34 \mathrm{H}), 6.58(\mathrm{dd}$, $J=12.4,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.90-4.67(\mathrm{~m}, 2.19 \mathrm{H}), 4.51(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.02$ (m, 0.18H), 2.73-2.60(m, 1H), 2.39-2.23(m, 6.12H), $2.07-1.92$ (m, 1.24H), 1.82 $-1.74(\mathrm{~m}, 3.33 \mathrm{H}), 1.39-1.28(\mathrm{~m}, 2.48 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-76.7$ (s, major), -76.8 (s, major), -77.6 (s, minor). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.3,169.2$, $148.4,147.9,147.7,146.8,141.5,141.4,139.4,138.8,138.3,138.3,132.5,129.9,129.9$, $128.6,128.5,123.0(\mathrm{q}, J=289.9 \mathrm{~Hz}), 117.6,117.5,110.2,110.0,81.6(\mathrm{q}, J=29.3 \mathrm{~Hz})$, $81.5(\mathrm{q}, J=29.3 \mathrm{~Hz}), 40.7,39.2,27.3,26.4,26.3,25.5,21.1,20.8$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v$: 3343, 3048, 2926, 1697, 1598, 1499, 1397, 1358, 1263, 1162, 1077, 889, 816, 733. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{m} / \mathrm{z} 505.1097[\mathrm{M}+\mathrm{H}]^{+}$, Found 505.1100

Procedure for the synthesis of derivatives 22 and 23 (Scheme S18)

(Furuya et al., 2009; Thompson et al., 2005; Hu et al., 2016)

To a solution of Tocopherol ($4.5 \mathrm{~g}, 11.2 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(58 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added triethylamine ($3.9 \mathrm{~mL}, 28 \mathrm{mmol}, 2.5$ equiv) and trifluoromethanesulfonic anhydride ($2.5 \mathrm{~mL}, 14.6 \mathrm{mmol}, 1.3$ equiv). The resulting reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min before the addition of saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. Then reaction mixture was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 50 mL). The combined organic layer was washed with brine (80 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash chromatography on silica gel to afford the product 15 , yield $=85 \%(5.1 \mathrm{~g}) . \mathrm{R}_{f}$ (petroleum ether): 0.5 .

The aryl triflate 15 ($0.64 \mathrm{~g}, 1.2 \mathrm{mmol}$, 1 equiv) and PdCl_{2} (dppf) ($88.0 \mathrm{mg}, 0.12 \mathrm{mmol}$, $10 \mathrm{~mol} \%$) were dissolved in anhydrous dioxane (6 mL), followed by the addition of
$\mathrm{Et}_{3} \mathrm{~N}$ ($0.5 \mathrm{~mL}, 3.6 \mathrm{mmol}, 3$ equiv) and pinacolborane ($0.4 \mathrm{~mL}, 2.4 \mathrm{mmol}, 2$ equiv). The resulting reaction was heated at $100{ }^{\circ} \mathrm{C}$ for 4 h until the disappearance of the starting material. Then the reaction mixture was quenched with water $(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The residue was purified by flash chromatography on silica gel (height 16 cm , width 2.5 cm , eluent: petroleum ether) to afford the product 16 as a pale yellow oil, yield $=84 \%(514.0 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether): 0.4.

An oven-dried 25 mL sealed tube equipped with a stirring bar was charged with CuBr_{2} ($134.0 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv), $\mathbf{1 6}$ ($102.5 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and dry methanol (6 mL) under Ar. The resulting reaction mixture was heated at $90^{\circ} \mathrm{C}$ under Ar for 72 h . Upon completion, the reaction mixture was cooled down to room temperature and concentrated under vacuum. The residue was purified by a short column chromatography (100% hexanes) to afford the desired product 17 as a colorless oil, yield $=72 \%$ (67.3 mg). R_{f} (petroleum ether): 0.9 .

To a solution of compound $\mathbf{1 7}$ ($931.0 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv) in dry THF (30 mL) was slowly added n - BuLi (2.5 M in hexane, $1.6 \mathrm{~mL}, 2$ equiv) at $-78^{\circ} \mathrm{C}$. The mixture was then stirred for 1 hour at that temperature. After that, dry dimethylformamide $(0.77 \mathrm{~mL}$, $10 \mathrm{mmol}, 5$ equiv) was added into the reaction mixture at $-78^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for further 12 h , which was quenched by the addition of water (40 mL). The reaction mixture was extracted with DCM ($3 \times 40 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated to give the crude product $\mathbf{1 8}$ which was used directly for the synthesis of $\mathbf{1 9}$ according to procedure D , overall yield $=56 \%(541.2 \mathrm{mg})$.

The compound $\mathbf{2 0}$ and $\mathbf{2 1}$ was synthesized according procedure D. $\mathbf{2 2}$ and $\mathbf{2 3}$ was synthesized according procedure G.

20

1-((R)-2,8-dimethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl)-2,2,2-

trifluoroethan-1-one 20. Starting from 19, on a 0.91 mmol scale, The product was purified by flash column chromatography on silica gel (height 18 cm , width 2.5 cm , eluent: petroleum ether) as a pale yellow oil, yield $=53 \%(230.8 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether): 0.5. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.89-2.71$ (m, $2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.21(\mathrm{~m}, 16 \mathrm{H}), 1.17$ $-1.02(\mathrm{~m}, 6 \mathrm{H}), 0.92-0.78(\mathrm{~m}, 12 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-71.0(\mathrm{~s}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 179.1(\mathrm{q}, J=33.3 \mathrm{~Hz}), 159.2,130.6,127.3,121.0,120.9$,
$117.1(\mathrm{q}, ~ J=291.9 \mathrm{~Hz}), 78.4,40.3,39.4,37.4,37.4,37.3,37.3,32.8,32.6,30.7,28.0$, $24.8,24.4,24.3,22.7,22.6,22.1,20.9,19.7,19.6,16.1$. IR (KBr, $\left.\mathrm{cm}^{-1}\right) \mathrm{v}: 3450,2931$, 2857, 1703, 1598, 1473, 1352, 1280, 1196, 1142, 1015, 961, 852, 769, 712. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{BrF}_{3} \mathrm{O}_{2}{ }^{+} \mathrm{m} / \mathrm{z} 483.3444[\mathrm{M}+\mathrm{H}]^{+}$, Found 483.3458.

21
N-(4-bromophenyl)-1-(2,8-dimethyl-2-(4,8,12-trimethyltridecyl)chroman-6-yl)-2,2,2-trifluoroethan-1-imine 21 . On a 1.7 mmol scale, 2 equiv of 4-bromoaniline and $20 \mathrm{~mol} \%$ of p-toluenesulfonic acid monohydrate were used. The product was purified by flash column chromatography on silica gel (height 25 cm , width 2.5 cm , eluent: petroleum ether $+5 \% \mathrm{Et}_{3} \mathrm{~N}$) as a yellow oil, yield $=29 \%(316.0 \mathrm{mg}) . \mathrm{R}_{f}$ (petroleum ether): 0.4. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34$ (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.79(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.67$ (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.69-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 2 \mathrm{H})$, $1.56-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.21(\mathrm{~m}, 12 \mathrm{H}), 1.51-1.05(\mathrm{~m}, 6 \mathrm{H})$, $0.88-0.83(\mathrm{~m}, 12 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-69.7$ (s). ${ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 157.4(\mathrm{q}, J=33.3 \mathrm{~Hz}), 154.3,146.9,131.9,128.9,128.1,126.7,122.3,120.6$, 120.0 (q, $J=280.8 \mathrm{~Hz}$), 119.4, 118.1, 40.3, 39.4, 37.4, 37.4, 37.4, 37.3, 32.8, 32.7, 30.7, $28.0,24.8,24.4,24.2,22.7,22.6,22.1,20.9,19.7,19.6,16.0$. IR (KBr, $\left.\mathrm{cm}^{-1}\right) ~ v: 3435$, 2931, 1703, 1600, 1475, 1350, 1278, 1190, 1141, 1018, 962, 830. HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{50} \mathrm{BrF}_{3} \mathrm{NO}^{+} \mathrm{m} / \mathrm{z} 636.3022[\mathrm{M}+\mathrm{H}]^{+}$, Found 636.3029. Contaminated with trace inseparable impurity.

22
6-((4-bromophenyl)amino)-7-(3-methoxyphenyl)-2,9-dimethyl-6-(trifluoromethyl)-2-(4,8,12-trimethyltridecyl)-3,4,6,7-tetrahydropyrano[2,3-
f]isoindol-8(2H)-one 22. On a 0.1 mmol scale, o-xylene, $140^{\circ} \mathrm{C}, 60 \mathrm{~h}$. The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to $95: 5$) as a colorless oil, yield $=$
$15 \%(12.0 \mathrm{mg}$, mixture of isomer, ratio $=\mathbf{1 : 1}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=$ 91:9): 0.2. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 3 \mathrm{H})$, $6.90(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.79(\mathrm{~m}$, $2 \mathrm{H}), 1.69-1.59(\mathrm{t}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.38-1.01(\mathrm{~m}, 22 \mathrm{H}), 0.92-0.84(\mathrm{~m}, 12 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.87$ (s), 77.88 (s). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$,) δ 168.4, 160.1, 154.7, 141.2, 135.4, 132.41, 132.37, 132.2, 129.8, 128.3, 127.4, 123.8, $123.4(\mathrm{q}, J=288.9 \mathrm{~Hz}), 121.4,120.81,120.76,118.0,114.8,114.4,112.8,79.6(\mathrm{q}, J=$ 29.3 Hz), $55.1,40.5,39.8,39.4,37.51,37.46,37.45,37.40,37.39,37.30,37.28,32.8$, $32.7,30.1,30.0,29.7,28.0,24.8,24.5,24.4,23.8,22.7,22.6,21.0,20.9,19.74,19.67$, 18.6, 18.5, 17.22, 17.21. IR (KBr, cm ${ }^{-1}$) v: 3450, 2930, 1634, 1488, 1462, 1367, 1258, 1171, 1074, 812, 734. HRMS (ESI) calcd for $\mathrm{C}_{43} \mathrm{H}_{57} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} m / z 785.3499[\mathrm{M}+\mathrm{H}]^{+}$, Found 785.3495.

23
3-((4-bromophenyl)amino)-2-(3-methoxyphenyl)-5,7-dimethyl-3-(trifluoromethyl)-7-(4,8,12-trimethyltridecyl)-2,3,8,9-tetrahydropyrano[3,2-
e]isoindol-1(7H)-one 23. On a 0.1 mmol scale, o-xylene, $140{ }^{\circ} \mathrm{C}, 60 \mathrm{~h}$. The product was purified by flash column chromatography on silica gel (height 16 cm , width 1.5 cm , eluent: petroleum ether/ethyl acetate, gradient: 99:1 to $95: 5$) as a colorless oil, yield $=42 \%(33.0 \mathrm{mg}$, mixture of isomer, ratio $=\mathbf{1 : 1}) . \mathrm{R}_{f}$ (petroleum ether/ethyl acetate $=$ 91:9): 0.2. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.09(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.23$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.88-$ $1.73(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.49(\mathrm{~m}, 7 \mathrm{H}), 1.40-1.04(\mathrm{~m}, 27 \mathrm{H}), 0.88-0.84(\mathrm{~m}, 12 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.96(\mathrm{~s}),-77.98(\mathrm{~s}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $168.4,160.1,154.78,154.76,141.2,135.4,132.2,129.8,127.92,127.86,127.8,127.6$, $125.7,125.6,123.4(\mathrm{q}, J=289.9 \mathrm{~Hz}), 122.6,121.5,117.9,114.8,114.4,112.7,79.2(\mathrm{q}$, $J=30.3 \mathrm{~Hz}), 55.1,40.7,40.0,39.4,37.50,37.48,37.43,37.41,37.28,37.27,32.8,32.7$, 29.7, 28.0, 24.8, 24.45, 24.43, 23.9, 23.1, 22.7, 22.6, 21.04, 20.97, 19.7, 19.6. IR (KBr, $\left.\mathrm{cm}^{-1}\right) v: 3448,2927,1704,1636,1494,1457,1357,1258,1169,1085,733$. HRMS (ESI) calcd for $\mathrm{C}_{43} \mathrm{H}_{57} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} \mathrm{m} / \mathrm{z} 785.3499[\mathrm{M}+\mathrm{H}]^{+}$, Found 785.3508.

General procedure for the synthesis of polymers 24a-d (Scheme S19)

(Sueki et al., 2013)

An oven-dried 25 mL schlenk tube equipped with a stirring bar was transferred into a glovebox (through standard glovebox operation), where $\operatorname{Re}_{2}(\mathrm{CO})_{10}(26.1 \mathrm{mg}, 0.04$ mmol, 0.1 equiv) was added. The tube was then removed from the glovebox and placed under Ar. Then the ketimine 1ai-1al ($0.4 \mathrm{mmol}, 1$ equiv), isocyanate $\mathbf{2 v}$ ($64.1 \mathrm{mg}, 0.4$ mmol, 1 equiv), and o-xylene (2 mL) were added subsequently to the test tube under Ar. The resulting reaction mixture was then stirred at $150{ }^{\circ} \mathrm{C}$ for 72 h . After reaction completed, the mixture was cooled down to room temperature and concentrated under vacuum. The residue was washed with petroleum ether/ethyl acetate ($50: 1,100 \mathrm{~mL}$), filtered and dried under vacuum to give the crude polyamides as black solid. Next, 100 mg of each crude polyamide was further purified by dialysis against $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ using a benzoylated cellulose membrane (MWCO $500 \mathrm{~g} / \mathrm{mol}$) for 2 days. Finally, the solvent was removed under reduced pressure and the obtained product was dried in vacuum for 24 h .

24a, black solid, yield $=45 \%(64.0 \mathrm{mg}) . \mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ v: $3452,2930,1911,1638$, 1513, 1349, 1179, 645.
24b, black solid, yield $=34 \%(57.0 \mathrm{mg}) . \mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ v: 3425, 2926, 2856, 2015, 1902, 1719, 1512, 1467, 1349, 1291, 1181, 1050, 829, 730.
$\mathbf{2 4 c}$, black solid, yield $=49 \%(66.0 \mathrm{mg})$. $\mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ v: 3428, 2926, 2858, 2024, 1907, 1720, 1619, 1513, 1344, 1260, 1179, 970, 826, 732
24d, black solid, yield $=32 \%(55.0 \mathrm{mg}) . \mathbf{I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ v: $3427,2925,2854,2026$, 1909, 1723, 1621, 1515, 1345, 1260, 1177, 970, 825, 728.

References

Elliott, D.C., Marti, A., Mauleón, P., Pfaltz, A. (2019). H2 Activation by Non-Transition-Metal Systems: Hydrogenation of Aldimines and Ketimines with $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$. Chem. Eur. J. 25, 1918-1922.

Dai, X., Cahard, D. (2014). Enantioselective Synthesis of α-Trifluoromethyl Arylmethylamines by Ruthenium-Catalyzed Transfer Hydrogenation Reaction. Adv. Synth. Catal. 356, 1317-1328.

Strømgaard, K., Saito, D. R., Shindou, H., Ishii, S., Shimizu, T., Nakanishi, K. (2002). Ginkgolide Derivatives for Photolabeling Studies: Preparation and Pharmacological Evaluation. J. Med. Chem. 45, 4038-4046.

Fujita, T., Takazawa, M., Sugiyama, K., Suzuki, N., Ichikawa, J. (2017). Domino C-F Bond Activation of the CF_{3} Group: Synthesis of Fluorinated Dibenzo $[a, c][7]$ annulenes from 2-(Trifluoromethyl)-1-alkenes and 2,2'-Diceriobiaryls. Org. Lett. 19, 588-591.

Trost, B.M., Debien, L. (2015). Palladium-Catalyzed Trimethylenemethane Cycloaddition of Olefins Activated by the σ-Electron-Withdrawing Trifluoromethyl Group. J. Am. Chem. Soc. 137, 11606-1609.

Chen, L.S., Chen, G.J., Tamborski, C. (1983). Regiospecific Synthesis of Aromatic Compounds via Organometallic Intermediates. J. Organomet. Chem. 251, 139-148.

Abid, M., Savolainen, M., Landge, S., Hu, J., Prakash, G.K.S., Olah, G.A., Török, B. (2007). Synthesis of trifluoromethyl-imines by solid acid/superacid catalyzed microwave assisted approach. J. Fluorine Chem. 128, 587-594.

Henseler, A., Kato, M., Mori, K., Akiyama, T. (2011). Chiral Phosphoric Acid Catalyzed Transfer Hydrogenation: Facile Synthetic Access to Highly Optically Active Trifluoromethylated Amines. Angew. Chem. Int. Ed. 50, 8180-8183.

Li, C.-L., Chen, M.-W., Zhang, X.-G. (2010). Synthesis of N-aryl trifluoromethylarylketoimines by palladium-catalyzed Suzuki coupling reaction of Naryltrifluoroacetimidoyl chlorides with aryl boronic acids. J. Fluorine Chem. 131, 856860.

Kiselyov, A.S. (1999). Unexpected behavior of imines derived from trifluoromethylaryl ketones under basic conditions: Convenient synthesis of 2-arylbenzimidazoles and 2arylbenzoxazoles. Tetrahedron Lett. 40, 4119-4122.

Patterson, S.E., Janda, L., Strekowski, L. (1992). A new synthesis of N-substituted-2alkyl(or aryl)quinazolin-4-amines by amide base-mediated cyclization of carboximidamides derived from 2-(trifluoromethyl)benzenamine. J. Heterocyclic Chem. 29, 703-706.

Wang, W.-Y., Feng, X., Hu, B.-L., Deng, C.-L., Zhang, X.-G. (2013). Synthesis of 6(Trifluoromethyl)phenanthridines via Palladium-Catalyzed Tandem Suzuki/C-H Arylation Reactions. J. Org. Chem. 78, 6025-6030.

Comins, D.L., Hiebel, A.-C. (2005). Asymmetric synthesis of 3,3-disubstituted isoindolinones. Tetrahedron Lett. 46, 5639-5642.

Furuya, T., Strom, A. E., Ritter, T. (2009). Silver-Mediated Fluorination of Functionalized Aryl Stannanes. J. Am. Chem. Soc. 131, 1662-1663.

Thompson, A.L.S., Kabalka, G.W., Akula, M.R., Huffman, J.W. (2005). The Conversion of Phenols to the Corresponding Aryl Halides Under Mild Conditions. Synthesis. 4, 547-550.

Hu, P., Lee, S., Park, K.H., Das, S., Herng, T.S., Gonçalves, T.P., Huang, K.W., Ding, J., Kim, D., Wu, J. (2016). Octazethrene and Its Isomer with Different Diradical Characters and Chemical Reactivity: The Role of the Bridge Structure. J. Org. Chem.

81, 2911-2919.
Sueki, S., Guo, Y., Kanai, M., Kuninobu, Y. (2013). Rhenium-Catalyzed Synthesis of 3-Imino-1-isoindolinones by C-H Bond Activation: Application to the Synthesis of Polyimide Derivatives. Angew. Chem. Int. Ed. 52, 11879-11883.

[^0]: Zhang et al., iScience 23, 101705
 November 20, 2020 © 2020
 The Author(s).
 https://doi.org/10.1016/
 j.isci.2020.101705

[^1]:

