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Abstract

Visual lexical decision is a classical paradigm in psycholinguistics, and numerous studies have assessed the so-called
‘‘lexicality effect’’ (i.e., better performance with lexical than non-lexical stimuli). Far less is known about the dynamics of
choice, because many studies measured overall reaction times, which are not informative about underlying processes. To
unfold visual lexical decision in (over) time, we measured participants’ hand movements toward one of two item
alternatives by recording the streaming x,y coordinates of the computer mouse. Participants categorized four kinds of
stimuli as ‘‘lexical’’ or ‘‘non-lexical:’’ high and low frequency words, pseudowords, and letter strings. Spatial attraction
toward the opposite category was present for low frequency words and pseudowords. Increasing the ambiguity of the
stimuli led to greater movement complexity and trajectory attraction to competitors, whereas no such effect was present
for high frequency words and letter strings. Results fit well with dynamic models of perceptual decision-making, which
describe the process as a competition between alternatives guided by the continuous accumulation of evidence. More
broadly, our results point to a key role of statistical decision theory in studying linguistic processing in terms of dynamic and
non-modular mechanisms.
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Introduction

The lexicality effect (i.e. faster and more accurate responses in

processing words than nonwords) has been assessed in numerous

psycholinguistic studies. In reading aloud Italian stimuli words are

named faster than nonwords, regardless of their frequency (high or

low) or list composition (pure vs. mixed blocks) [1], or the readers’

expertise [2]. In lexical decision tasks, when participants are

required to briefly categorize items presented as words or

nonwords, the Lexicality effect should be attenuated if the

comparison is made between extremely lexical items (i.e., high

frequency words) and extremely nonlexical items (i.e., strings of

consonants), because the discrimination between stimuli does not

require in-depth analysis but can be based on the visual processing

of items [3].

Although stimuli are ultimately categorized as either lexical or

nonlexical, the underlying lexical decision is not necessarily a

discrete process. In fact, we argue that it would be better described

in terms of a dynamic competition between candidate alternatives

(in our case, lexicality vs. non-lexicality of the stimulus).

This links lexical decision to state-of-the-art models of decision-

making and statistical decision theory. These models describe the

choice between two possible stimulus categories as a dynamic

process in which partially active alternatives are maintained in

parallel and compete over time through the noisy accumulation of

relevant information up to a ‘‘decision bound’’ [4–7]. Drift-

diffusion models [6] describe choice as the continuous accumu-

lation of evidence in favor of the choice alternatives, as encoded in

decision variables. In our case, decision variables could included

orthographic and lexical evidence. Race models [7] are closely

related to drift-diffusion models but argue that evidence is

maintained separately for the competing hypotheses. Similarly,

Spivey [8] describes choices in terms of a continuous, dynamic

competition between attractors (in this case, the two choice

alternatives); these attractors ‘‘push’’ and ‘‘pull’’ mouse trajectories

in a putative dynamic mental space. An alternative to this (bottom-

up) evidence accumulation approach is the predictive coding view in

which choice is essentially the minimization of the discrepancies

between top-down predictions (e.g., lexical predictions) and

bottom-up (perceptual) stimuli (see e.g., [9–12]). According to this

model, the brain maintains a generative model of the sensorium,

which encodes (probabilistic) hypotheses concerning the identity of

observed stimuli (in this case, words or nonwords) and uses it to

continuously generate (lexical) predictions. These predictions are

propagated top-down in the processing hierarchy. By matching

them against the actually observed stimuli, a prediction error

signal is generated, which is propagated bottom-up and serves to

revise the hypotheses at the highest level of the hierarchy. The

selected hypothesis is the one that (after a sufficient number of

iterations) minimizes a certain measure (in Friston’s account

[10,11], free energy, or with some approximation, prediction

error).

Although all of these models are different, they describe

decision-making as a dynamic process in which alternatives

compete over time and conflict is solved (in a statistically sound

manner) by accumulating evidence in favor of (or against) the

alternatives. This dynamic view of decision-making is common to

many models of linguistic processing; for example, most models of

spoken word recognition emphasize competition between partially
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active lexical representations [13–17]. Here we applied the same

logic to lexical decisions and emphasized two important factors

that are less studied in these frameworks. First, although most

models of dynamic decision-making assume that decisions are

made before the action onset (e.g., before the subject presses a

button), here we argue that this is not the case and that the

dynamic competition continues as the subject responds, and can

be revised at later stages (In fact, this is why it can be studied by

measuring action kinematics during the response performance; see

the discussion). According to Spivey et al. [18], the continuous

merging of information necessary to make a lexical decision is

reflected in the continuous execution of motor output, ‘‘consistent

with a nonstop cascaded sharing of information among percep-

tion, cognition and action’’. Second, although most models assume

that the source of dynamicity of choice is in the nature of the

stimulus (i.e., the fact that spoken words unfold over time), in this

study we focus on internal sources of dynamicity, which depend on

the way evidence is considered and integrated during lexical

decision.

To understand how this is possible, two considerations are in

order. First, it is important to consider how ‘‘decision variables’’

are selected, that is, what are the relevant dimensions along which

evidence is accumulated for or against the lexicality of a stimulus.

The psycholinguistic literature suggests that many sources of

information, that is, visual, orthographic, phonological, and

semantic, are all potentially relevant to the choice [15]. A second

important issue is how (perceptual) inference is resolved or how a

certain piece of evidence (e.g. the fact that the stimulus includes a

certain bigram) is counted as evidence in favor of one of the two

alternatives (the stimulus being is lexical vs. non-lexical). The

psycholinguistic literature suggests that perceptual processing of

linguistic stimuli is a stochastic process and requires access to (and

comparison with) stored memory representations (represented as

trace vectors of feature values in Shiffrin and Steyvers’ [17] REM

model or maintained in the reciprocal connections of cortical

hierarchies in Price and Devlin’s [19] interactive account). In the

context of a lexical choice, the successful ‘‘matching’’ of stimulus

features with memory representations (potentially many kinds,

e.g., visual, orthographic, phonological, and semantic) can be

considered evidence of the lexicality of the stimulus.

In principle, the perceptual-memory process described above

could provide the (semi) continuous in-flow of evidence required

for the dynamic models of decision-making to work. One

complication, however, is that this process is non-stationary, and

evidence in favor of each of the alternatives can be stronger or

weaker at different intervals (see Tsetsos et al. [20] for a recent

discussion on non-stationarity in dynamic models of decision-

making). There are two reasons for this: first, perceptual inference

(and memory retrieval) of different kinds of information, for

example, visual vs. semantic, could require more or less time and

therefore evidence would be collected at different speeds for these

elements; second, consistent with several models of lexical

processing, we assume that the strength of the memory trace

significantly modulates the process because it is quicker for more

familiar stimuli (e.g., high frequency words) than less familiar

stimuli (e.g., low frequency words).

If one considers jointly the importance of different decision

variables and their non-stationarity, it emerges that lexical decision

is a multifaceted decision-making process in which the initial

choice can be revised when novel information (e.g., semantic

information) becomes available. We hypothesized that it consists of

a dynamic process of accumulation (and comparison) of evidence

for or against the lexicality of stimuli. Furthermore, we

hypothesized that the lexicality dimension is not an all-or-nothing

characteristic of stimuli. At least in the context of lexical decisions,

linguistic and pseudo-linguistic stimuli could be ordered along a

lexicality dimension or a ‘‘lexical dimension line’’ (analogously

with the ‘‘number line’’ [21]), which functions as a continuum

between highly lexical items (i.e. words with high frequency

values), weak lexical items (i.e. words with low frequency values),

weak nonlexical items (i.e. legal pseudowords) and highly

nonlexical items (i.e., strings of letters).

If our hypotheses are correct, the lexicality dimension of stimuli

(words and pseudo-words) should affect the unfolding of the lexical

decision process in time. Continuous measures of processing are

more informative about the dynamics of choice than reaction time

experiments. Thus, to test our hypotheses we measured partici-

pants’ kinematics (i.e., mouse movements) during a lexical decision

task involving the four kinds of stimuli described. In our

experimental set-up, participants performed the lexical decision

task by moving the mouse to indicate their response. Using the

MouseTracker apparatus [22], we tracked continuous hand

movement responses during a visual-lexical decision task to

observe the graded effects of competing items attracting the

trajectory of the mouse also during trials in which the

categorization was correctly executed. This technique has been

successfully adopted in psycholinguistic studies, and complements

other techniques such as the measurement of reaction times and

saccadic eye movements. As it tracks continuous reaching

movements, the technique allows studying the dynamics of choice

between multiple competing hypotheses during response and can

reveal graded processing and uncertainty throughout the response.

For instance, using this technique Spivey et al. [9] reported the

partial activation of multiple lexical representations cascading to

later stages of processing during spoken word recognition. In this

study, we aimed to further corroborate the existence of this

dynamicity in language processes by demonstrating that the

lexicality of stimuli modulates hand movements in a visual lexical

decision task.

Specifically, in this study we expected no interference from

competitors in the processing of high frequency words and letters

strings. Therefore, hand movements/mouse trajectories should not

be pulled toward the opposite category and response times should

be fast and accurate. In the case of low frequency words, the mouse

trajectory might be pulled to the nonlexical item category due to

competition; in fact, responses might be slower than words and

letter strings but faster than pseudowords, reflecting the

advantage of (weak) lexical representations. There might be

more errors than high frequency words and strings of letters. For

pseudoword trajectories, there should be a relevant attraction to the

lexical category, with an effect on both reaction time and

accuracy rate (i.e., slower response and more errors than to all

other stimuli).

One advantage of adopting the MouseTracker apparatus is that

it allows gathering several measures of participants’ responses not

restricted to overall timing and accuracy of the response. Measures

such as curvature areas, switches of movement direction or

movement complexity might be relevant in clarifying the dynamics

of the lexical decision/revision processes underlying the more

ambiguous stimuli (e.g., Pseudowords or Low Frequency words). It

might be possible to track other differences by analyzing when the

participants initiate their hand movements (i.e. Initiation Time,

which measures the time from when the mouse becomes active

and the participants first move it) and whether movement

direction was ever drastically modified along the x-axes (i.e.,

Maximum Deviation time). Another measure, the Area Under the

Curve of a trajectory (AUC), is calculated as the geometric area

between the actual trajectory and the idealized trajectory (straight
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line from the start to the response button). If response alternatives

simultaneously attract participants’ mouse trajectories (relative to

only one), this might manifest as less smooth, more complex

trajectories. Fluctuations in the vacillation of the hands along the

horizontal axes are indexed by measuring x-flips, which is the

number of reversed directions along the horizontal axis. However,

these measures could reflect very different processes. Difference in

Initiation Times might reflect some impulsive behavior in

responding, which might be driven by activation of the lexical

representation. And the x-flip might pertain more to a revision

stage of the decision process, when top-down phonological/

semantics representations allow revising and correcting the

decision.

Methods

Ethics Statement
The procedure was approved by the Institute of Cognitive

Sciences and Technologies of the National Research Council,

ISTC-CNR of Rome. Informed consent was obtained from all

participants.

Participants
The study included 22 highly educated (university students or

young researchers) native speakers of Italian, whose ages ranged

from 20 to 35 years. All were right-handed with normal or

corrected to normal vision. )

Materials and stimuli
Experimental stimuli consisted of a list of 96 lexical and non-

lexical items. The lexical items were 48 singular Italian nouns

taken from Barca, Burani and Arduino’s [23] database. All were

five letters long, morphologically simple (i.e. neither derived nor

compounds) and unambiguous as to grammatical category and

meaning. Written frequency was manipulated: high frequency

words had a mean value of 536.9 (ranging from 151 to 1370) and

low frequency words had a mean value of 6.9 (ranging from 2 to

11). Written frequency it’s a measure of ‘‘adult written word

frequency’’ taken from a frequency count based on a written

corpus that comprises 3.798.275 lexical occurrences (CoLFIS;

http://www.istc.cnr.it/material/database/colfis/index_eng.

shtml). All but two words were regularly stressed on the

penultimate syllable. The two exceptions were stressed on the

antepenultimate syllable: ‘‘EPOCA’’ (/epoch/) a high frequency

word, and ‘‘ELICA’’ (/propeller/), a low frequency word.

Stimuli also varied for rule contextuality. Therefore, half of the

list included non-contextual graphemes (‘‘LATTE’’, /milk/, made

up of letters with a one-to-one mapping between grapheme and

phoneme) and half of contextual graphemes (‘‘CERVO’’, /deer/,

made up of letters such as /c/ or /g/ whose pronunciation

depends on the letters that follow them) (see [24,25]). Table 1

visualizes the psycholinguistic characteristics of the stimuli).

High frequency words tend to be acquired earlier (p,.05) and

are more familiar (p,.005) than low frequency words, but were

similarly imageable nouns, with small number of orthographically

similar words, and made up of similarly frequent bigrams (all

p = ns.). Non-lexical items included 24 pseudowords and 24 strings

of letters. Pseudowords were created by changing two or more

letters of real low-frequency words (not included in the list), so that

they were pronounceable and orthographically similar to the

lexical stimuli. They varied for grapheme-phoneme contextuality,

so there were equal numbers of pseudowords such as ‘‘GHEBO’’

and ‘‘NUPIA’’.

Letters strings were created by randomly assembling the letters

of the Italian alphabet (thus, the letters ‘‘w’’ and ‘‘y’’ were not

used). To improve stimulus variation in the experimental list, half

of the stimuli were strings of consonants (‘‘BTFPR’’) and half were

strings of vowels (‘‘IEIOU’’).

Thus, the experimental stimuli could be arranged along a

‘‘lexicality dimension line’’, ranging from highly lexical items with

reach lexical representations to one extreme. At the opposite pole

were strings of letters that had no representations in the lexicon

and could not be assembled into orthographic/phonological

sequences, and did not resemble any lexical items. More

ambiguous items, such as low frequency words and pseudowords,

which we expected to be attracted to their relative competing

category, were placed in between.

Procedure
To begin each trial, participants clicked on the /START/

button located at the bottom-center of the PC screen. Then a

fixation cross appeared at the center of the screen, which was

replaced by an experimental stimulus after 300 ms. The stimuli

remained on the screen for 500 ms. Participants had to respond

within 2000 ms, otherwise a /TIME OUT/ message appeared.

Stimuli were presented in ARIAL font, upper case black print on a

white background. The use of upper case letters allowed

controlling for variation in visual features of letters and words,

ensuring that letters in the stimuli are always equally spaced and

stimuli have the same physical length. Participants were instructed

to use the mouse to move the cursor to the appropriate response

(i.e., top-left button for lexical stimuli, top-right button for non

lexical stimuli) and to click it to indicate their response. The

correspondence between stimulus type and button was varied

across participants.

Categorization errors and reaction times (i.e. from when

participants pressed /START/ until they reached and pressed

the response button) were recorded automatically. In the case of

errors, a feedback message (red cross) appeared after the

response.

While the participants responded, the x and y coordinates of

the mouse trajectories were recorded (sampling rate of

approximately 70 Hz) using MouseTracker. This package was

used to record, process, and analyze mouse movements [21].

Before the experimental data were acquired, the participants

performed a practice session of 12 items (6 lexical stimuli and 6

non lexical stimuli) to become familiar with the procedure. The

96 experimental stimuli were presented in two blocks of 48

items each. The order of stimuli within blocks and the order of

block presentation were randomized. Half of the participants

categorized lexical stimuli using the left button and nonlexical

stimuli on using the right button, and the other half did the

opposite.

Table 1. Psycholinguistic characteristics of the word stimuli,
mean values and standard deviation (in parentheses).

AoA Fam Ima OrtNeigh BigrFreq

High Frequency 2.83 (1.13) 6.62 (0.42) 5.06 (1.43) 1.88 (1.70) 10.84 (0.41)

Low Frequency 3.78 (0.94) 5.62 (0.84) 5.13 (0.90) 1.96 (1.53) 10.49 (0.63)

Legend: AoA = Age of Acquisition; Fam = Familiarity; Ima = Imageability;
OrtNeigh = Orthographic Neighbors; BigrFreq = Bigram Frequency.
doi:10.1371/journal.pone.0035932.t001
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Results

Data Processing
Several steps (adapted from previous studies that used

MouseTracker software [22]) were performed to allow comparison

between trajectories. First, trajectories were rescaled into a

standard coordinate space. The top-left corner of the screen

corresponded to ‘‘21, 1.5’’ and the bottom-right corner to ‘‘1, 0’’.

In our two-choice design, this left the start location of the mouse

(the bottom-center) with coordinates ‘‘0, 0’’. Thus, this standard

space represented a 261.5 rectangle, which retains the aspect ratio

of most computer screens. Then the duration of the trajectory

movements were normalized by re-sampling the time vector into

101 time-steps using linear interpolation to allow averaging across

multiple trials.

Responses exceeding the 2000 ms deadline, which accounted

for 5.65% of the total data, were discarded from the analysis, as

were incorrect responses (i.e. when the subject selected the

inappropriate stimulus category), which accounted for 3.2% of

the total data. Thus, a total of 9% of the responses were discarded

from subsequent analysis of the reaction times parameter and

trajectories.

We applied Linear Mixed-Effects Modelling (LMMs) to assess

the impact of Lexicality on the response variables. LMMs allows

estimating the magnitude of variation deriving from the pool of

subjects and items and overcomes the limitation of conducting

independent F1 and F2 analyses [26,27]. Subjects and Items were

considered Random-effects factors and Stimulus category, a Fixed-

effects factor. As the Stimulus category has four levels (i.e., High

and Low Frequency words, Pseudowords and Letters Strings),

High Frequency words, which are the stimuli with the richest

lexical representations, were considered as the ‘‘default’’ level for

comparison.

Separate models were run for the different dependent variables

(i.e., accuracy rate, initiation time, etc.). Analyses were run with

the lm4 package for R [28], where p values were estimated using

the Markov chain Monte Carlo simulations [26].

Accuracy, Initiation Time and Lexical Decision time
Mean accuracy rates, initiation times (when mouse movements

started) and total response time were computed for each

participant by averaging trials across each condition (see Figure 1).

Inspection of the bar plots indicates that when participants

initiated their movement response there was no difference between

stimuli. Likewise, there was not much difference in total reaction

time. Pseudowords were the stimulus category with the higher

number of errors and with similar proportions of errors and ‘‘time

out’’ responses. Participants were more accurate in the other

stimulus category (particularly on highly frequent words and letter

strings).

In the mixed-effects models of Initiation Time, no predictors were

significant, indicating that the lexicality variation did not

significantly modulate the participants’ timing when they started

to move the mouse, but affected overall reaction time. Results of

the Lexical Decision Time analysis showed that Low Frequency words

and Pseudowords were slower than High Frequency words

(b LowFreq = 43, tvalue = 4.2, b Pseudowords = 158, tvalue = 12), and

that participants’ speed on High Frequency words and Letters

Strings was comparable (b LetterStrings = 1.3, tvalue,1). Directly

testing the contrast between Pseudowords and other stimuli

showed that Pseudowords were significantly slower than Letters

Strings (b Pseudowords = 157, tvalue = 11.8) and Low Frequency

words (b Pseudowords = 114, tvalue = 7.4)

In the model with Accuracy as the Dependent Variable, a Logistic

LMMs for binomial distribution was used. The analysis showed

that participants made more errors on Low Frequency words

(b LowFreq = 3.9, Zvalue = 3.8 pr,.005) and Pseudowords

(b Pseudowords = 4.9, Zvalue = 5.5, pr,.001) than High Frequency

words, as indicated by positive beta coefficients. The differences

between Low Frequency and Pseudowords (b Pseudowords = 1.01,

Zvalue = 2.5, pr,.05) and between Letters Strings and Pseudo-

words (b Pseudowords = 3.69, Zvalue = 3.4, pr,.001) were also

significant, with more categorization errors for Pseudowords. No

difference emerged between High frequency words and Letters

Strings (b LetterStrings = 29.1, Zvalue = 2.49, pr..1). The ‘‘Out of

time’’ response analysis also showed a higher proportion of ‘‘Out of

Time’’ trials for Pseudowords than highly frequent words

(b Pseudowords = .98, Zvalue = 3.3, pr,.005), with no other effects

for this measure.

Results suggest that Stimulus lexicality has a role in accuracy

rate and temporal dimensions as overall response time. Neverthe-

less, the distribution of response time might have undergone a

‘shrinking’ because we set the response deadline at 2000 msec (see

previous section for details of experimental procedure). If this is

true, pseudoword RTs should appear faster because their longer

times have been eliminated as outliers exceeding the time

deadline, and might suffer more than other categories because

they have a higher proportion of ‘‘Out of Time’’ trials. To explore

this possibility, the ‘‘Out of Time’’ trials were included in reaction

times and submitted to mixed-effects modeling. Results of Lexical

Decision time were confirmed, with parameters for Low frequency

words (bLow frequency = 51, tvalue = 4.02) and Pseudowords

(b Pseudowords = 195, tvalue = 13.3) significantly different from

highly frequent stimuli, and Pseudowords slower than Low

Frequency words (b Pseudowords = 145, tvalue = 8.7) and Letter

Strings (b Pseudowords = 208, tvalue = 13.8). Thus Pseudowords and

Low Frequency stimuli were slower than rich lexical items, with a

mean reaction time difference for Pseudowords and High

Frequency words about three times larger than the difference

between Low and High frequency words.

Trajectory analysis
Spatial attraction. Mean trajectories for conditions are

presented in Figure 2. Positive AUC indicates when the mouse

trajectory is above the idealized straight line, that is, when

movement is attracted to the opposite category. The mean

trajectory for Low frequency words showed attraction to the

Nonlexical response button, and the mean trajectory for

Pseudowords showed strong attraction to the alternative Lexical

response.

To index trajectory complexity, values of AUC (a measure of spatial

attraction toward the opposite response alternative) were analyzed

with LMMs with two Random-effect factors (i.e., Subjects and

Trials) and one Fixed-effect factor (Stimulus category). Mean AUC

scores for Low Frequency words were higher than scores for High

Frequency words (b LowFreq = .2, t value = 3.5), and Pseudoword

scores were higher than all other stimuli, in the order of Letters

Strings (b Pseudowords = .7, t value = 12), High Frequency words

(b Pseudowords = .5, t value = 8.2) and Low Frequency words

(b Pseudowords = .3, t value = 3.9). The negative coefficient for

Letters Strings with respect to High Frequency words

(b LetterStrings = 2.2, t value = 23.9) indicates that non-pronounce-

able stimuli were those less affected by competition. Low

frequency words and Pseudowords were significantly more

attracted to their own competing target category (i.e., Low

Frequency words to non lexical stimuli and Pseudowords to lexical

stimuli) than High Frequency words. This confirms that during the

Unfolding Visual Lexical Decision in Time
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categorization process the stimuli with the most lexical ambiguity

were affected by activation of competing categories. No difference

emerged for Letter Strings, whose trajectories closely resembled

the ideal straight response line.

Distributional analysis. Mouse Pseudoword trajectories

showed attraction to the unselected response alternative. This

effect might be due to the continuous attraction to the opposite

category shown by all trials, or by a subpopulation of discrete-like

errors, that is, cases in which movements were initially directed

towards the unselected alternative followed by a sharp change in

the response path towards the appropriate selected response. To

test for the presence of this response subpopulation, we checked

the distribution of trial-by trial AUC values for bimodality (see

[22,29]). The analysis was performed using Mouse Tracker to

calculate the bimodality coefficient (b). If b is greater than .555 the

distribution in considered bimodal, if it is smaller it is considered

unimodal. The AUC values for the different conditions were

converted to z-scores within participants and then pooled across

participants. Overall, the values of the four distributions show a

sharp peak with negative skewness near the local maxima (see

Figure 3).

The distribution of AUC values for High Frequency words

(b = .48) and Letter Strings (b = .49) was within the unimodal zone,

but distribution for Low Frequency words (b = .7) and Pseudo-

words (d = .58) exceeded the bimodality cut-off. Figure 3 shows

double mode and negative skewness of the distributions, which

appear less symmetrical for low frequency words and pseudo-

words, for which a subpopulation of response showed a drastic

change in movement direction, indicating revision of an

inappropriately selected response. The difference among distribu-

tions was further corroborated by the Kolmogorov-Smirnov test,

which confirmed that distributions of high and low frequency

words have statistically different shapes (p,.005), as do pseudo-

words and strings of letters (p,.005).

In sum, analysis of the within-category trials distribution shows

that Low frequency words and Pseudowords were affected by

competition from their alternative category, and that this

competition did not continuously shape the curve of the trajectory

but resulted in a sharp change of direction, consistent with a

sudden revision process reflecting ongoing competition between

partially active representations.
Trajectory time-course analysis. To characterize the

spatial attraction, we computed a Difference score (Figure 4).

Difference scores between ‘‘ambiguous’’ and ‘‘non ambiguous’’

items were computed separately for Lexical (Low frequency words

– High Frequency words) and Non Lexical stimuli (Pseudowords –

Letters Strings), and were plotted as a function of normalized time.

This score index across time the degree to which the mouse

traveled closer to the alternative category of ambiguous targets (i.e.

Low Frequency words, Pseudowords) with respect to non-

ambiguous targets (i.e., High Frequency words and Letters

Strings).

As shown previously, the trajectory analysis confirmed that

Lexical and Nonlexical stimuli induced different amounts of

attraction to their opposite category.

For Lexical items, the Difference score was close to 0 over time.

Although spatial attraction was present for Nonlexical items only,

the effect was not continuous; initially, it was minimal with a

substantial increase over time. LMMs was used to analyze

difference scores in separate time windows: Time bin 1 (0–30),

Figure 1. Participants’ performance on a visual lexical decision task, in which responses were modulated by the lexicality of the
stimuli in accuracy parameters and overall lexical decision time. Error bars depict Standard Error of the mean. a) Average time of movement
initiation; b) Average lexical decision reaction time; c) Percentage of categorization errors; d) Percentage of responses after the deadline.
doi:10.1371/journal.pone.0035932.g001
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Time Bin 2 (31–60) and Time Bin 3 (61–90), with Stimulus

Category (Lexical vs NonLexical) as fixed-factor and time bins as

Random factor. Lexical category was automatically coded as the

reference category. Differences emerged from the first time period

(TB1: b CatNonLex = 2.001, pMCMC,.05), with the mean attraction

score for NonLexical stimuli larger than the mean score for

Lexical stimuli (TB2: b CatNonLex = .02, pMCMC,.005; TB3: b

CatNonLex = .07, pMCMC,.005), indicating that nonlexical items

were more attracted to the opposite category and that this effect

increased over time.

Discussion

The continuous recording of participants’ mouse movements

allowed us to unfold the process underlying the lexical decision

task over time. We hypothesized that lexical stimuli are arranged

along a ‘‘lexical dimension line’’, with some items with some items

easy to distinguish because they have either rich lexical

representations (high frequency words) or no representations at

all (strings of letters), and other more ambiguous/difficult stimuli

with weaker (low frequency words) or only partial representations

(pseudowords). Our results support this hypothesis. Indeed, in

several response measures the stimuli are organized in a u-shaped

distribution of graded difficulty, as depicted in Figure 5.

Overall, lexical decision time and accuracy rate (which are the

typical measures considered in this task) were significantly

modulated by the type of stimuli to categorize, with Low

frequency words and Pseudowords more difficult to process than

the other stimuli, as indicated by lower accuracy and slower

reaction times. Thus, lexical decision response time indicates that

participants were more confident about their responses on High

frequency words and unpronounceable non-words than on Low

frequency words and Pseudowords. This finding is consistent with

previous reports of expert readers’ performance on lexical decision

tasks in which the standard ‘‘button-press’’ procedure [30–32] was

used and extends to kinematics measurements.

More interestingly, several measures of kinematics were

significantly modulated by lexicality, thus revealing the underlying

internal dynamics of the decision process. Analysis of the mouse

movements showed that the Pseudoword trajectories were

attracted to the lexical category. This attraction was not

continuous; it was a sharp deviation from the initially selected

direction. Thus, participants initially committed to the lexical

(incorrect) response and then subsequently switched their com-

Figure 2. Real-time mouse trajectories. A) Trajectories for High and Low Frequency words. Correct category is on the left and the opposite
category is on the right. Trajectories for LF words showed attraction to the ‘nonlexical’ response alternative, which was statistically significant as
indexed by AUC (bar plot). B) Trajectories for Pseudowords and Letter Strings. The correct category is on the right and the opposite category is on the
left. Trajectories for Pseudowords showed attraction to the ‘lexical’ response alternative, which was statistically significant as indexed by AUC (bar
plot).
doi:10.1371/journal.pone.0035932.g002
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mitment to the (correct) nonlexical response. Partial activation of

orthographic representations initially points the decision toward

the lexical category, and the subsequent top-down revision process

from phonology and semantics (as completion of the orthographic

processes) correctly drives towards the nonlexical category. For

Low Frequency words, that is, items with weak lexical represen-

tations, averaged trajectory was smooth, with graded attraction to

the alternative category. The averaged trajectories of the High

Frequency words and Letter Strings showed direct pursuit of the

correct response, with no efficient competitors.

Results are consistent with dynamic models of perceptual

decision-making (in our case, visual word recognition), which

emphasize the activation of multiple competing hypotheses and a

graded nature of the response. One such model is Price and

Devlin’s [19] Interactive Activation account, which builds on predictive

coding [10–13] to account for involvement of the ventral

occipitotemporal (vOT) cortex in reading, and posits that

activation of this region is modulated by the stimuli to be

processed as a result of continuous interactions between bottom-up

visual information and top-down predictions. This explains the

widespread involvement of the left hemisphere’s vOT in a range of

tasks pertaining language processing, written [33] or auditory [34],

but also to non-orthographic stimuli [35] and task context [36],

which question its specificity for (written) language. In the

lexicality dimension, pseudowords would increase their activation

relative to letter strings because they resemble real words and

engage top-down predictions from phonological areas. Moreover,

pseudoword activation would also be greater than real word

activation because they (pseudowords) elicit higher prediction

errors, due to the poor match between predictions (generated by

partially sharing phonological representations of real words) and

the predicted visual representations. In the same vein, prediction

errors should be higher for low frequency than high frequency

words because the latter take advantage of the strong association

between visual, phonological and semantic codes. Early involve-

ment of mouth-articulatory regions in covert recognition of written

language provides further support for this view [37,38]. The

mouse movements we recorded during the processing of pseudo-

words are consistent with an interactive activation account in

which visual information (plausibly collected first) determines an

initial bias towards the ‘‘lexical’’ hypothesis causing a low

prediction error. This process is reinforced by the successful

matching of phonological information (which causes a low

prediction error). At a later stage of processing, when more

information (e.g., semantic) becomes available, the high prediction

error could determine a top-down revision and a rapid switch

towards the ‘‘non-lexical’’ hypothesis. The differences in process-

ing between Low and High Frequency words can be explained in

terms of slower and quicker minimization of the prediction error.

Spivey’s [8] attractor model also explains our results. If one

considers the two responses (lexical vs. non-lexical) as two

attractors, the lexical category can initially ‘‘pull’’ pseudowords

Figure 3. Distributions of trajectory curvature. a) Overlaid histograms of trajectory curvature for Lexical stimuli as measured by z scored values
of AUC. High Frequency words exhibit unimodal distribution, whereas Low Frequency stimuli exhibit bimodality, with a first local maxima between a
2.8 and 2.4 z-score, and a second smaller mode between a .4 and .8 z-score. b) Overlaid histograms of trajectory curvature for Non Lexical stimuli as
measured by z scored values of Area Under the Curve. Letters Strings have unimodal distribution. Pseudowords show bimodality with the first local
maxima between a 2.1 and 2.4 z-score, and a second smaller mode between a .2 and .6 z-score.
doi:10.1371/journal.pone.0035932.g003

Figure 4. Intercategory difference score. Trajectory difference
between Lexical and Nonlexical stimuli (dotted line). Averaged
movement trajectories show difference between Pseudowords and
Letter strings starting at the 43rd normalized time (345 msec post-
stimulus appearance), reaching the maximum amplitude at the 66th

time slice (690 msec post-stimulus appearance). Not much difference
emerged for Lexical stimuli.
doi:10.1371/journal.pone.0035932.g004
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and then ‘‘push’’ them when semantic information becomes

available. Other dynamic models, such as drift-diffusion [6] and

race models [7], need to be extended to explain our results. They

were primarily developed to study choices that are completed at

action onset. This is not the case in our set-up: Although the initial

movement direction is informative, the ongoing choice can be

revised at any time during the movement. A recent extension of

accumulator models of decision-making permits dealing with such

‘‘changes of mind’’ and, at least in principle, can be adopted to

explain our results [39]. Overall, our results provide support for

dynamic models of decision-making. Nevertheless, further studies

are necessary to decide between them and to test their specific

hypotheses. For instance, predictive coding requires the contribu-

tion of two neural populations, one for encoding prediction (e.g.,

lexical stimulus prediction) and one for encoding prediction error

(e.g., error in the lexical stimulus prediction). This hypothesis can

be tested by by simultaneously measuring neural activity (e.g., in

vOT) and manipulating prior information and expectation in the

trials (see [40] for a similar approach in visual processing).

Although dynamic models of decision-making are popular in

linguistic processing, for example, in spoken word recognition [14–

17], it is commonly assumed that the source of dynamicity is

external, for example, the fact that a spoken word unfolds over

time. Here we applied the same logic, for the first time, to

investigate visual lexical decisions. An important difference from

previous studies is that in our set-up stimuli were short words that

could be read with a single fixation [41]. This allowed us to avoid

(or at least minimize) external sources of dynamicity, and to

demonstrate that the internal processing of lexical decisions is also

dynamic and competitive.

By using a continuous (kinematic) measure, we were able to

unfold this dynamical internal processing over time. The use of an

action-dynamics approach allowed us to visualize the link between

written language processing and hand movements, with mouse

trajectories mirroring online mental processing. Indeed, the results

we obtained using this technique suggest a different view of mental

processes, that is, as an integrative loop between perception,

cognition, and action [42]). Whether the decision process regards

perceptual discrimination [5], reaching decisions [4], processing

language [9], categorizing faces [43] or perceiving different races

[29], it does not proceed in an ‘‘all-or-nothing’’ fashion; rather, as

it unfolds over time, it produces a cascaded formation of dynamic

representations, which are largely shared across subsystems of

perception and action.
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