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A B S T R A C T   

Importance: Neuromyelitis optica (NMO - including NMO spectrum disorders [NMOSD]) is a devastating disease. Eighty-three percent of patients with transverse 
myelitic (TM) attacks and 67% of patients with optic neuritis (ON) attacks have no or a partial recovery. 
Observations: Up until recently, there was no proven agent to treat to prevent relapses. The neuro-immunological community had a dearth of indicated agents for 
NMOSD. We now have three agents indicated for the treatment of NMO including (eculizumab [Soliris®]), an anti-C5 complement inhibitor, satralizumab 
(ENSRYNG®), a monoclonal antibody against the IL-6 receptor (IL-6R) that blocks B cell antibody production and inebilizumab (Uplinza®), a monoclonal antibody 
that binds to the B-cell surface antigen CD19 with subsequent B and plasmablast cell lymphocytolysis with decreasing antibody production. Autologous hemato-
poietic stem cell bone marrow transplantation (AHSCBMT) has also been used. How do we sequence NMO therapies with the understanding of the acuteness and 
severity of the disease, the individual mechanism of action (MOA) and rapidity of onset of action, onset of efficacy and long-term safety of each agent? 
Conclusions and Relevance: We might suggest the following sequence – 1st line using eculizumab for rapid efficacy and stabilization without effect on the acquired 
immune system followed by satrilizumab (long term immunomodulation). Reserve inebilizumab (immunosuppressant) for breakthrough disease and salvage the 
severe with AHSCBMT. In NMO, control the complement, transition to modulation, and reserve suppression – and salvage the severe with AHSCBMT.   

Neuromyelitis optica (NMO - including NMO spectrum disorders 
[NMOSD]) is a devastating disease (Jiao et al., 2013, Jarius et al., 
2012). Forty-one percent of AQP4+ patients are legally blind in 5 years 
(Jiao et al., 2013), 22% require a walker in 5 years from disease onset 
(Jiao et al., 2013), and 22–54% require inpatient admission < 1 yr of 
index date (Ajmera et al., 2018). Median time to 1st relapse is 8.5–14 
months with 55% of relapses within 1 year, 78% within 3 years, 90% 
within 5 years (Jarius et al., 2012, Kitley et al., 2012). Ninety-two 
percent of NMOSD AQP4+ patients ultimately relapse (Jiao et al., 
2013, Jarius et al., 2012, Kitley et al., 2012). Ninety-three percent of 
AQP4+ patients have relapsed with an average of 1.3 times/year 4. 
Eighty-three percent of patients with transverse myelitic (TM) attacks 
and 67% of patients with optic neuritis (ON) attacks have no or a partial 
recovery (Jarius et al., 2012). Progression occurs during attacks as 
opposed to intervals between attacks (Jarius et al., 2012) in contrast to 
MS. There is an especially high mortality in African-Americans 
(Kitley et al., 2012, Mealy et al., 2018). There are significant physical, 
emotional, social, and financial tolls imposed by NMOSD 
(Beekman et al., 2019). 

NMOSD is a relapsing, inflammatory, autoimmune disorder 
(Papp et al., 2018) characterized in large part by attacks of optic 

neuritis (ON) and transverse myelitis (TM) causing blindness and par-
esis in many patients (Mealy et al., 2019, Wingerchuk et al., 1999,  
Wingerchuk et al., 2007). Attacks are unpredictable and tend to be 
severe (a ‘neuro-immunological stroke’) and recurrent (Kitley et al., 
2012, Wingerchuk et al., 1999). The initial presentation is 50% with 
TM, 35% with ON, and ON & TM in 10% patients, and 4% of patients 
with other syndromes (Mealy et al., 2019, Wingerchuk et al., 2007,  
Hinson et al., 2016). The seropositive patients are overwhelmingly fe-
male (Jarius et al., 2012). Seronegative NMO-IgG tend to be male, 
younger with a milder clinical presentation (Hyun et al., 2015, Bernard- 
Valnet et al., 2015, Melamed et al., 2015) and in 42% of patients po-
sitive for MOG antibodies (Narayan et al., 2018). 

Most of the 16,000–17,000 US NMO patients (approximate 80%) 
(Jiao et al., 2013, Hamid et al., 2017, Flanagan et al., 2016) have a 
pathogenic antibody biomarker in contrast to multiple sclerosis (MS). 
The pathogenic antibodies bind to AQP4 receptors concentrated on 
astrocyte endfoot processes surrounding intraparenchymal vessels, 
ependymal cells and subependymal layers lining the ventricles 
(Badaut et al., 2000, Amiry-Moghaddam et al., 2000, Verkman et al., 
2017) disrupting the BBB and causing an astrocytopathy followed by 
oligodendrogliopathy and neuronal death. NMO typical brain lesions 
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are in AQP4 rich sites (Pittock et al., 2006). 
Preceding the approval of eculizumab there were a number of 

agents that were used in the acute treatment of NMOSD including 
corticosteroids (Filippini et al., 2000), plasma exchange 
(Watanabe et al., 2007), apheresis therapy (Kleiter et al., 2018), IV IgG 
(Elsone et al., 2014) and even cyclophosphamide (Greenberg et al., 
2007). 

Up until recently, there was no proven agent to treat to prevent re-
lapses. Treatment strategies to control the disease included azathioprine 
(Bichuetti et al., 2010, Mandler et al., 1998), prednisone, mycopheno-
late mofetil (Jacob et al., 2009) and rituximab (RTX) (Cree et al., 2005,  
Jacob et al., 2008) with a low risk for PML 1/25,000 (Clifford et al., 
2011) even as a 1st line therapy with a 97% annualized relapse re-
duction (ARR) (Zephir et al., 2015)! RTX re-administration has been 
monitored by the re-appearance of CD27 memory B cells (Kim et al., 
2013). NMO activity has been correlated with B cell levels but not 
AQP4 levels in RTX treated patients (Pellkofer et al., 2011). A meta- 
analysis of 25 studies using RTX in NMO suggested a mean reduction of 
0.79 in relapses and 0.64 points in EDSS (Damato et al., 2016). Another 
meta-analysis suggested a 63% ARR (Gao et al., 2019). We on the other 
hand have had variable results using RTX (Lindsey et al., 2012). IV IgG, 
not useful in MS, has barely been studied (Magraner et al., 2013). Cy-
clophosphamide (Yaguchi et al., 2013) and mitoxantrone have been 
evaluated in small studies (Kim et al., 2011, Weinstock-Guttman et al., 
2006) but the latter's long-term (leukemogenic) side effect profile 
makes it a poor choice. 

MS therapies do not work - indeed they can make the disease worse 
including alemtuzumab (Gelfand et al., 2014), natalizumab 
(Kleiter et al., 2012), beta interferon (Shimizu et al., 2010, Papeix et al., 
2007) and fingolimod (Min et al., 2012). Tocilizumab has also been 
used in NMOSD in small trials with modest efficacy (Ringelstein et al., 
2015, Araki et al., 2014). 

In contrast to the adaptive immune system and antigen-specific 
responses after antigen processing and generation of immune cells with 
memory in MS, NMO at its target is a disease of the innate immune 
system. The innate immune system is a nonspecific defense mechanism 
that comes into play immediately or within hours. These mechanisms 
include complement proteins in the blood (Dunkelberger and 
Song, 2010, Noris et al., 2012, Hill et al., 2013). NMO-IgG activates the 
complement system after IgG antibody molecules bind to the surface of 
the astrocyte. The self-amplifying, inflammatory, and destructive 
properties of the complement cascade make it essential that activated 
components be rapidly inactivated. Deactivation is achieved by specific 
inhibitor proteins in the blood or on the surface of host cells that ter-
minate the cascade. These inhibitors are not present in the CNS. 
Therefore, complement fixation by NMO-IgG is unopposed once in-
itiated. Anti-AQP4 antibodies fix compliment and begin a cascade of 
events to give rise to formation of the membrane attack complex (MAC) 
resulting in disruption of the astrocyte cell membranes (Mealy et al., 
2019, Wingerchuk and Weinshenker, 2017). This damage can occur 
quite rapidly, perhaps within hours (Herwerth et al., 2016). Once the 
rapid effect of complement fixation occurs during an NMO attack, there 
is unopposed and continual destruction. Indeed, it is unclear why it 
stops! Halting the acute ongoing destruction is an important therapeutic 
goal. The most effective interventions should prevent relapses but also 
have rapid anti-complement activity. 

Several pathophysiologic mechanisms are involved in the perma-
nent CNS damage associated with NMOSD. While NMOSD is often re-
ferenced as an astrocytopathy driven by AQP4 autoantibodies, direct 
damage to oligodendrocytes and neurons also occurs as a result of 
several inflammatory mechanisms resulting from T and B cell activa-
tion. CD19+CD20- plasma cells produce AQP4 autoantibodies (Jasiak- 
Zatonska et al., 2016, Bradl et al., 2018, Bennett et al., 2015,  
Petersone et al., 2018) inducing IL-6 and breaking down the BBB and 
endothelial cell function (Takeshita et al., 2017).There is also a com-
plement-independent cell-mediated cytotoxicity from NK and cytotoxic 

T cells (Ratelade and Verkman, 2012) and IFN I and Th17 cells 
(Agasing et al., 2020). B cell depletion in autoimmune settings may 
derive its therapeutic effect on T follicular helper cells (Tfh) that re-
quire B cells in tertiary lymphoid structures (Petersone et al., 2018). 
Both B and T cells produce inflammatory cytokines (Melamed et al., 
2015, Kaneko et al., 2018) toxic to neurons and oligodendroglial cells 
(Bennett et al., 2015). 

The neuro-immunological community will have gone from a dearth 
of indicated agents for NMOSD to multiple indicated agents over a re-
latively short period of time. As MS has been transformed from a di-
agnostic dilemma to a therapeutic dilemma (J. Dunn, Stanford), so 
NMO may well become a therapeutic dilemma too. The initial and 
subsequent interventions using indicated agents may depend on the 
mechanism of action (MOA), rapidity of the onset of action (OOA), 
duration of efficacy and long-term safety. Frequency of administration, 
route of administration and monitoring will also assuredly play a role 
for the patient and the clinician. Let's review the available clinical data 
on the present agents and potential future approaches. 

The first agent indicated for the treatment of NMO is eculizumab 
(Soliris®), an anti-C5 complement inhibitor. It is the first and sole FDA 
approved treatment for adults with AQP4 antibody positive NMOSD. 
Eculizumab is a monoclonal antibody that specifically binds to the 
complement component C5, thereby inhibiting its cleavage to C5a and 
C5b and preventing the generation of the terminal complement com-
plex C5b-C9. Eculizumab inhibits AQP4 antibody induced terminal 
complement C5b-C9 deposition and the formation of the MAC. The 
PREVENT trial showed that eculizumab reduced the risk of relapse by 
94% compared to placebo (3/96 in eculizumab group vs 20/47 in the 
placebo group) and the risk reduction persisted at 48 (98% in eculi-
zumab vs 63% in placebo group) and 144 weeks (96% in eculizumab vs 
45% in placebo group) (Pittock et al., 2019). In slight contrast, fig S3 
(in the supplemental appendix to (Pittock et al., 2019)) based on the 
investigator's determination of relapses (time to first clinical relapse/ 
non-adjudicated) shows a decline to 89% relapse free at 48 weeks for 
active treatment compared to 98% relapse free (adjudicated) (figure A 
in (Pittock et al., 2019)) at 48 weeks for active treatment. There was an 
83% relapse free (clinical relapse) (fig S3 in the supplemental index to 
(Pittock et al., 2019)) for active treatment vs 96% at 144 weeks (ad-
judicated) for active treatment (figure A in (Pittock et al., 2019)). 
Eculizumab had a relatively rapid onset of action, its efficacy plateaued 
at 48 weeks (96% relapse free – adjudicated) and 96 weeks (85% re-
lapse free – clinical relapse) and was maintained for 3+ years. Blocking 
the formation of the MAC (where the rubber meets the road) allows 
relatively rapid cessation of disease activity and decreases hospitaliza-
tions, corticosteroid treatments and PLEX frequency. Although in-
dicated for the prevention of attacks, its immediate effect argues for its 
utility during acute attacks when it may have even greater efficacy. 
Disadvantages are the frequency and route of administration (q 2 weeks 
after weekly infusions for 5 weeks) along with significant cost. Eculi-
zumab did not decrease the rate of progression – related to the trial 
design that precluded follow up beyond 6 weeks and terminated after a 
prespecified number of relapses. We might consider eculizumab an 
immunomodulator of the innate immune system without effect on ac-
quired immunity notwithstanding precautionary prophylaxis vaccina-
tion for Neisseria sps. Ravulizumab, a second generation to eculizumab 
with a four aminoacid change, has a prolonged terminal half-life with 
eight week dosing intervals, is currently in clinical trials (Duchow et al., 
2020). 

Tocilizumab (RoActemra®; Chugai/Roche), a precursor to an up-
coming agent for NMOSD, is a first-in-class humanized monoclonal 
antibody that binds specifically to both sIL-6R and mIL-6R and inhibits 
IL-6R-mediated signaling and specifically blocks IL-6 activity 
(N Nishimoto et al., 2008). Tocilizumab was approved for patients with 
moderate to severe rheumatoid arthritis (RA) unresponsive to available 
disease modifying anti-rheumatic drugs (DMARD) (N Nishimoto et al., 
2008, Yokota et al., 2005, Smolen et al., 2008, N Nishimoto et al., 2008,  
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Paul-Pletzer, 2006, Scheinecker et al., 2009). Parenteral tocilizumab, as 
a repurposed from RA DMARD, can also be effective in other in-
flammatory diseases including neuromyelitis optica (NMO) by reducing 
anti-AQP4 autoantibodies (Araki et al., 2013). Tocilizumab has also 
been used in NMOSD in small trials with modest efficacy 
(Ringelstein et al., 2015, Araki et al., 2014). 

A recently approved agent in the US is satralizumab (ENSRYNG®), a 
newer version of tocilzumab (Actemra®), a monoclonal antibody 
against the IL-6 receptor (IL-6R). Satrilizumab blocks the IL-6R and B 
cell antibody production. The SakuraSky trial showed that satralizumab 
added to immunosuppressant treatment reduced relapse from 43% (18/ 
42 patients receiving placebo) vs 20% (8/41 patients receiving sa-
tralizumab) in all patients regardless of AQP4-IgG-sero-positivity. For 
AQP4-IgG-sero-positive patients satralizumab significantly reduced re-
lapses - 43% (6/14 patients receiving placebo) vs 11% (5/14 patients 
receiving satralizumab) (Yamamura et al., 2019). For AQP4-IgG-sero- 
negative patients satralizumab did not significantly reduce relapses - 
43% (6/14 patients receiving placebo) vs 36% (5/14 patients receiving 
satralizumab). The trial designers use early censoring of patients who 
received rescue therapy, who had an increase or change in their base-
line treatment, or who were continuing in the trial at the data-cutoff 
date in four separate post-hoc analyses using multiple imputations. 
Only 19/42 in the satrilizumab group and 7/41 patients in the placebo 
group were continuing in the trial at the cut-off date. The sensitivity 
analysis of time to any relapse, including both protocol-defined (ad-
judicated) relapses, was consistent with the analysis of protocol-defined 
relapse (fig 2 in (Yamamura et al., 2019)). However, fig S5 (in the 
supplemental appendix to (Yamamura et al., 2019)) based on in-
vestigator's determination of relapses (time to first clinical relapse/non- 
adjudicated) shows a precipitous decline to only 69% relapse free at 48 
weeks for active treatment compared to 89% relapse free (adjudicated) 
(fig 2 in (Yamamura et al., 2019)) at 48 weeks for active treatment. 
There was only 51% relapse free (clinical relapse) (fig S5 in the sup-
plemental appendix to (Yamamura et al., 2019)) for active treatment vs 
74% at 144 weeks (adjudicated) for active treatment (fig 2 in 
(Yamamura et al., 2019)). Satrilizumab had a relatively slow onset of 
action, its efficacy plateaued at 48 weeks (74% relapse free – ad-
judicated) and 130 weeks (51% relapse free – clinical relapse) and was 
maintained for 3+ years. The SakuraStar satrilizumab monotherapy for 
relapse prevention trial showed a 25% relapse rate at 48 weeks for 
active treatment (Bennett et al., 2019). These latter data also suggest a 
delayed onset of action. The authors (SakuraSky) state that longer and 
larger trials are necessary to determine the efficacy and durability of 
satralizumab. 

A recently approved agent in the US is inebilizumab (Uplinza®), a 
humanised, affinity-optimised, IgG1 monoclonal antibody that binds to 
the B-cell surface antigen CD19 with subsequent B and plasmablast cell 
lymphocytolysis with decreasing antibody production. Anti-CD19 mAb 
recognizes and depletes a wider range of lymphocytes from the B-cell 
lineage compared to anti-CD20 treatments. The N-MOmentum trial 
showed inebilizumab reduced relapse from 39% (22/56 patients re-
ceiving placebo) vs 12% (21/172 patients receiving inebilizumab) in all 
patients regardless of AQP4-IgG-sero-positivity (Cree et al., 2019). For 
AQP4-IgG-sero-positive patients inebilizumab significantly reduced re-
lapses - 42% (22/52 patients receiving placebo) vs 11% (18/161 pa-
tients receiving inebilizumab). Among the 17 AQP4-IgG-seronegative 
patients who were randomly allocated to treatment (13 to in-
ebilizumab), three attacks occurred, all in the inebilizumab group. 
Secondary outcomes showed a significant effect on EDSS worsening 
favoring inebilizumab (34% placebo vs 16% inebilizumab). The sup-
plementary appendix table S5a describes breakdown of on-study ad-
judication attack decisions. Adjudication decisions on attacks agree 
with the investigators (non-adjudicated) 80% of the time (n = 43 attack 
vs n = 21 non-attack [adjudicated]; overall [non-adjudicated] n = 64) 
without reference to attacks in the placebo or active arms. There is a 
falloff at 6 months with attacks in 13% of patients and 15% at 12 

months according to extension data (Cree et al., 2020). We might as-
sume a plateau at 12 months with extension data. A concern with this 
agent is its similarity to ocrelizumab, the fully humanized anti-CD20 
mAb derived from rituximab, devised initially to treat lymphoma, re-
purposed to treat autoimmune disorders including MS and used off- 
label for the treatment of NMOSD. As it stands, there are at least 7 PML 
(confounded) cases and 1 unconfounded PML case associated with its 
use. Ocrelizumab was also associated with an increased incidence of 
breast cancer (increased, but statistically insignificant) particularly in 
the PPMS clinical trial. Ocrelizumab is immunosuppressive because it 
causes a B cell lymphopenia along with a definable incidence of PML. 
Ocrelizumab requires continual administration to maintain its effec-
tiveness and has had a 5.5% mortality from confirmed COVID-19 in-
fections (www.ocrelizumabinfo.com 2020). 

Interventional strategies that target pathogenic AQP4 auto-anti-
bodies should consider their ability to leave previously established 
humoral immunity intact (Forsthuber et al., 2018). Protective anti-
bodies to vaccine antigens (i.e., influenza, tetanus, measles, mumps, 
rubella, and polio) are produced by both CD19+ and CD19- subsets and 
long-lived antibody producing plasma cells. Differences in CD expres-
sion occur throughout B cell maturation and within tissue-localized 
late-stage B cells (Forsthuber et al., 2018, Alexopoulos et al., 2016,  
Wilson et al., 2018). Therefore, targeting CD19+ B cells may leave 
some established humoral immunity relatively unscathed. 

There is a 4th potential therapeutic option in NMOSD. Autologous 
hematopoietic stem cell bone marrow transplantation (AHSCBMT) is an 
example of immune reconstitution therapy (IRT) within autoimmunity. 
AHSCBMT is associated with profound qualitative immunological 
changes and the resetting of the immune system (i.e., immunostat) in 
patients with MS (Atkins and Freedman, 2013, Mancardi and 
Saccardi, 2008). AHSCBMT has been utilized in the treatment of ad-
vanced MS over long periods and reviewed in recent meta-analyses 
(Sormani et al., 2017). AHSCBMT has been studied in NMO also albeit 
in smaller numbers. AHSCBMT in refractory NMO/NMOSD was asso-
ciated with clinical and radiological remission, improved disability and 
resolution of AQP-4 antibodies which were still undetectable 12 months 
later (Aouad et al., 2015, Peng et al., 2010). The European Group for 
Blood and Marrow Transplantation (EBMT) Autoimmune Diseases 
Working Party (ADWP) reported after a median follow-up of 47 months 
with baseline EDSS=6.5, three of 16 cases were progression and 
treatment free, while in the remaining 13 patients further treatments 
were administered for disability progression or relapse after AHSCBMT. 
Altogether, relapse-free survival at three and five years was 31% and 
10%, respectively, while progression-free survival remained 48% at 
three and five years (Greco et al., 2015). I have treated 1 AQP4+ NMO 
patient who became plegic for 6 months who after AHSCBMT was able 
to walk 2 miles (data not shown). The patient did have a mild relapse at 
1-year post-transplant but was effectively treated back to her baseline. 
Despite the possibility of eventual relapse, AHSCBMT can be effective 
treatment in refractory NMO and can be successful in reversing recent 
severe disability (Case Report - Carlisle N., Hari P., Brod S. Plegia to 
walking: AHSCBMT in severe NMOSD relapse – JNNP in press). 

In the future several key immune mechanisms in NMOSD that might 
be amenable to therapeutic restoration of immune tolerance include 
DNA, dendritic or autoreactive T cells vaccinations, antigen coupling, 
and engineered TcRs (Steinman et al., 2016) along with enhancing 
regulatory T and B cell function (Bar-Or et al., 2016). These interven-
tions may shine new light on potential cures for NMO/SD and other 
autoimmune diseases, while sparing normal host defense mechanisms. 

Short course IRT agents have long term advantages over im-
munosuppressive agents. They provide potential long-term efficacy 
without retreatment with minimal risk for opportunistic infections and 
malignancy. In addition, IRT maneuvers or agents may have favorable 
pharmaco-economics. The estimated cost of AHSCBMT was less than 
$4700 per quality-adjusted life year (Tappenden et al., 2010) in MS. In 
terms of clinical safety, AHSCBMT is associated with a very low 
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mortality (<1%), time limited morbidity which resolves in a short time 
period in the order of 2 −3 months and improved long-term quality of 
life (Massey et al., 2018). 

Then there is the issue of continual immunosuppression. I have 
previously opined on continual immunosuppression vs im-
munomodulation in MS (Brod, 2020). The preservation, reduction or 
elimination of immunosurveillance of the acquired immune system 
should be an important consideration in deciding on the optimal dis-
ease modifying treatments (DMT) for an individual NMOSD patient 
over time. Eculizumab has the advantage of not affecting the acquired 
immune system and would not change (acquired) immunosurveillance, 
the constant process by which the immune system looks for and re-
cognizes foreign pathogens such as bacteria and viruses or pre-can-
cerous or cancerous cells throughout the body. Toclizumab appears to be 
immunomodulatory (a decrease or increase in pitch or tone – in this 
case a decrease) and maintains immunosurveillance because no PML 
cases or fungal infections have been identified in the search of pub-
lished medical literature for tocilizumab (Roche data on file) (https:// 
www.sps.nhs.uk/wp-content/uploads/2019/07/Risk-of-PML-with- 
biologic-immunosuppressants-final.pdf) (Winthrop et al., 2015). 

Continual elimination of plasmablasts and B cells by inebilizumab causes 
immunosuppression (quashing, stamping out) and impedes im-
munosurveillance. Inebilizumab is similar to ocrelizumab but depletes 
an even wider range of lymphocytes from the B-cell lineage. Ocreli-
zumab was also associated with an increased incidence of breast cancer 
(increased, but statistically insignificant) particularly in the primary 
progressive MS OROTORIO clinical trial (Montalban et al., 2017). In-
ebilizumab targets a broader B cell community with potential greater 
effects on gamma globulins, B cell and plasmablast lymphocytotoxicity 
with a potential for decreased cancer surveillance similar to ocreli-
zumab (OCREVUS PI- 2020) with at least 7 PML (confounded) cases 
and 1 unconfounded PML case in MS. There is also a 6% incidence of 
hypo-gammaglobuliemia (Mikulska et al., 2018) with inebilizumab. 
Therefore, inebilizumab appears to be immunosuppressive because it 
causes a B cell lymphopenia along with a potential for PML and requires 
continual administration to maintain its effectiveness. 

Assuming the availability of all the agents mentioned above, how do 
we sequence NMO therapies with the understanding of the acuteness 
and severity of the disease, the MOA, rapidity of onset of action and 
long term safety of these four interventions? Eculizumab acts where the 

Fig. 1. The advantages and disadvantages of each of these transitions are outlined.  
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rubber meets the road and has long term (4 year) data with continued 
high efficacy so it invites itself as initial therapy. Because eculizumab 
acts rapidly it could be used as an acute intervention during attacks. Its 
draw backs are frequency of administration and potential cost. 
Satralizumab may suffer from initial (SukuraSky 11% [adjudicated] - 
31% [clinical]; SukuraStar 25%) relapse incidence at 48 weeks sug-
gesting a delayed onset of action after intervention. Its advantages are 
relative ease of administration (sq) and its (in)frequency of dosing. 
Inebilizumab's advantage is its MOA directed at antibody producing 
cells (B cells and plasmablasts) but suffers a delay in onset of activity 
(13% incidence of time to first relapse at 24 weeks) and our present 
inability to forecast its plateau in relapse prevention beyond 24 weeks 
and continued efficacy and safety absent long term follow-up data. 

We might suggest the following sequence – 1st line using eculi-
zumab for rapid efficacy and stabilization followed by satrilizumab (see  
Fig. 1). How long do you keep patients on eculizumab understanding 
the dosing and cost before you segue to satrilizumab? That is unclear. 
The advantages of these two agents is that there is no effect on acquired 
immunity (by eculizumab) and immunomodulation without im-
munosuppression (by satrilizumab) of the acquired immune system. It 
would be ideal to overlap the 2 agents to allow for the attainment of 
effectiveness of satrilizumab. However, the disadvantage of this tran-
sition is that the patients’ relapses did not plateau on satrilizumab 
monotherapy until ~ week 130. Of course, we have not mentioned the 
costs involved of concurrent treatments! 

Alternatively, how long do you keep patients on eculizumab before 
you segue to inebilizumab? It would be ideal to overlap the 2 agents to 
allow for onset of effectiveness of inebilizumab. Since there is a modest 
delayed onset of activity with inebilizumab should there not be an 
overlapping of inebilizumab while still administering eculizumab? How 
long should that overlap last? Since the inebilizumab trial attacks ap-
parently plateau at 48 weeks overlapping therapy may be required for 1 
year. The ultimate disadvantage of this transition is the potential con-
tinual immunosuppression and decrease in immunosurveillance with 
continuous anti-CD19 mAb treatment. 

Starting initially with inebilizumab and transitioning to sa-
trilizumab would require concomitant therapy for extended periods of 
time as above. This transition may not be rational since satrilizumab 
requires B cells for its effectiveness despite the potential shift from an 
immunosuppressant to an immunomodulator more compatible for long 
term therapy. 

Could we make a case for initial and continual satrilizumab treat-
ment with convenient self- administration and immune modulation? 
Perhaps but any breakthrough disease would precipitate a retreat to 
potentially more efficacious agents so why start there and escalate? 

How would we include AHSCBMT as a therapeutic option? 
AHSCBMT could be used as salvage therapy for severe breakthrough 
disease after sequencing of NMO-DMTs but that risks significant pre-
ceding disability. AHSCBMT could also be used as an induction therapy 
for severe initial presentations providing a safe segue for the initiation 
of long-term immunomodulation. 

Is there a role for rituximab in NMO therapy despite the lack of class 
I evidence from randomized placebo controlled clinical trials 30,33? If 
NMO patients are stable (relapse free) on off-label RTX, how long 
should they remain stable (relapse free) in order not to switch to agents 
proven to be effective in relapse prevention? If 90% of relapses occur 
within 5 years (Jarius et al., 2012, Kitley et al., 2012) perhaps 5 years 
relapse free on RTX or another off-label agent may suffice as evidence 
for disease control without the need for transition to an approved 
therapy. 

Neuromyelitis optica (NMO - including NMO spectrum disorders 
[NMOSD]) is an interesting, devastating, and soon-to-be therapeutic 
challenging disease using approved (and off label) interventions. The 
expansion of the NMOSD pharmacopeia offers unique opportunities to 
prevent and control a neurological entity heretofore managed without 
solid clinical evidence. The MOA, onset of activity and long-term 

efficacy in clinical trials can help direct therapeutic sequencing. 
Transitioning from the most efficacious agent(s) without effects on 
acquired immunity to immunomodulators for long term treatment 
might be the best route. Immunosuppressive therapies could be used as 
a back-up as necessary. AHSCBMT could be used to reconstitute the 
immune system after severe attacks. In NMO, control the complement, 
transition to modulation, and reserve suppression – and salvage the 
severe with AHSCBMT. 
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