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Abstract 

Background and purpose: Pyridopyrimidine and its derivatives have a variety of chemical and biological 

significances. Thiazole-containing compounds have also been reported to have a wide range of biological 

activities. Due to the valuable cytotoxic effects of both thiazole and pyridopyrimidinone derivatives, a series 

of pyridopyrimidinone-thiazole hybrids were synthesized in the present study.  

Experimental approach: Briefly, different acyl chlorides were reacted with 2-amino nicotinic acid followed 

by anhydride acetic to give the corresponding pyridobenzoxazinones. The aminothiazole derivative G was also 

prepared via a multistep procedure and incorporated into the benzoxazinones to furnish the target 

pyridopyrimidinone, K1-K5. Furthermore, the cytotoxic activity of the final compounds was determined 

against MCF-7 and HeLa cell lines using MTT assay.  

Findings/Results: The results indicated that aromatic substitution on C2 of pyridopyrimidine nucleus was in 

favor of cytotoxic activity on both cell lines, of which, compound K5 bearing a chlorophenyl group showed 

the highest cytotoxicity. 

Conclusion and implications: The results of the present study are valuable in terms of synthesis of hybrid 

molecules and also cytotoxic evaluations which can be useful for future investigations about the design of 

novel pyridopyrimidinone-thiazole hybrids possessing better cytotoxic activities.  

Keywords: Cytotoxicity; Pyridopyrimidine; Thiazole. 

INTRODUCTION 

Nowadays, cancer is one of the principal 

causes of death throughout the world, 

especially in developed countries. Cancer is 

generally characterized by the loss of control of 

cell proliferation leading almost often to death 

if patients are untreated. Surgery, radiotherapy, 

and chemotherapy, alone or in combination, are 

important ways to combat these life-threatening 

diseases. However, two major drawbacks for 

chemotherapy are drug resistance and toxicities 

which encourage medicinal chemists to 

continuously pursue the design and 

development of new chemotherapeutics based 

on well-known scaffolds.   

Pyridopyrimidine and its derivatives have a 

variety of biological significances including 

antimicrobial (1,2), analgesic (2,3), antiallergic 

(2,3), antitumor (2,4-7), antihypertensive (2,8), 

antileishmanial (9), antifolate (2), anti-

inflammatory (2,3), diuretic (10), potassium-

sparing (2), antifungal (2), and anti-HIV (2) 

activities. 

Thiazole-containing compounds have also 

been reported to have a wide range of biological 

activities including antitumor (2,11-13), 

anti-inflammatory, analgesic, antibacterial     

(14-16), and antifungal (14,16) effects. 
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    Thiazole is widely used in anticancer drug 
design and development. Several thiazole-
containing anticancer drugs like bleomycin, 
tiazofurin, dabrafenib (17), and dasatinib (18) 
have been reported. Ritonavir (anti-HIV), 
meloxicam (anti-inflammatory), nizatidine 
(anti-peptic ulcer), and penicillins (antibiotic) 
are some other examples of thiazole-bearing 
products with biological significances (12,14). 

Hybridization of two or more 
pharmacophores into a single molecule is an 
approach towards the discovery of new 
compounds with the expectation of additional 
potentiality to render synergistic effects. 
Therefore, the introduction of more than one 
pharmacophore or scaffold in a single 
molecule, each with a different mechanism of 
action, can be an effective approach for multi-
target drug design, for example in cancer 
treatment. Hybrid pharmacophores may be 
attached to different locations in the active sites 
leading to the elimination of drug resistance. 
Also, this method can reduce anticancer side 
effects (12,19,20).  

Palbociclib, a new pyridopyrimidine 
anticancer drug bearing a pyridopyrazine side 
chain, has been approved in recent years for the 
treatment of hormone receptor-positive, human 
epidermal growth factor receptor 2 negative 
advanced or metastatic breast cancer. 
Palbociclib is an orally available, highly 
selective inhibitor of CDK4 and CDK6, serine-
threonine kinases that regulate the cell cycle 
progression (21,22,23). 

We have previously reported the synthesis of 
some 3-(2-(2-phenylthiazol4-yl)ethyl)-quinazoline-
4(3H) ones (24) and some 6-nitro derivatives of 

thiazole-containing 4-(3H)-quinazolinones (12) 
with potential anticancer activities against a 
panel of cell lines. Due to the structural 
similarity of quinazolinone and its isostere 
pyridopyrimidinone and also the valuable 
cytotoxic effects of both thiazole and 
pyridopyrimidinone bearing compounds, in this 
study, a series of pyridopyrimidinone-thiazole 
hybrids were synthesized and their cytotoxic 
activities were determined against MCF-7 and 
HeLa cell lines using MTT assay. 

MATERIALS AND METHODS 

Chemicals and Instruments 

All starting materials, reagents, and solvents 
were purchased from commercial suppliers like 

Merck (Germany) and Aldrich (USA) 
companies. The purity of the synthesized 
compounds was proved by thin-layer 
chromatography (TLC) using various solvents. 
Merck silica gel 60 F254 plates were applied for 
analytical TLC. 1HNMR spectra were recorded 
using a Bruker 400 MHz spectrometer 
(Germany) and chemical shifts are expressed as 
δ (ppm) with tetramethylsilane as internal 
standard. The infrared (IR) spectra were 
obtained on a Shimadzu 470 spectrophotometer 
(Japan) (potassium bromide disks). Melting 
points were determined using an electrothermal 
melting point analyzer apparatus and are 
uncorrected. MCF-7 (breast cancer) and HeLa 
(cervical cancer) cell lines were purchased   
from the Pasteur Institute of Iran (Tehran, I.R. 
Iran). 

Preparation of compounds 
3-(2-(2-Phenylthiazol-4-yl)ethyl)pyrido 

[2,3-d]pyrimidin-4(3H)-one derivatives K1-K5 
were prepared from two separate reactions steps 
to produce the primary amine 2-(2-phenyl-
thiazol-4-yl)-ethylamine G and benzoxazinone 
derivatives J1-J5, respectively, as depicted in 
Fig. 1. The primary amine G was synthesized 
through a five-step route. In the first step, 4-
phthalimido-2-butanone B was prepared by the 
addition of methyl vinyl ketone to phthalimide     
A which was brominated in the second step to 
give 1-bromo-4-N-phthalimido-2-butanone C. 
Nucleophilic substitution of thiobenzamide E to 
the brominated intermediate C followed by ring 
closure furnished the thiazole derivative F. The 
thiazole derivative F was reacted with hydrazine 
hydrate to produce the free amine, 2-phenyl-4-(2-
aminoethyl) thiazole G (12). The pyridooxazinones 

J1-J5 with different substituents at position 2 were 
synthesized from the reaction of 2-amino 
nicotinic acid H and different acyl chlorides. The 
reaction of the primary amine G with these 
pyridooxazinones J1-J5 yielded the final 
compounds K1-K5 as explained below.  

Details of preparation procedures and 
chemistry of synthesized compounds 

Procedure for the preparation of N-acyl 
nicotinic acids (I1-I5). Each acyl chloride 
(0.37 mol) was added in a drop-wise manner to a 
mixture of compound H (0.25 mol) in 
dimethylformamide (125 mL) at such a rate 
that the temperature of the mixture did not rise 
above 40 °C.  



Synthesis of novel pyridopyrimidine derivatives

457 

Fig. 1. General reaction scheme for the preparation of target compounds K1-K5. 

The mixture was stirred at room temperature 
for at least an additional 3 h. Completion of the 
reaction was determined by TLC and the 
mixture was poured into water (1 L)                          
and stirred for 1 h. The precipitated product     
was collected by filtration, washed with cold 
water, and dried under reduced pressure 
yielding I1-I5 as white or pale yellow powders 
(60-75%). 

Procedure for the preparation of 2-substituted-

pyridooxazinone (J1-J5) (25)  

Each N-acyl nicotinic acid I (0.125 mol) was 
dissolved in acetic anhydride (90 mL) and, 
while stirring, slowly heated to 170-180 °C in a 

round-bottom flask equipped with a claisen-
distillation head. Completion of the reaction 
was confirmed by TLC, and the produced acetic 
acid was distilled under reduced pressure. 
The residue was then cooled and the product 
was washed with n-hexane to give compounds 
J1-J5 as pale yellow solids (60-75%) which 
were used directly for the next step. 

Procedure for the preparation of 3-(2-(2-
phenylthiazol-4-yl)ethyl)pyrido[2,3-d]pyrimidin-
4(3H)-one derivatives (K1-K5) 

To prepare 3-(2-(2-phenylthiazo          

l-4-yl)ethyl)pyrido[2,3-d]pyrimidin-4(3H)-one 

derivatives K1-K5, 0.5 mmol of the 
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corresponding pyridooxazinones J1-J5 was 

refluxed with 1 mmol of the free amine G in 

glacial acetic acid (15 mL) for 6-7 h. After 

completion of the reaction, acetic acid was 

evaporated under reduced pressure and the 

residue was purified with preparative TLC to 

obtain the final products K1-K5 as white or 

yellowish crystals (25-40%). 

 

Cytotoxicity assay 

MCF-7 and HeLa cells were grown in RPMI 
1640 medium completed with 5% v/v fetal 
bovine serum, 100 U/mL penicillin, and                       
100 mg/mL streptomycin and maintained at                 
37 °C in a humidified atmosphere (90%) 
containing 5% CO2. The medium was changed 
every two to three days and sub-cultured when 
the cell population density reached 70-80% 
confluence. After 2-3 subcultures, 180 µL of 
the cell suspensions (5 × 104 cells/mL) were 
seeded in 96 well plates and incubated for 24 h 
(26). The stock solutions of the final 
compounds K1-K5 (10 mM, 1 mL) were 
prepared using a minimum volume of dimethyl 
sulfoxide (DMSO) and serial dilutions 
appropriately performed by the medium to 
reach the desired concentrations for MTT 
assay. After 24 h incubation, 20 µL of                 
different concentrations of final compounds 

were added as such to have final concentrations 
(in the wells) of 1, 10, 50, 100, 200 µM                              
for HeLa and 100, 200, 250, 300, 350 µM                    
for MCF7 cells, respectively. Paclitaxel at                       
1 µM was used as a standard anticancer                       
drug for comparison. The wells containing                  
only the cell suspension and the wells 
containing the medium alone were regarded as 
the negative control and the blank, respectively. 
The microplates were further incubated for                   
48 h (19,26). 

To evaluate cell survival, treated cells                         

were incubated with 20 µL of MTT                        

solution (5 mg/mL in phosphate buffer 

solution) for 4 h, afterwards, the culture 

medium was aspirated and 150 μL of DMSO 

was added and pipetted up and down to dissolve 

formazan crystals. The absorbance of each well 

was measured at 540 nm using the enzyme-

linked immunosorbent assay (ELISA) plate 

reader  Awareness USA (19,26). Each 

experiment was performed triplicate and 

repeated in three different days. 

The percentage of cell viability was 

calculated using the following equation: 

𝐶𝑒𝑙𝑙 𝑆𝑢𝑢𝑟𝑣𝑖𝑣𝑎𝑙 %

=
MA of the drug treated wells − MA of the blank

MA of the negative control well − MA of the blank
× 100 

where, MA is mean absorbance. IC50 values were 

calculated by plotting the log10 percent of cell 

viability against compound concentrations (13). 

 

Statistical analysis 

The results were reported as mean ± SD. The 

IC50 of each compound was determined using 

the achieved dose-percent of inhibition curve. 

Analysis of variance (ANOVA) followed by 

Tukey's posthoc test was used to determine the 

differences between various groups,                                 

P values ≤ 0.05 were considered significant. 

 
RESULTS 

 
Chemistry 

2-(2-Phenyl-thiazol-4-yl)-ethylamine (G) 

Brownish powder MP: 70-72 ○C, yield 68%. 
1HNMR (400 MHz-DMSO-d6) δ (ppm): 2.58 

(2H, s, NH2), 3.01 (2H, t, J = 6.4 Hz, CH1), 

3.18 (2H, t, J = 6.4 Hz, CH2), 6.99(1H, s, CH4), 

7.42-7.48 (3H, m, CH9, CH10, CH11), 7.92-

7.98 (2H, m, CH8, CH12). 

 

2-Methyl-3-(2-(2-phenylthiazol-4-yl)ethyl)  
pyrido[2,3-d]pyrimidin-4(3H)-one (K1) 

White powder MP: 115-117 ○C, yield 65%. 

IR (KBr, cm-1) vmax = 3067 (C-H, Ar),                          

2932 (C-H), 1696 (C=O), 1527 (C=C, Ar). 

1HNMR     (400 MHz-DMSO-d6) δ (ppm): 

1.18(3H, s, CH20), 3.15 (2H, t, J = 7.2 Hz, 

CH10), 4.04 (2H, t, J = 7.2 Hz, CH9), 6.92 (1H, 

s, CH11), 7.25-7.30 (3H,m, CH16,CH17, 

CH18), 7.6-7.65 (2H, m, CH15, CH19), 7.68-

7.77 (3H, m, CH5, CH6, CH7), IR (KBr, cm-1) 

vmax = 3006 (C-H, Ar), 2922 (C-H), 1684 

(C=O), 1527 (C=C, Ar). 

 

2-Ethyl-3-(2-(2-phenylthiazol-4-yl)ethyl) 

pyrido[2,3-d]pyrimidin-4(3H)-one (K2) 

White powder MP: 118-120 ○C, yield 72%. 

IR (KBr, cm-1) vmax = 3047 (C-H, Ar), 2918 (C-

H), 1683 (C=O), 1567 (C=C, Ar). 1HNMR          

(400 MHZ-DMSO-d6) δ (ppm): 0.89(3H, t,                             
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J = 4.8 Hz, CH21), 1.31 (2H, q, J = 5.6 Hz, 

CH20), 3.25(2H, t, J = 7.2 Hz, CH10), 4.13(2H, 

t, J = 7.2 Hz, CH9), 7.01 (1H, s, CH11), 7.34-

7.40 (3H, m, CH16, CH17, CH18), 7.70-7.75 

(2H, m, CH15, CH19), 7.78-7.88 (3H, m, CH5, 

CH6, CH7). 

2-Propyl-3-(2-(2-phenylthiazol-4-yl)ethyl) 

pyrido[2,3-d]pyrimidin-4(3H)-one (K3) 

Milky color powder MP: 131-133 ○C, yield 

58%. IR (KBr, cm-1) vmax = 3080 (C-H, Ar), 

2926 (C-H), 1712 (C=O), 1577 (C=C). 1HNMR 

(400 MHZ-DMSO-d6) δ (ppm): 0.09(3H, t, J = 

6.8 Hz, CH22), 0.88 (2H, hex, J = 6.0 Hz, 

CH21), 1.30 (2H, t, J = 6.8 Hz, CH20), 

3.25(2H, t, J = 7.2 Hz, CH10), 4.13 (2H, t, J = 

7.2 Hz, CH9), 7.01 (1H, s, CH11), 7.33-7.40 

(3H, m, CH16, CH17, CH18), 7.70-7.75 (2H, 

m, CH15, CH19), 7.78-7.87 (3H, m, CH5, CH6, 

CH7). 

2-Phenyl-3-(2-(2-phenylthiazol-4-yl)ethyl) 

pyrido[2,3-d]pyrimidin-4(3H)-one (K4) 

Yellow crystals MP: 162-165 ○C, yield 75%. 

IR (KBr, cm-1) vmax = 3100 (C-H, Ar), 2970 (C-

H), 1698 (C=O), 1597 (C=C). 1HNMR (400 

MHZ-DMSO-d6) δ (ppm): 3.16(2H, t, J = 7.2 

Hz, CH10), 4.04(2H, t, J = 7.2Hz, CH9), 

6.92(1H, s, CH11), 7.25-7.30 (5H, m, CH16, 

CH17, CH18, CH20, CH24), 7.62-7.64 (3H, m, 

CH21, CH22, CH23), 7.70-7.78 (5H, m, CH5, 

CH6, CH7, CH15, CH19). 

2-(4-Chlorophenyl)-3-(2-(2-phenylthiazol-4-
yl)ethyl)pyrido[2,3-d]pyrimidin-4(3H)-one (K5) 

Pale gray powder MP: 173-175 ○C, yield 

64%. IR (KBr, cm-1) vmax = 3060(C-H, Ar), 

2863 (C-H), 1684 (C=O), 1588 (C=C). 1HNMR 

(400 MHZ-DMSO-d6) δ (ppm): 3.31(2H, t, J = 

8.8 Hz, CH10), 3.93 (2H, s, CH9), 6.94 (1H, s, 

CH11), 7.28-7.34 (5H, m, CH16, CH17, CH18, 

CH20,CH24), 7.63-7.70 (5H, m, CH5, CH6, 

CH7 ,CH15, CH19), 7.73-7.76 (2H, m, CH21, 

CH23 ). 

Cytotoxic effect of synthesized compounds 

The results of the MTT assay for evaluation 

of cytotoxic effects of compounds K1-K5 are 

presented in Figs. 2 and 3 on MCF-7 and HeLa 

cell lines, respectively, which showed 

significant toxic effects (P < 0.5) compared 

with the negative control group on both cell 

lines. IC50 of the target compounds against 

MCF-7 and HeLa cell lines are also listed in 

Table 1. 

Fig. 2. Cytotoxic effects of compounds K1-K5 on HeLa cells following exposure to the different concentrations (μM) of 

compounds. Cell survival was determined using the MTT method. Data are presented as mean ± SD *P < 0.05 and 
●P < 0.001 indicate significant differences compared to the negative control group; and ○P < 0.05 versus the lowest

concentration of each compound. n = 3 × 3. Paclitaxel at 1 μM used as the positive control. 
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Fig. 3. Cytotoxic effects of compounds K1-K5 on MCF7 cells following exposure with the different concentrations (μM) 

of the compounds. Cell survival was determined using the MTT method. Data are presented as mean ± SD *P < 0.05 and 
●P < 0.001 indicate significant differences compared to the negative control group; and ○P < 0.05 versus the lowest

concentration of each compound. n = 3 × 3. Paclitaxel at 1 μM used as the positive control. 

Table 1. The IC50 values (μM) of compounds K1-K5 against MCF-7 and HeLa cell lines using MTT assay. 

IC50 )μM ( 
R Target compounds 

HeLa MCF-7 

113 188 Methyl K1 

105 162 Ethyl K2 

157 195 Propyl K3 

36 125 Phenyl K4 

15 119 4-Chloro phenyl K5 

DISCUSSION 

In this study, some pyridopyrimidines as 

biologically active scaffolds were conjugated 

with another well-known moiety (thiazole ring) 

in a multi-step reaction procedure to produce 

some interesting novel compounds. Next, all 

synthesized compounds were tested for their 

cytotoxic effects on two human carcinoma cell 

lines, including MCF-7 and HeLa. Different 

pyridooxazinones were used to prepare 

pyridopyrimidines. In these reactions, almost 

any primary amine may be added to 

pyridooxazinones to achieve overall 

replacement of the ring-O by the ring-N with 

the formation of pyridopyrimidines. 

Preparation of pyridooxazinones has been 

reported in several literatures using different 
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methods. It can be produced via one or two-

step(s) procedures using nicotinic acid or its 

derivatives as starting materials in high yields 

(27,28). As pyridooxazinones are highly 

reactive they should be used immediately after 

preparation. In this study, pyridooxazinones 

were prepared using a two-steps procedure. The 

final pyridopyrimidines contained 4-ethyl-2-

phenylthiazole group on position 3 of their 

structures. 

For the preparation of these 

pyridopyrimidines, a primary amine-containing 

thiazole (compound G, Fig. 1) was synthesized. 

The most practical method to prepare thiazoles 

is the Hantzsch reaction which involves the 

condensation of α-haloketones and thiourea or 

thioamides in refluxing alcohol (29). 

Phthalimide as an NH2-synthon was used here 

for the preparation of the amine G. Application 

of phthalimide in Gabriel synthesis for the 

preparation of primary amines is well-

documented (33). After alkylation, the resulting 

alkyl phthalimide is reacted with hydrazine 

hydrate to give the desired primary amine G 

and phetalazine by-product (30). Finally, the 

reaction of compound G with different 

pyridooxazinones resulted in the preparation of 

the new pyridopyrimidines K1-K5.  

By comparison of the 1HNMR spectra of 

compound G and the target compounds K1-K5, 

a single peak at 2.58 ppm belonging to the NH2 

group of G is observed while after the reaction 

of G with the pyridooxazinones this peak was 

disappeared in the 1HNMR spectra of the target 

compounds to confirm that the reaction of the 

amine and pyridooxazinones was performed. 

Also, the triplet peaks belonging to the 

methylene groups of G especially the NH2-

CH2- peak at 3.01 ppm was down fielded to 

about 4 ppm confirming the insertion of the 

amine to give electron-withdrawing amide 

bond in compounds K1-K5. 

The results of cytotoxic evaluation revealed 

that phenyl- and 4-chlorophenyl- substituted 

derivatives showed the highest cytotoxic 

activity against both cell lines, especially the 

HeLa cells, while aliphatic substituted 

compounds showed lower activity, particularly 

on MCF-7 cells. Finally, compound K5 with 4-

chlorophenyl substituent exhibited the highest 

potency against MCF-7 and HeLa cells with 

IC50s of 119 μM and 15 μM, respectively. 

CONCLUSION 

In summary, some novel 

pyridopyrimidinone-thiazole hybrids were 

synthesized and their in vitro-cytotoxic 

activities were evaluated against MCF-7 and 

HeLa cell lines. The results of cytotoxic 

evaluation represented that compounds with 

phenyl and 4-chlorophenyl substitutes showed 

the highest cytotoxic activity against both cell 

lines, especially the HeLa cells, and finally 

compound K5 with 4-chlorophenyl substituent 

exhibited the highest potency against both cell 

lines. The results of the present study are 

valuable in terms of synthesis of hybrid 

molecules and also cytotoxic evaluations and 

can be useful for future investigations about the 

design of novel pyridopyrimidinone-thiazole 

hybrids possessing better cytotoxic activities.  
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