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Since their characterization as conserved modules that regulate progression

through the eukaryotic cell cycle, cyclin-dependent protein kinases (CDKs)

in higher eukaryotic cells are now also emerging as significant regulators

of transcription, metabolism and cell differentiation. The cyclins, though

originally characterized as CDK partners, also have CDK-independent

roles that include the regulation of DNA damage repair and transcriptional

programmes that direct cell differentiation, apoptosis and metabolic

flux. This review compares the structures of the members of the CDK and

cyclin families determined by X-ray crystallography, and considers what

mechanistic insights they provide to guide functional studies and dis-

tinguish CDK- and cyclin-specific activities. Aberrant CDK activity is a

hallmark of a number of diseases, and structural studies can provide

important insights to identify novel routes to therapy.
1. Introduction
Members of the cyclin-dependent protein kinase (CDK) family were originally

characterized as serine/threonine-specific protein kinases activated by the

expression of cyclin partners to drive the eukaryotic cell cycle [1]. Within the

CMGC branch of the kinome, 20 proteins are now considered to be members

of the CDK family that can be grouped into different phylogenetic sub-branches

(see [2] for criteria for inclusion, illustrated and updated in [3]). In overview,

in addition to those CDKs that regulate the cell cycle (CDKs 1, 2, 4 and 6), a

substantial sub-branch of the family (CDKs 7, 8, 9, 12 and 13) regulates tran-

scription through phosphorylation of the heptad repeats that comprise the

C-terminal tail of RNA polymerase II (CTD) [4]. CDK7 is unusual in that it

also indirectly regulates the cell cycle by activating CDKs 1, 2, 4 and 6 [5,6].

CDK3 phosphorylates retinoblastoma protein (pRB) to promote the transition

from quiescence (G0) into G1 [7].

Other CDKs (CDKs 5, 10, 11, 14–18 and 20) have more diverse, CDK-

unique functions that are frequently tissue-specific [8]. For example, CDK5

was one of the first CDKs to be characterized in non-cycling cells [9]. CDK10

is implicated in regulating gene transcription, but not through RNA pol II

phosphorylation. It phosphorylates diverse substrates including the ETS2 onco-

protein and the protein kinase PKN2, and mutations in its cognate cyclin, cyclin

M, result in STAR syndrome, a human developmental disorder [10,11]. CDK10

mutant and knockout mice also show growth and developmental delays [12].

CDK11–cyclin L complexes regulate RNA splicing, studied, for example, in

the context of human immunodeficiency virus (HIV) transcript processing

[13]. However, insights into these CDK–cyclin interactions are limited by the

lack of structures for CDK10- and CDK11-containing complexes.

To partner the CDKs in humans, approximately 30 proteins are classified as

cyclins [3,8]. The cyclins share very little sequence homology, but are structu-

rally defined by the presence of either one or two copies of the cyclin box

fold (CBF) [3,14]. The structures of monomeric CDK2 and cyclin A and of
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Table 1. CDK-containing complexes deosited in the Protein Data Bank (PDB).

CDK partnersa

CDK1 cyclin B, Cks1, Cks2

CDK2 cyclin A/B/E, KAP, Cks1, p27KIP1, Spy-1

CDK4/6 cyclin D (structurally CDK4 – cyclin D), viral cyclin

(CDK6), p16INK4A (CDK6), p19INK4D (CDK6),

HSP90 – Cdc37 (CDK4), p18INK4C – cyclin K (CDK6)

CDK5 p25

CDK8 cyclin C

CDK9 cyclin T, Tat, AFF4, TAR

CDK12 cyclin K

CDK13 cyclin K
aPartner proteins included in the table are those for which CDK-complex
structures have been deposited in the Protein Data Bank.
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CDK2–cyclin A in various activation states were together

taken to be a model for the regulation of the CDK family

by cyclin binding and phosphorylation [15]. However, sub-

sequent studies have shown that even closely related CDKs

have distinct structural and sequence peculiarities. These

differences translate into diverse substrate preferences and

modes of regulation. CDK activity is wired into cell-type-

specific signalling networks with the result that, taken

together, knockout mice studies reveal both the redundancy

inherent within the cell cycle CDKs, but also their tissue-

specific activities ([16], CDK1; [17,18], CDK2; [19,20], CDK4;

and [21,22], CDK6).

Dysregulation of CDK activity, either through activation of

proteins that promote CDK activity or inactivation of oncogene-

induced senescence pathways, is a common occurrence in

various cancers [23–27]. Identifying and characterizing those

cancers that require specific CDK activities for proliferation

will provide the mechanistic understanding to better employ

CDK-selective inhibitors. However, the importance of CDK

activity to cancer initiation, growth and differentiation is

further complicated by the emerging cell-cycle-independent

roles of individual CDKs and cyclins in mammalian cells

that are, respectively, cyclin and CDK partner-independent

[28–30].

In this review, we compare and contrast the various

monomeric CDK, CDK–cyclin and CDK-containing assem-

blies for which structures have been determined, and

discuss how they might help to elucidate the different mech-

anisms that regulate CDK activity. Proteomic studies are

identifying multiple proteins that bind to CDKs and cyclins

that apparently do not share sequence features with proteins

for which structures bound to CDKs or cyclins are available

(table 1). A comparison of the structures of CDK–cyclin com-

plexes reveals how the CDK and cyclin partners can differ in

their relative disposition and the alternative surfaces that can

be exploited to recognize CDK substrates and regulators. The

extent to which protein interaction sites are conserved and

recycled within the CDK and cyclin families is yet to be

fully explored, but will be reviewed here. The kinetic and cat-

alytic mechanism of protein kinases including CDK2 was

reviewed in 2012 [31]. The structures of CDK–cyclin com-

plexes bound to ATP-competitive inhibitors have also been

reviewed recently [32], and these will only be discussed in

so far as they give insights into functionally significant

conformations.
2. Relating structure and function
2.1. The inactive monomeric CDK fold
CDKs vary in the lengths of N- and C-terminal sequences

that bookend the conserved, central protein kinase domain

[8] (figure 1). Overall, the structures of cyclin-free CDK1

([34], PDB 4YC6), CDK2 ([35], PDB 1HCK), CDK6 ([36], e.g.

PDB 5L2S), CDK7 ([37], PDB 1UA2) and CDK16 ([38], PDB

5G6 V) superimpose very well. For example, monomeric

CDK2 and CDK7 overlay with an r.m.s.d. (root-mean-

square deviation) of 1.49 Å over 262 equivalent Ca atoms.

They share conserved structural features that ensure they

are catalytically inactive (figure 2a). The start of the activation

loop (defined as the sequence between the conserved DFG

and APE motifs, residues 145–172 in CDK2) adopts a short
a-helical conformation (aL12) that blocks the C-helix from

swinging in to reshape the back of the active-site cleft. A

characteristic of the glycine-rich (residues 12–16 in CDK2

that encodes the conserved GXGXXG motif ) and activation

loops is their relative mobility. As a result, differences

between cyclin-free CDK structures are most evident

around the active site (figure 2b,c). Accompanying these

changes are more subtle differences in the relative disposi-

tions of the N- and C-terminal lobes that lead to other

conserved residues within the catalytic sites adopting

positions that are incompatible with catalysis (figure 2b).

The classical model of CDK activation exemplified by

CDK2–cyclin A is not applicable to the CDK5-related sub-

branch of the CDK family of which CDK16 is a member

[3]. There are several emerging unusual features of CDK16

activation that would benefit from structural characterization.

A CDK16 feature that it shares with CDKs 14, 15, 17 and 18 is

an extended N-terminal regulatory region before the start of

the kinase domain. This sequence is important for CDK16

association with its cognate cyclin, cyclin Y or cyclin Y-like

1 [3,41–43]. In addition, stable association of cyclin Y with

either CDK14 [44] or CDK16 [45] requires cyclin Y phos-

phorylation and binding to 14-3-3, suggesting that a

classical bidentate 14-3-3–ligand interaction [46] may help

to organize cyclin Y to bind to its cognate CDK partner.
2.2. CDK2 – cyclin A activation
CDK2 partners cyclin E during late G1 and is subsequently

bound to cyclin A during S-phase for DNA replication [1].

A series of structures of CDK2 bound to cyclin A provided

snapshots of the structural changes that accompany cyclin

binding and phosphorylation of the CDK2 activation loop

[39,47,48] (figure 3a). Subsequent studies that have interro-

gated the kinetics of CDK2 activation in a cellular context

have demonstrated that CDK-activating kinase (CAK, a com-

plex of CDK7 and cyclin H in humans) is active against CDK2

(i.e. through phosphorylation of CDK2 T160), which is then

proposed to bind to cyclin A [52]. This result suggests a

model in which flexibility around T160 is required for

CDK2 to be recognized by CAK and that the adoption of

an ordered activation loop conformation accompanies



HsCDK1    182 STPVDIWSIGTIFAELAT-KKPLFHGDS---------EIDQLFRIFRALGTPNNEVWPEV 
HsCDK2    181 STAVDIWSLGCIFAEMVT-RRALFPGDS---------EIDQLFRIFRTLGTPDEVVWPGV 
HsCDK3    181 TTAVDIWSIGCIFAEMVT-RKALFPGDS---------EIDQLFRIFRMLGTPSEDTWPGV 
HsCDK4    192 ATPVDMWSVGCIFAEMFR-RKPLFCGNS---------EADQLGKIFDLIGLPPEDDWPRD 
HsCDK5    180 STSIDMWSAGCIFAELANAGRPLFPGND---------VDDQLKRIFRLLGTPTEEQWPSM 
HsCDK6    197 ATPVDLWSVGCIFAEMFR-RKPLFRGSS---------DVDQLGKILDVIGLPGEEDWPRD 
HsCDK7    191 GVGVDMWAVGCILAELLL-RVPFLPGDS---------DLDQLTRIFETLGTPTEEQWPDM 
HsCDK8    212 TKAIDIWAIGCIFAELLT-SEPIFHCRQEDIKTSNPYHHDQLDRIFNVMGFPADKDWEDI 
HsCDK9    207 GPPIDLWGAGCIMAEMWT-RSPIMQGNT---------EQHQLALISQLCGSITPEVWPNV 
HsCDK10   217 TTSIDMWAVGCILAELLA-HRPLLPGTS---------EIHQIDLIVQLLGTPSENIWPGF 
HsCDK11A  604 STAVDMWSVGCIFGELLT-QKPLFPGNS---------EIDQINKVFKELGTPSEKIWPGY 
HsCDK11B  616 STAVDMWSVGCIFGELLT-QKPLFPGKS---------EIDQINKVFKDLGTPSEKIWPGY 
HsCDK12   914 TPAIDVWSCGCILGELFT-KKPIFQANL---------ELAQLELISRLCGSPCPAVWPDV 
HsCDK13   892 TPAIDVWSCGCILGELFT-KKPIFQANQ---------ELAQLELISRICGSPCPAVWPDV 
HsCDK14   310 STCLDMWGVGCIFVEMIQ-GVAAFPGMKD--------IQDQLERIFLVLGTPNEDTWPGV 
HsCDK15   278 SSELDIWGAGCIFIEMFQ-GQPLFPGVSN--------ILEQLEKIWEVLGVPTEDTWPGV 
HsCDK16   340 STQIDMWGVGCIFYEMAT-GRPLFPGST---------VEEQLHFIFRILGTPTEETWPGI 
HsCDK17   367 STQIDMWGVGCIFFEMAS-GRPLFPGST---------VEDELHLIFRLLGTPSQETWPGI 
HsCDK18   317 STPIDMWGVGCIHYEMAT-GRPLFPGST---------VKEELHLIFRLLGTPTEETWPGV 
HsCDK19   212 TKAIDIWAIGCIFAELLT-SEPIFHCRQEDIKTSNPFHHDQLDRIFSVMGFPADKDWEDI 
HsCDK20   182 DQGVDLWSVGCIMGELLN-GSPLFPGKN---------DIEQLCYVLRILGTPNPQVWPEL 

HsCDK1    232 ESLQDYKNT-FPK----WKPGSLASHV--KNLD--ENGLDLLSKMLIYDPAKRISGKMAL 
HsCDK2    231 TSMPDYKPS-FPK----WARQDFSKVV--PPLD--EDGRSLLSQMLHYDPNKRISAKAAL 
HsCDK3    231 TQLPDYKGS-FPK----WTRKGLEEIV--PNLE--PEGRDLLMQLLQYDPSQRITAKTAL 
HsCDK4    242 VSLPRG---AFPP----RGPRPVQSVV--PEME--ESGAQLLLEMLTFNPHKRISAFRAL 
HsCDK5    231 TKLPDYKPY-PMY----PATTSLVNVV--PKLN--ATGRDLLQNLLKCNPVQRISAEEAL 
HsCDK6    247 VALPRQ---AFHS----KSAQPIEKFV--TDID--ELGKDLLLKCLTFNPAKRISAYSAL 
HsCDK7    241 CSLPDYVTF--KS----FPGIPLHHIF--SAAG--DDLLDLIQGLFLFNPCARITATQAL 
HsCDK8    271 KKMPEHSTLMKDFRRNTYTNCSLIKYMEKHKVKPDSKAFHLLQKLLTMDPIKRITSEQAM 
HsCDK9    257 DNYELYEKLELVK----GQKRKVKDRL--KAYVRDPYALDLIDKLLVLDPAQRIDSDDAL 
HsCDK10   267 SKLPLVGQYSLRK----QPYNNLKHKF--P-WL-SEAGLRLLHFLFMYDPKKRATAGDCL 
HsCDK11A  654 SELPVVKKMTFSE----HPYNNLRKRF--GALL-SDQGFDLMNKFLTYFPGRRISAEDGL 
HsCDK11B  666 SELPAVKKMTFSE----HPYNNLRKRF--GALL-SDQGFDLMNKFLTYFPGRRISAEDGL 
HsCDK12   964 IKLPYFNTMKPKK----QYRRRLREEF--SFIP--SAALDLLDHMLTLDPSKRCTAEQTL 
HsCDK13   942 IKLPYFNTMKPKK----QYRRKLREEF--VFIP--AAALDLFDYMLALDPSKRCTAEQAL 
HsCDK14   361 HSLPHFKPERFTL----YSSKNLRQAW--NKLSYVNHAEDLASKLLQCSPKNRLSAQAAL 
HsCDK15   329 SKLPNYNPEWFPL----PTPRSLHVVW--NRLGRVPEAEDLASQMLKGFPRDRVSAQEAL 
HsCDK16   390 LSNEEFKTYNYPK----YRAEALLSHA--PRLD--SDGADLLTKLLQFEGRNRISAEDAM 
HsCDK17   417 SSNEEFKNYNFPK----YKPQPLINHA--PRLD--SEGIELITKFLQYESKKRVSAEEAM 
HsCDK18   367 TAFSEFRTYSFPC----YLPQPLINHA--PRLD--TDGIHLLSSLLLYESKSRMSAEAAL 
HsCDK19   271 RKMPEYPTLQKDFRRTTYANSSLIKYMEKHKVKPDSKVFLLLQKLLTMDPTKRITSEQAL 
HsCDK20   232 TELPDYNKISFKE----QVPMPLEEVL--PDVS—PQALDLLGQFLLYPPHQRIAASKAL 

HsCDK1    283 NHPYFNDLDNQIKKM--------------------------------------------- 
HsCDK2    282 AHPFFQDVTKPVPHLRL------------------------------------------- 
HsCDK3    282 AHPYFSSPE-PSPAARQ----YV-----LQRFR---------H----------------- 
HsCDK4    291 QHSYLHKDEGNPE----------------------------------------------- 
HsCDK5    282 QHPYFSDFCPP------------------------------------------------- 
HsCDK6    296 SHPYFQDLERCKENLDS----HLPPSQNTSELN---------TA---------------- 
HsCDK7    291 KMKYFSNRPGPTPGCQL----PRPNCP-VETLK---------EQSNPALA--I----KR- 
HsCDK8    331 QDPYFLEDPLPTSDVFAGCQIPYPKREFLTEEEPDDKGDKKNQQQQQGNNH--------- 
HsCDK9    311 NHDFFWSDPMPSDLKGM----LSTHLTSMFEYL--A--PPRRKGSQITQ----------- 
HsCDK10   319 ESSYFKEKPLPCEP--E----LMPTFPHHRNKR--A--APA-----TSEG---------- 
HsCDK11A  707 KHEYFRETPLPIDP--S----MFPTWPAKSEQQ--R--VKRGTSPRPPEG---------- 
HsCDK11B  719 KHEYFRETPLPIDP--S----MFPTWPAKSEQQ--R--VKRGTSPRPPEG---------- 
HsCDK12  1016 QSDFLKDVELSKMAPPD-----LPHWQDCHELW--S--KKRRRQRQSGVVVEEPPPSKTS 
HsCDK13   994 QCEFLRDVEPSKMPPPD-----LPLWQDCHELW--S--KKRRRQKQMGMTDDVSTIKAP- 
HsCDK14   415 SHEYFSDLPPRLWELTD----MSSIFT-VPNVR---------LQPEAGES---------- 
HsCDK15   383 VHDYFSALPSQLYQLPD----EESLFT-VSGVR---------LKPEMCDL---------- 
HsCDK16   442 KHPFFLSLGERIHKLPD----TTSIFA-LKEIQ---------LQKEASLR---------- 
HsCDK17   469 KHVYFRSLGPRIHALPE----SVSIFS-LKEIQ---------LQKDPGFR---------- 
HsCDK18   419 SHSYFRSLGERVHQLED----TASIFS-LKEIQ---------LQKDPGYR---------- 
HsCDK19   331 QDPYFQEDPLPTLDVFAGCQIPYPKREFLNEDDPEEKGDKNQQQQQNQHQQPTAPPQQ-- 
HsCDK20   284 LHQYFFTAPLPAHPSEL----PIPQRL--GGPA---------PKAHPGPPHIH----DF- 

aC-helix

hinge

  glycine-rich loop

activation loop

b1 b2 b3 b3

HsCDK1      1 --------------------------MEDYTKIEKIGEGTYGVVYKGRHKT-TGQ-VVAM 
HsCDK2      1 --------------------------MENFQKVEKIGEGTYGVVYKARNKL-TGE-VVAL 
HsCDK3      1 --------------------------MDMFQKVEKIGEGTYGVVYKAKNRE-TGQ-LVAL 
HsCDK4      1 ------------------------MATSRYEPVAEIGVGAYGTVYKARDPH-SGH-FVAL 
HsCDK5      1 --------------------------MQKYEKLEKIGEGTYGTVFKAKNRE-THE-IVAL 
HsCDK6      1 ----------------M-EKDGLCRADQQYECVAEIGEGAYGKVFKARDLKNGGR-FVAL 
HsCDK7      1 ----------------M-ALDV-KSRAKRYEKLDFLGEGQFATVYKARDKN-TNQ-IVAI 
HsCDK8      3 YDFKVKLSSERER----------VEDLFEYE-GCKVGRGTYGHVYKAKRKDGKDDKDYAL 
HsCDK9      1 -------MAKQYDS----VECPFCDEVSKYEKLAKIGQGTFGEVFKARHRK-TGQ-KVAL 
HsCDK10    16 IR-KEGFFTVPP----E-HRLGRCRSVKEFEKLNRIGEGTYGIVYRARDTQ-TDE-IVAL 
HsCDK11A  404 IELKQEL--PKY----L-PALQGCRSVEEFQCLNRIEEGTYGVVYRAKDKK-TDE-IVAL 
HsCDK11B  416 IELKQEL--PKY----L-PALQGCRSVEEFQCLNRIEEGTYGVVYRAKDKK-TDE-IVAL 
HsCDK12   698 YKKRPKICCPRYGERRQTESDWGKRCVDKFDIIGIIGEGTYGQVYKAKDKD-TGE-LVAL 
HsCDK13   676 SKRRPKICGPRYGETKEKDIDWGKRCVDKFDIIGIIGEGTYGQVYKARDKD-TGE-MVAL 
HsCDK14 117 ---------RHSSPSSP-TSPK-FGKADSYEKLEKLGEGSYATVYKGKSKV-NGK-LVAL
HsCDK15    87 -----------QGFQWR-KSLP-FGAASSYLNLEKLGEGSYATVYKGISRI-NGQ-LVAL 
HsCDK16   147 ---------RRLRRVSL-SEIG-FGKLETYIKLDKLGEGTYATVYKGKSKL-TDN-LVAL 
HsCDK17   174 ---------RRSRRASL-SEIG-FGKMETYIKLEKLGEGTYATVYKGRSKL-TEN-LVAL 
HsCDK18   124 ---------RMSRRASL-SDIG-FGKLETYVKLDKLGEGTYATVFKGRSKL-TEN-LVAL 
HsCDK19     3 YDFKAKLAAERER----------VEDLFEYE-GCKVGRGTYGHVYKARRKDGKDEKEYAL 
HsCDK20     1 --------------------------MDQYCILGRIGEGAHGIVFKAKHVE-TGE-IVAL 

HsCDK1     33 KKIRLESE---EEGVPSTAIREISLLKE---LRHPN-IVSLQDVLMQ----------DSR 
HsCDK2     33 KKIRLDTE---TEGVPSTAIREISLLKE---LNHPN-IVKLLDVIHT----------ENK 
HsCDK3     33 KKIRLDLE---MEGVPSTAIREISLLKE---LKHPN-IVRLLDVVHN----------ERK 
HsCDK4     35 KSVRVPNGGGGGGGLPISTVREVALLRRLEAFEHPN-VVRLMDVCATSR-----TDREIK 
HsCDK5     33 KRVRLDDD---DEGVPSSALREICLLKE---LKHKN-IVRLHDVLHS----------DKK 
HsCDK6     43 KRVRVQTG---EEGMPLSTIREVAVLRHLETFEHPN-VVRLFDVCTVSR-----TDRETK 
HsCDK7     41 KKIKLGHRSEAKDGINRTALREIKLLQE---LSHPN-IIGLLDAFGH----------KSN 
HsCDK8     52 KQI----E---GTGISMSACREIALLRE---LKHPN-VISLQKVFLSHA--------DRK 
HsCDK9     48 KKVLMENE---KEGFPITALREIKILQL---LKHEN-VVNLIEICRTK--ASPYNRCKGS 
HsCDK10    68 KKVRMDKE---KDGIPISSLREITLLLR---LRHPN-IVELKEVVVGNH--------LES 
HsCDK11A  455 KRLKMEKE---KEGFPITSLREINTILK---AQHPN-IVTVREIVVGSN--------MDK 
HsCDK11B  467 KRLKMEKE---KEGFPITSLREINTILK---AQHPN-IVTVREIVVGSN--------MDK 
HsCDK12   756 KKVRLDNE---KEGFPITAIREIKILRQ---LIHRS-VVNMKEIVTDKQDALDFKKDKGA 
HsCDK13   734 KKVRLDNE---KEGFPITAIREIKILRQ---LTHQS-IINMKEIVTDKEDALDFKKDKGA 
HsCDK14   164 KVIRLQE----EEGTPFTAIREASLLKG---LKHAN-IVLLHDIIHT----------KET 
HsCDK15   132 KVISMNA----EEGVPFTAIREASLLKG---LKHAN-IVLLHDIIHT----------KET 
HsCDK16   194 KEIRLEH----EEGAPCTAIREVSLLKD---LKHAN-IVTLHDIIHT----------EKS 
HsCDK17   221 KEIRLEH----EEGAPCTAIREVSLLKD---LKHAN-IVTLHDIVHT----------DKS 
HsCDK18   171 KEIRLEH----EEGAPCTAIREVSLLKN---LKHAN-IVTLHDLIHT----------DRS 
HsCDK19    52 KQI----E---GTGISMSACREIALLRE---LKHPN-VIALQKVFLSHS--------DRK 
HsCDK20    33 KKVALRRL---EDGFPNQALREIKALQE---MEDNQYVVQLKAVFPH----------GGG 

HsCDK1     76 LYLIFEFLSMDLKKYLDSIP------PGQYMDSSLVKSYLYQILQGIVFCHSRRVLHRDL 
HsCDK2     76 LYLVFEFLHQDLKKFMDASA-------LTGIPLPLIKSYLFQLLQGLAFCHSHRVLHRDL 
HsCDK3     76 LYLVFEFLSQDLKKYMDSTP-------GSELPLHLIKSYLFQLLQGVSFCHSHRVIHRDL 
HsCDK4     89 VTLVFEHVDQDLRTYLDKAP-------PPGLPAETIKDLMRQFLRGLDFLHANCIVHRDL 
HsCDK5     76 LTLVFEFCDQDLKKYFDSCN--------GDLDPEIVKSFLFQLLKGLGFCHSRNVLHRDL 
HsCDK6     94 LTLVFEHVDQDLTTYLDKVP-------EPGVPTETIKDMMFQLLRGLDFLHSHRVVHRDL 
HsCDK7     87 ISLVFDFMETDLEVIIKDNS--------LVLTPSHIKAYMLMTLQGLEYLHQHWILHRDL 
HsCDK8     93 VWLLFDYAEHDLWHIIKFHRASKANKKPVQLPRGMVKSLLYQILDGIHYLHANWVLHRDL 
HsCDK9     99 IYLVFDFCEHDLAGLLSNVL--------VKFTLSEIKRVMQMLLNGLYYIHRNKILHRDM 
HsCDK10   113 IFLVMGYCEQDLASLLENMP--------TPFSEAQVKCIVLQVLRGLQYLHRNFIIHRDL 
HsCDK11A  500 IYIVMNYVEHDLKSLMETMK--------QPFLPGEVKTLMIQLLRGVKHLHDNWILHRDL 
HsCDK11B  512 IYIVMNYVEHDLKSLMETMK--------QPFLPGEVKTLMIQLLRGVKHLHDNWILHRDL 
HsCDK12   809 FYLVFEYMDHDLMGLLESGL--------VHFSEDHIKSFMKQLMEGLEYCHKKNFLHRDI 
HsCDK13   787 FYLVFEYMDHDLMGLLESGL--------VHFNENHIKSFMRQLMEGLDYCHKKNFLHRDI 
HsCDK14   206 LTLVFEYVHTDLCQYMDKHP--------GGLHPDNVKLFLFQLLRGLSYIHQRYILHRDL 
HsCDK15   174 LTFVFEYMHTDLAQYMSQHP--------GGLHPHNVRLFMFQLLRGLAYIHHQHVLHRDL 
HsCDK16   236 LTLVFEYLDKDLKQYLDDCG--------NIINMHNVKLFLFQLLRGLAYCHRQKVLHRDL 
HsCDK17   263 LTLVFEYLDKDLKQYMDDCG--------NIMSMHNVKLFLYQILRGLAYCHRRKVLHRDL 
HsCDK18   213 LTLVFEYLDSDLKQYLDHCG--------NLMSMHNVKIFMFQLLRGLAYCHHRKILHRDL 
HsCDK19    93 VWLLFDYAEHDLWHIIKFHRASKANKKPMQLPRSMVKSLLYQILDGIHYLHANWVLHRDL 
HsCDK20    77 FVLAFEFMLSDLAEVVRHAQ--------RPLAQAQVKSYLQMLLKGVAFCHANNIVHRDL 

HsCDK1    130 KPQNLLID----DKGTIKLADFGLARAFGI-P---IRVYTHEVVTLWYRSPEVLLGSARY 
HsCDK2    129 KPQNLLIN----TEGAIKLADFGLARAFGV-P---VRTYTHEVVTLWYRAPEILLGCKYY 
HsCDK3    129 KPQNLLIN----ELGAIKLADFGLARAFGV-P---LRTYTHEVVTLWYRAPEILLGSKFY 
HsCDK4    142 KPENILVT----SGGTVKLADFGLARIYSY-----QMALTPVVVTLWYRAPEVLLQS-TY 
HsCDK5    128 KPQNLLIN----RNGELKLADFGLARAFGI-P---VRCYSAEVVTLWYRPPDVLFGAKLY 
HsCDK6    147 KPQNILVT----SSGQIKLADFGLARIYSF-----QMALTSVVVTLWYRAPEVLLQS-SY 
HsCDK7    139 KPNNLLLD----ENGVLKLADFGLAKSFGS-P---NRAYTHQVVTRWYRAPELLFGARMY 
HsCDK8    153 KPANILVMGEGPERGRVKIADMGFARLFNS-PLKPLADLDPVVVTFWYRAPELLLGARHY 
HsCDK9    151 KAANVLIT----RDGVLKLADFGLARAFSLAKNSQPNRYTNRVVTLWYRPPELLLGERDY 
HsCDK10   165 KVSNLLMT----DKGCVKTADFGLARAYGV-P---VKPMTPKVVTLWYRAPELLLGTTTQ 
HsCDK11A  552 KTSNLLLS----HAGILKVGDFGLAREYGS-P---LKAYTPVVVTQWYRAPELLLGAKEY 
HsCDK11B  564 KTSNLLLS----HAGILKVGDFGLAREYGS-P---LKAYTPVVVTLWYRAPELLLGAKEY 
HsCDK12   861 KCSNILLN----NSGQIKLADFGLARLYNSEE---SRPYTNKVITLWYRPPELLLGEERY 
HsCDK13   839 KCSNILLN----NRGQIKLADFGLARLYSSEE---SRPYTNKVITLWYRPPELLLGEERY 
HsCDK14   258 KPQNLLIS----DTGELKLADFGLARAKSV-P---SHTYSNEVVTLWYRPPDVLLGSTEY 
HsCDK15   226 KPQNLLIS----HLGELKLADFGLARAKSI-P---SQTYSSEVVTLWYRPPDALLGATEY 
HsCDK16   288 KPQNLLIN----ERGELKLADFGLARAKSI-P---TKTYSNEVVTLWYRPPDILLGSTDY 
HsCDK17   315 KPQNLLIN----EKGELKLADFGLARAKSV-P---TKTYSNEVVTLWYRPPDVLLGSSEY 
HsCDK18   265 KPQNLLIN----ERGELKLADFGLARAKSV-P---TKTYSNEVVTLWYRPPDVLLGSTEY 
HsCDK19   153 KPANILVMGEGPERGRVKIADMGFARLFNS-PLKPLADLDPVVVTFWYRAPELLLGARHY 
HsCDK20   129 KPANLLIS----ASGQLKIADFGLARVFSPDG---SRLYTHQVATRWYRAPELLYGARQY 
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Figure 1. Sequence alignment of the human CDK family. Greyscale shading denotes the extent of sequence conservation calculated from UniProt sequences using
CLUSTAL OMEGA [33] and exported into EXPASY BOXSHADE. Structural features described in the text are named and highlighted in colour above the alignment and located
on the fold of CDK1 (extracted from the CDK1 – Cks1 complex, PDB code: 4YC6). UniProt codes used: CDK1 (P06493), CDK2 (P24941), CDK3 (Q00526), CDK4 (P11802),
CDK5 (Q00535), CDK6 (Q00534), CDK7 (P50613), CDK8 (P49336), CDK9 (P50750), CDK10 (Q15131), CDK11A (Q9UQ88), CDK11B (P21127), CDK12 (Q9NYV4), CDK13
(Q14004), CDK14 (O94921), CDK15 (Q96Q40), CDK16 (Q00536), CDK17 (Q00537), CDK18 (Q07002), CDK19 (Q9BWU1), CDK20 (Q8IZL9). CDK11A and CDK11B result
from a gene duplication and are almost identical (97.5%).
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Figure 2. The monomeric CDK fold. (a) Structure of monomeric CDK2. The CDK kinase fold, as first exemplified by monomeric CDK2 ([39], PDB 1HCK), is composed
of a smaller N-terminal lobe that is predominantly a twisted anti-parallel b-sheet linked via a flexible hinge sequence to a larger C-terminal lobe dominated in
structure by a-helices (light blue ribbon). Structural features are highlighted: glycine-rich loop (sequence GXGXXG, cyan), aC-helix (residues 45 – 55, purple), hinge
(residues 80 – 84, yellow), activation loop (residues 145 – 172, red). The location of T160 is marked. (b) The monomeric CDK fold is conserved as shown by an overlay
of CDK1 (extracted from the structure of CDK1 – Cks2), CDK2, CDK6, CDK7 and CDK16 structures. The other CDK folds are superposed on CDK2: CDK1 (PDB 4YC6, light
grey); CDK6 (PDB 5L2S, cyan); CDK7 (PDB 1UA2, magenta) and CDK16 (PDB 5G6 V, light green). Mobility is indicated by the quality of the experimental electron
density maps, so that the derived structures can be traced with varying degrees of confidence. (c) The various conformations the activation and glycine-rich loops can
adopt are highlighted by this structural comparison. Structures reported for these loops may represent more populous low energy conformations compatible with a
particular crystal lattice. This model is supported by studies of monomeric CDK2 phosphorylated on the conserved threonine residue within the activation loop (T160
in CDK2), which exhibits approximately 0.3% of the fully active CDK2 – cyclin A complex ([40], PDB 1QMZ). The majority of the CDK2 probably corresponds to inactive
conformations, but a small fraction is in an active conformation and generates the basal activity observed.
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anchoring of the phospho-threonine residue promoted by

cyclin binding.

The flexibility of the CDK fold has also been captured in

ATP-competitive inhibitor-bound structures where inhibitor

binding helps to stabilize alternative energetically less favour-

able conformations. At the start of the activation loop, the

conserved DFG motif can adopt either an active ‘DFG-in’ con-

formation (figure 3), or an inactive ‘DFG-out’ conformation in

which the phenylalanine side chain points into the active-site

cleft and is removed from its position in the ‘regulatory spine’

of residues that characterizes the active protein kinase fold

[53]. This latter conformation has been exploited for the

design of several tyrosine kinase-specific inhibitors [54,55].

Though the majority of CDK ATP-competitive inhibitor struc-

tures determined to date have a ‘DFG-in’ conformation [32],

inhibitor binding to monomeric CDK2 ([56], PDB 5A14)

and monomeric CDK16 ([38], PDB 5G6 V) and to cyclin-

bound CDK8 (PDB 3RGF) can stabilize the CDK fold into a
‘DFG-out’ conformation. Thus, the binding of ATP-competi-

tive inhibitors interrogated by the determination of multiple

‘snapshots’ of protein kinase structures highlights the

inherent flexibility of the CDK fold and its ability to adopt

multiple conformations [31,55].
2.3. Extending the activation model to other cyclin
partners of CDK1 and CDK2

CDK1 is the closest member of the CDK family to CDK2 and

for which structures of the cyclin-free and authentic cyclin-

bound forms can also be compared (figure 3b; [34], PDB

codes 4YC6 and 4YC3). It is the only essential CDK and, acti-

vated by its partners cyclins A and B, it executes progression

through mitosis. Overall, the mechanism of CDK1 activation

is conserved with CDK2. However, an opening of the inter-

face coupled with a twist between the two proteins relative
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folds (CBFs [49], PDB 1VIN) acts as a scaffold to which the malleable unphosphorylated CDK responds to generate a binary complex that exhibits basal activity ([47],
PDB 1JST). The CDK aC-helix is rotated and relocated into the active site by engagement with the N-CBF of the cyclin subunit. At the start of the activation loop,
aL12 is melted and the conserved DFG motif adopts an active ‘DFG-in’ conformation in which the aspartate side chain coordinates a magnesium ion to productively
orientate the ATP phosphate groups for catalysis. The activation loop is extended and pulled away from the active site to form a platform that will ultimately
recognize the protein substrate around the site of phospho-transfer ([50], PDB 1QMZ). Cyclin binding also refines the relative positions of the CDK2 N- and C-terminal
lobes, so that residues within the hinge and lining the active site orientate the ATP adenine and ribose rings and phosphate groups for catalysis. Overall, the
CDK2 – cyclin A interface is extensive (2839 Å2, [51]) extending between both lobes of the CDK and the two cyclin CBFs, further strengthened by engagement
of the cyclin N-terminal helix preceding the N-CBF with the CDK C-terminal lobe. The phospho-threonine within the activation loop (T160 in CDK2) acts as a
structural hub liganded by conserved, positively charged residues located within the C-helix (R50), at the start of the activation loop (R150) and adjacent to
the catalytic aspartate residue (R126). In the absence of T160 phosphorylation, a conserved C-terminal glutamate residue (E162 in CDK2) satisfies the positively
charged side chains of the phospho-threonine-binding pocket, and the side chain hydroxyl of T160 is solvent accessible within the context of a relatively well-
ordered activation loop ([47], PDB 1JST). The inactive conformation of CDK2 is shown as a translucent ribbon. The N-CBF and C-CBF are also shown.
(b) CDK1 – cyclin B (PDB 4YC3; CDK1 grey, cyclin B translucent cyan surface). Inactive (cyclin-unassociated) CDK1 conformation shown as a translucent ribbon.
(c) CDK2 – Spy1 is shown in a similar pose (PDB 5UQ2; CDK2 blue, Spy1 translucent pink surface). (d ) Comparison of unphosphorylated CDK2 – cyclin A (PDB
1FIN; activation loop, red), T160-phosphorylated CDK2 – cyclin A with peptide present (PDB 2CCI; peptide, yellow activation loop, deep red) and CDK2 – Spy1
(PDB 5UQ2; activation loop in brown) activation loop conformations. The positions of residues (P23 to Pþ3) within the CDC6 peptide substrate (sequence
HHASPRK) with respect to the serine residue at the site of phospho-transfer (P position) are indicated.
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to CDK2–cyclin A results in a re-orientation of the C-helix

and fewer interactions between the cyclin B and CDK1

C-terminal lobes. Overall, the interfacial surface is 30%

smaller in CDK1–cyclin B compared with CDK2–cyclin

A. Crystallographic electron density maps of unphosphory-

lated CDK1 suggest that it has a more flexible activation

segment than does the comparable state of CDK2.

A comparative analysis of the sequence loci that mediate

the CDK1– and CDK2–cyclin interfaces reveals the con-

served sequence features that may explain CDK1 and CDK2

cyclin selectivity [34]. CDK2 is partnered by cyclin E during

late G1 phase and then subsequently by cyclin A [1]. Under

circumstances where CDK1 expression is knocked down, it
can also partner cyclin B [57]. A comparison of the structures

of phosphorylated CDK2 bound to cyclin A ([48], PDB 1JST),

cyclin B [58], PDB 2JGZ) and cyclin E ([51], PDB 1W98)

revealed the conserved nature of the CDK2 response to

cyclin binding [34]. Cyclins A and B conserve three large aro-

matic residues at the CDK–cyclin interface (Y170, Y177 and

Y258 in cyclin B), whereas in cyclin E the residues at these

positions have smaller side chains (N112, I119 and L202).

Given the smaller CDK1–cyclin interface compared with

CDK2–cyclin A, the structures would predict that CDK1

would bind preferentially to cyclins B and A, but that these

smaller side chains would have less impact on CDK–cyclin

affinity in the context of the larger CDK2–cyclin interface.
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A comparison of the CDK1–cyclin B and CDK2–cyclin

A/B/E structures also highlights the potential for these

closely related CDKs to be differentially regulated by

reversible phosphorylation. The antagonistic activities of

Wee1/Myt1 kinases and Cdc25 phosphatases regulate the

phosphorylation status of the CDK glycine-rich loop (defined

by the GXGXXG motif, residues 11–16 in CDK2). The struc-

ture of CDK2–cyclin A phosphorylated on Y15 illustrates

how phosphorylation promotes a glycine loop structure

that antagonizes both peptide substrate binding and the

ATP conformation required for catalysis [59]. The flexibility

of the glycine-rich loop is compatible with a model in

which the phosphorylated Y15 side chain is solvent exposed

and accessible to both kinases and phosphatases. CDK1 is

also regulated by active-site phosphorylation, and the con-

served nature of the structure in this region suggests that

the mechanism of inhibition is also conserved.

However, unlike the glycine-rich loop, the flexibilities of

the phosphorylated CDK1 and CDK2 activation loops

differ. Though the structure of a T161-phosphorylated

CDK1–cyclin B complex is yet to be determined, this com-

plex is susceptible to phosphatase treatment, suggesting

that the phosphorylated CDK1 activation segment remains

flexible [34]. By contrast, phosphorylated CDK2 T160 is

embedded within a network of ionic interactions (figure 3)

that orders the CDK2 activation segment within this region

and decreases T160 solvent accessibility. Taking Y15 as the

model, this difference could ensure that the activity of

CDK1, more so than that of CDK2, remains subject to the

ongoing antagonistic activities of CAK and phosphatases.

In particular, it would offer an opportunity for CDK1 to be

subject to rapid enzyme-mediated inactivation even in the

presence of high concentrations of cyclin B and might offer

a regulatory opportunity to distinguish CDK1 and CDK2

activities.

Ringo/Spy proteins also activate CDK1 and CDK2 and

represent a divergent branch of the cyclin family, identified

through their ability to induce meiotic maturation in Xenopus
oocytes [60,61], an activity conserved in humans [62]. Ringo

A/Spy1 is required for localizing CDK2 to telomeres, and

its absence results in defects in chromosome tethering to

the nuclear envelope [63,64]. Several studies have implicated

Spy1 in glioma, suggesting that it may also have functions in

mitosis in selected cell types [65]. Ringo A knockout mice

show similar defects to CDK2 knockout mice during sperma-

togenesis [63], suggesting that the essential function of CDK2

during meiosis might be mediated, in part, by its association

with Ringo A. Spy1 (Ringo A) encodes only a single CBF

embedded within a longer sequence and activates CDK2

through a mechanism that does not require activation loop

phosphorylation (figure 3c; [66], PDB 5UQ2). Immediately

after the DFG motif, CDK2 R157 and T158 anchor the acti-

vation loop through electrostatic interactions with Spy1

D97 and E135, respectively. CDK2 R50 and R150 that

coordinate the phosphorylated CDK2 T160 side chain in the

CDK2–cyclin A structure interact with Spy1 D136, so that

its carboxylate moiety effectively mimics a number of

interactions made by the phosphoT160 phosphate group.

These alternative interface interactions create a CDK2

activation loop conformation most reminiscent of that seen

when it is bound to cyclin A (figure 3d ). The resulting com-

plex has measurable kinase activity but is less active than

phosphorylated CDK2–cyclin A [66].
2.4. Comparison of the crystal structures of CDK – cyclin
complexes

To what extent the mechanism for CDK activation proposed

through studies on CDK2 can be extended to other members

of the CDK and cyclin families has been challenged by

further CDK–cyclin structures. Cyclin-free structures are

not available for other CDKs determined in their cognate

cyclin-bound states, so inferences about the mechanism of

activation can only be made by presuming a conserved inac-

tive monomeric CDK fold. Taken together, they provide

diverse examples of how CDK activation can be achieved;

models for activation of CDK5 and CDK4, in particular, are

quite distinct.
2.4.1. CDK4 and CDK6

CDK4 and CDK6 are frequently considered together as

promoters of G1 progression. In this context, they phosphor-

ylate relatively few substrates, notably the retinoblastoma

protein, its relatives and a number of transcription factors

[67]. A structure for a CDK6–cyclin D complex has not been

determined, but CDK6 bound by a viral cyclin provides

another illustration of how an alternative CDK–cyclin inter-

face generates an active CDK conformation in the absence of

activation segment phosphorylation (figure 4a; [68], PDB

1JOW). Viral cyclin binding re-organizes the CDK6 C-helix

and ensures that the path of the activation segment C-terminal

to T177 (equivalent to CDK2 T160) forms a peptide-binding

platform equivalent to that seen in CDK2. A novel b-sheet

interaction made between the CDK6 sequence preceding

T177 and the viral cyclin N-terminal sequence, that has no

counterpart in any other known CDK–cyclin complex

structure, stabilizes the activation segment.

The structures of non-phosphorylated and phosphory-

lated CDK4 bound to cyclin D3 ([69], PDB 3G33; figure 4c)

or cyclin D1 ([70], PDB 2W96; figure 4b), respectively, revealed

that the structural mechanism of CDK4 activation must be dis-

tinct from that of CDK1 or CDK2. Only the cyclin D

N-terminal CBF (N-CBF) binds to CDK4, the C-terminal

lobes of both proteins are splayed apart to create a solvent-

filled cleft between the two subunits. Cyclin D binding does

not induce an active CDK4 conformation. In both structures,

the CDK4 C-helix remains displaced, reminiscent of cyclin-

free CDK1 and CDK2, and the activation loop is either largely

disordered (CDK4–cyclin D3) or adopts a conformation that

occludes the active site and is incompatible with substrate

binding (CDK4–cyclin D1). Based on these structural insights,

a substrate-assisted model of CDK4–cyclin D catalysis has

been proposed in which substrate engagement with the

cyclin at the RXL site (see below) promotes the transient

folding of the CDK4 into an active conformation [69].

The CDK4 activation loop remains accessible to cycles of

phosphorylation and dephosphorylation by CAK and

phosphatases, respectively [69]. In cells, sustained CAK

activity is required to maintain CDK4 and CDK6 activity

[71], an observation supported by the CDK4–cyclin D struc-

tures. It can be hypothesized that CDK6 bound to cyclin D1,

D2 or D3, in contrast to the structure it adopts bound to a

viral cyclin (described above), might also retain flexibility

in the activation loop around T177. Whether CDK6–

cyclin D resembles CDK4–cyclin D1/D3 or alternatively
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accommodates more local activation loop flexibility in the

context of a cyclin-activated structure (i.e. more reminiscent

of the structure of CDK1–cyclin B) will require the determi-

nation of the structure of CDK6 bound to a cognate cyclin.

The conserved nature of the CDK4/6 active sites and their
ability to adopt similar structures is exemplified by the suc-

cessful recent registration for clinical use of highly selective

ATP-competitive CDK4/6 inhibitors [72].

However, there are structural differences between CDK4

and CDK6 that can impact function. For example, whereas
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CDK6 is a relatively weak client of the Hsp90–Cdc37 path-

way, CDK4 is a strong client [73–76] and many of its

partner proteins regulate protein folding and complex assem-

bly [77]. These differences in stability are reflected in the

affinities of CDK4 and CDK6 for various regulatory proteins

[78]. Taken together, these results suggest that CDK4 is an

unstable protein that is prone to unfolding and whose integ-

rity is dependent on protein association, a model further

substantiated by structural studies of a CDK4–Cdc37–

Hsp90 complex [79] (see below).

2.4.2. CDK5

CDK5 is expressed in post-mitotic neuronal cells where it

binds to p35 and p39 and phosphorylates key regulators

such as tau and b-APP [9]. Dysregulation of CDK5 activity

was initially characterized in the context of neurodegenera-

tive diseases and neurological disorders [80], although there

is increasing evidence that, in certain cellular contexts, it

can also contribute to tumorigenesis [81,82]. p35 proteolysis

promoted by neurotoxic conditions generates p25, a C-term-

inal fragment that retains the ability to activate CDK5. p25

encodes eight a-helices that have a related but distinct top-

ology when compared with the cyclin A N-CBF (figure 4d;

[83], PDB 1H4 L). Overall, given their different relative helical

dispositions, it is difficult to make direct comparisons

between the cyclin A and p25-mediated CDK interfaces,

except that they both stabilize an active CDK conformation.

Two loops linking p25 a1 to a2 and a3 to a4 make extensive

contacts with the CDK5 activation segment and stabilize a

non-phosphorylated active conformation. Within this

region, CDK5 has three arginine residues spatially equivalent

to the three arginines that coordinate CDK2 phosphoT160,

and two of them (R50 and R149) are alternatively employed

at the p25 interface.

CDK5 can also bind to cyclin E [84]. The adult brain

expresses high levels of cyclin E, which can compete with

p35 for CDK5 and inhibit CDK5 activity. In its absence,

unrestrained CDK5–p35 activity can lead to pathological

synapse growth, and formation of CDK5–cyclin E complexes

promotes synapse formation. A number of CDKs have mul-

tiple authentic cyclin partners that post-CDK activation can

impose distinct substrate preferences on their CDK partner.

However, this example is distinguished in that cyclin binding

inhibits CDK activity.

2.4.3. Transcriptional CDKs, CDK8, CDK9, CDK12 and CDK13

Within the transcriptional CDKs sub-branch, CDKs 7, 8/19

and 9 are found, respectively, as components of TFIIH, the

mediator complex CDK8 kinase module (or its paralogous

complex containing CDK19) and positive transcription

elongation factor b (P-TEFb). Collectively, they phosphorylate

both specific residues within the heptad repeats that consti-

tute the CTD (CDKs 7 and 9) and associated factors (CDKs

7, 8/19 and 9). CDK7 [85] and CDK8 [86,87] regulate the

initiation of transcription and CDK9 subsequent release

from promoter proximal arrest [88] (reviewed in [89]).

CDK12 [90–92] and CDK13 [93] bound to cyclin K are associ-

ated with transcript synthesis towards the middle and 30-end

of the emerging RNA, at which point they phosphorylate

the CTD-heptad repeats. CDK12–cyclin K also regulates

alternative last exon splicing [94].
CDK12–cyclin K promotes pre-replicative complex for-

mation during G1 by regulating the activity of cyclin E1

[95]. CDK12–cyclin K has also been reported to regulate

the expression of a subset of genes that mediate the DNA

damage response [91] and CDK13 gene sets that are involved

in growth signalling [93]. Mutations in CDK13 are associated

with developmental heart defects and intellectual develop-

ment, suggesting it is required for the execution of specific

gene expression programmes [96]. To what extent these

CDKs balance activities as part of the core machinery of

RNA pol II-dependent transcript processing against activity

on subsets of genes is yet to be fully characterized. A charac-

teristic of CDKs 12 and 13 is the presence of much longer

sequences N- and C-termini to the conserved catalytic fold

than is found in other transcriptional CDKs (figure 1).

These sequences are as yet not structurally characterized

but do contain a number of arginine/serine-rich and pro-

line-rich motifs (amongst others) and regulate CTD

phosphorylation [97].

CDK–cyclin structures have been determined for a sub-

stantial subset of the transcriptional branch of the CDK

family, CDK8 bound to cyclin C ([98], PDB 4F7S; figure 4e),

CDK9 bound to cyclin T ([99], PDB 3BLH; figure 4f ) and

CDK12 ([100], PDB 4UN0; figure 4g) and CDK13 ([93], PDB

5EFQ; figure 4h) bound to cyclin K. CDK8, CDK9 and

CDK12 are reminiscent of CDK4 and engage their cyclin part-

ners almost exclusively through their respective CDK and

cyclin N-terminal lobes. However, the CDK8–cyclin C inter-

face is made more substantial by additional interactions

between an N-terminal helix present in CDK8 that recognizes

the cyclin C N-CBF. The CDK12–cyclin K interface is also

more extensive than that between CDK9 and cyclin T,

mediated by further interactions between the CDK12 N-term-

inal lobe and the N-terminal region of cyclin K. Cyclin T

binding and activation loop phosphorylation creates a

CDK9 peptide-binding platform reminiscent of that seen in

CDK2–cyclin A [99]. Interestingly, these three cyclin-bound

CDKs differ in their activation mechanisms: CDK9 can auto-

phosphorylate in cis on T186 in vitro [99], but in vivo
phosphorylation is CDK7-dependent [101], as is phosphoryl-

ation of CDK12 [102]. CDK8 is active in the absence of

activation loop phosphorylation [103].

A more detailed structural comparison highlights other

structural differences that impact activity and regulation. The

first CDK8–cyclin C structure (PDB 3RGF) was crystallised

in the presence of sorafenib which imposed a ‘DMG-out’ con-

formation at the start of the CDK8 activation loop [103].

A substantial fraction of the following activation loop sequence

proved to be flexible and could not be built between resi-

dues R178 and V195, encompassing the predicted peptide

substrate-binding site. Subsequent structures of apo

CDK8–cyclin C (PDB 4F7S, [98]) and other CDK8–cyclin C–

ATP-competitive inhibitor structures in a ‘DMG-in’ confor-

mation ([98,104], PDB 4CRL; [105], PDB 5CEI) were also

disordered in this activation loop region. Notably, the CDK8-

specific loop linking helices aF and aG (residues 239–247),

which lies below the activation loop, is also disordered. These

observations suggest that association with other components

of the Mediator complex may be required to stabilize the

CDK8 structure in this region to activate its activity.

Taken together, the transcriptional CDKs are all character-

ized by having an extended, flexible C-terminal tail beyond

the kinase catalytic core fold (figure 4e–h). Where structures
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have been determined, they reveal that this sequence impacts

the character of the ATP-binding site (figure 5). The CDK9 C-

terminal tail is anchored by conserved residues F336 and

E337 that bind, respectively, into a hydrophobic pocket just

before the hinge sequence and into the ATP-binding site

([106], PDB 4EC8). A model can be proposed that, during

the catalytic cycle, the active, closed-state conformation is

stabilized by folding of the C-terminal tail, generating a

fully enclosed active site bounded on one side by the C-term-

inal tail and on the other by the peptide substrate. Notably,

CDK9 follows an ordered reaction mechanism in which

ATP binds first and ADP is released last [106]. Mutation of

F336 and E337 to alanine or deletion of the C-terminal tail

converts the mechanism to a random one (cf. CDK2 or

CDK5, [107]), suggesting that conformational cycling of the

tail sequence imposes reaction order. This kinetic analysis

supports a distributive rather than processive mechanism

for CTD phosphorylation by P-TEFb (see also [108]), which

might impact the distribution of phosphorylation events on

the CTD sequence [109,110]. Substrate (ATP) trapping in a

closed state is a feature of a CDK12–cyclin K-AMP–PNP

complex (PDBs 4NST [102]; and 4CXA [100]) and of a

CDK13–cyclin K–ATP complex where residues within the

tail make direct interactions with ATP ([93], PDB 5EFQ).

The binding of various ATP-competitive inhibitors also

orders the CDK8 C-terminal tail (figure 5a) ([104], PDB

4CRL; [105], PDB 5CEI; [111], PDB 5IDN; [112], PDB 5BNJ;

and [113], PDB 5HVY). Beyond its ability to shape the ATP-

binding site, it remains to be determined to what extent the

conformational flexibility of the C-terminal tail is employed
as a structural mechanism to regulate this sub-branch of the

CDK family.
3. CDK substrate recognition
The structure of CDK2–cyclin A bound to a non-hydrolysa-

ble ATP analogue and an optimal substrate peptide

(HHASPRK) revealed how the activation segment is mod-

elled to recognize a proline residue at the P þ 1 position

and a positively charged residue at P þ 3 (where P is the

phosphate-accepting residue) ([50], PDB 2CCI; figure 3d ).

Structural studies support a dissociative mechanism through

a metaphosphate intermediate in which the attacking group

(serine or threonine hydroxyl) from the peptide substrate

comes in opposite to the leaving group (phosphate ester

oxygen of the g-phosphate group of ATP), leading to inver-

sion of configuration at the phosphorus (PDB codes: 3QHR

and 3QHW [114], and 1GY3 [115]). Apart from this motif,

the only other significant sequence feature shared by many

cell cycle CDK substrates is the RXL motif, first identi-

fied by comparative sequence analysis of multiple CDK

substrates and inhibitors [116]. This sequence binds to a site

on the cyclin N-CBF that is conserved between cyclins A, B,

D and E, and was first structurally characterized following

the determination of the structure of a CDK2–cyclin

A–p27KIP1 complex (PDB 1JSU, [117]).

A feature of the cyclin B-bound CDK1 is the retention of

flexibility within the activation loop upon T161 phosphoryl-

ation [34] (figure 3b). Using a series of model peptide
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substrates, a comparative activity study suggested that for

CDK1, this enhanced flexibility translates into a more relaxed

substrate preference around the site of phospho-transfer [34].

In the presence of an RXL motif, CDK1 will phosphorylate

motifs that contain either a proline residue at P þ 2 or a posi-

tively charged residue at P þ 3. CDK1 is characterized by its

promiscuous ability to phosphorylate a wide variety of sub-

strates at multiple sites, many of which are ‘non-canonical’

[116,118–120]. The structure of CDK1 suggests a mechanism

by which activation loop flexibility, embedded in an

inherently, more flexible CDK1 fold allows CDK1 to accom-

modate a more diverse substrate set than its nearest relative

CDK2. These plastic properties may also contribute to its abil-

ity to partner non-cognate cyclins in the absence of other

CDKs to drive the cell cycle [34,121].

The structures of CDK4 bound to cyclin D1 and cyclin D3

support a model in which a catalytically competent active-site

configuration must occur transiently when CDK4–cyclin D

forms a Michaelis complex with ATP and protein substrates

(figure 4b,c). Purified CDK4–cyclin D3 requires the presence

of an RXL motif within the peptide substrate for activity,

suggesting that substrate engagement through the cyclin

recruitment site promotes both productive substrate engage-

ment and kinase remodelling. Such a substrate-assisted

catalysis model would be supported by kinetic studies in

which CDK4 has been shown to follow an ordered sequential

mechanism in which ATP binds first and the phospho-pep-

tide product leaves last [122]. CDK4/6–cyclin D complexes

monophosphorylate pRB at multiple sites and further hyper-

phosphorylation is mediated by CDK2–cyclin E [123].

Although it is not clear what function monophosphorylation

performs, taken together, these observations suggest that

CDK4 activity is more tightly regulated by substrate scaffold-

ing than CDK1 and CDK2. Whether the model extends to

CDK6 awaits the determination of the structure of CDK6

bound to an authentic D-type cyclin.

The RXL-binding cyclin recruitment site was the first to

highlight the use of substrate docking sites to enhance CDK

activity towards particular substrates [124–126]. Permu-

tations on this sequence can be accommodated with

differing affinities by cyclins to refine substrate recognition

[58,127,128]. Compatible with a docking model, crystallo-

graphic attempts to determine a substrate path between the

RXL and SPXK motifs for the binding of a model substrate

to CDK2–cyclin A failed to resolve electron density for

residues beyond the consensus sequences [129].

The ability of Cks1 to enhance the phosphorylation of a

subset of CDK1 substrates was first recognized in Xenopus
oocytes [130] and refined by further studies in Saccharomyces
cerevisiae [131]. Cks1 binds to the CDK1 C-terminal lobe

(figure 6c) and contains a phospho-threonine docking site

that can recognize phosphorylated CDK1 substrates and

promote their further hyperphosphorylation by CDK1

[132]. The order and pattern of target residue phosphoryl-

ation in multi-site phosphorylated substrates appears to be

fine-tuned by the identity of the cyclin and the presence of

Cks1 [131,133,134].

CDKs 7, 9, 12 and 13 phosphorylate the RNA polymerase

CTD. The sequence of the CTD is unusual, being composed

of 52 heptad repeats in humans, with the consensus sequence

Y-S-P-T-S-P-S. Extracted from cells, CTD residues S2 and S5

are the most abundantly phosphorylated serine residues,

while S7 is phosphorylated to a lesser extent [109,110]. The
extent of phosphorylation within cells was found to be

much less than expected, suggesting that multiple phos-

phorylation events within a single repeat or singly within

adjacent repeats must be infrequent. Various studies have,

together, suggested that the transcriptional CDKs have pre-

ferences for particular sites. For example, CDK7 has been

shown to predominantly phosphorylate S5 and S7, CDK9

to have activity towards all three serines, and CDK12 and

CDK13 to predominantly phosphorylate S2 [135]. Function-

ally significant interplay between phosphorylation sites has

been shown for CDK9 where, using model three hepta-

repeat substrates, S7 phosphorylation was found to prime

subsequent CDK9-mediated phosphorylation. In this study,

pre-phosphorylation of S2 or S5 blocked subsequent CDK9

activity and CDK9 preferentially phosphorylated S5 [108].

Unfortunately, there was no electron density to support bind-

ing of an S2 phosphorylated 13-mer substrate peptide

following attempts to co-crystallize it with CDK13 [93]. To

date, there is no detailed structural information to under-

stand the molecular determinants that distinguish the

activities of the CTD kinases towards their shared substrate

and to what extent the complex local molecular environment

impacts substrate selection.

Other CDK substrate docking sites have been identified

but as yet structural information is lacking. Analysis of a

set of S. cerevisiae Cln2 mutants has identified a surface

shared with Ccn1 and Cln1 cyclin subtypes but not with

Cln3 that recognizes a consensus substrate ‘LP motif’ that is

enriched in leucine and proline residues [136]. Modelling

the Cln2 structure on cyclin A reveals the docking site to be

adjacent but non-overlapping with the RXL-binding site on

the surface of the N-CBF. It is likely that ordered progression

through the cell cycle results both from different CDK–cyclin

pairings having different substrate selectivity and from the

fact that the different CDK–cyclin pairings are expressed at

different points in the cell cycle [137] (reviewed in [138]).
4. Regulatory protein interactions
4.1. Cell cycle CDK – cyclins: regulatory interactions

determining activity
A number of cyclin-encoded protein-binding sites or short

peptide motifs have been structurally characterized. A well-

characterized example is the recycling of the cyclin RXL

recruitment site that is exploited to either enhance or inhibit

CDK activity. Alternatively, short motifs encoded within

the cyclin sequence can be used both to dock cyclins to sub-

strates to enhance CDK activity and alternatively to localize

them to CDK regulators frequently resulting in a loss of

CDK activity.

Members of the p27KIP1/p21CIP1 cyclin-dependent

kinase inhibitor (CKI) family share an RXL motif with

RXL-containing substrates and compete with them for

CDK–cyclin association. The structure of a CDK2–cyclin

A–p27KIP1 complex (PDB 1JSU, [117]) revealed the extended

path of the N-terminal sequence of the intrinsically disor-

dered p27KIP1 protein over the upper surface of the cyclin

N-CBF (figure 6a). p27KIP1 then proceeds to disengage the

edge b2-strand from the CDK2 N-terminal lobe and occupy

the ATP-binding site, mimicking the interactions made by

the adenine ring of ATP. p27KIP1 also acts as an assembly
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factor during G1 to assist the formation of active CDK4/6–

cyclin D complexes, a role that also sequesters p21CIP1/

p27KIP1 CKIs to promote G1 progression [27,139]. The reten-

tion of CDK activity in the presence of bound p27KIP1 is

linked to the phosphorylation status of p27KIP1 Y88. Phos-

phorylation by tyrosine kinases (e.g. Src or Abl kinases) can

generate CDK4/6–cyclin D–p27KIP1 [140–142] or CDK2–

cyclin A–p27KIP1 [143] complexes that are catalytically

active. The differences in kinetics and affinity of p27KIP1

and p21CIP1 binding to CDK2–cyclin A and to CDK4–

cyclin D complexes may reflect an option for an alternative

binding mode to CDK4 [144–146]. Exploiting NMR methods,

p27KIP1 Y88 phosphorylation promotes the removal of the

310 helix that occludes the CDK2 active site [143]. The struc-

tural basis of how phosphorylated p27KIP1 binds to

CDK4/6–cyclin D to aid assembly of an active complex is

yet to be elucidated by a co-complex structure.
The INK (inhibitors of CDK) family of CKIs selectively

inhibits CDK4 or CDK6 and, through an allosteric mechan-

ism, disfavours CDK–cyclin binding [15]. Their tandem

ankyrin repeat structures exemplified by CDK6–p19INK4d

([147], PDB 1BLX; [148], PDB 1BI8) and CDK6–p16INK4a

([148], PDB 1BI7) bind in the vicinity of the CDK hinge on

the interface opposite to the surface remodelled upon cyclin

association (figure 6b). INK4 binding to CDK6 distorts the

N-terminal kinase lobe relative to the C-lobe by approxi-

mately 158, thus misaligning the key catalytic residues. The

structures of individual INKs have also been determined by

X-ray crystallography (p18INK4c, [149], PDB 1IHB) and

(p19INK4d, [150], PDB 1BD8) or solution NMR (p15INK4b,

[151], PDB 1D9S), (p16INK4a, [151], PDB 1DC2; p18INK4c,

[152], PDB 1BU9; and p19INK4d, [153], PDB 1AP7).

The cell cycle CDKs are further distinguished by the CDK

surfaces they exploit to regulate activity. For example, no
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protein equivalent to the INKs has been reported to bind to

the CDK1/2 hinge. Similarly, there is no known protein

that binds to CDK4 and CDK6 in a manner equivalent to

the binding of Cks1 or Cks2 to CDK1 ([34], PDB 4YC6;

figure 6c) or CDK2 ([154], PDB 1BUH). The CDK2 C-terminal

lobe also recognizes kinase-associated phosphatase (KAP)

that can dephosphorylate T160-phosphorylated CDK2

([155], PDB 1FQ1; figure 6d ).

In addition to helping to select mitotic substrate phos-

phorylation sites (see above), Cks1 collaborates with Skp2

to form the p27KIP1 phosphoT187-binding site within the

SCFSkp2 (Skp1–cullin–F-box) E3 ubiquitin ligase complex

([156], PDB 2AST). This example is the first to show an

F-box protein requirement for an accessory protein for

substrate recognition [157,158]. Modelling studies using

structures of sub-complexes show that a CDK2–cyclin

A–p27KIP1–Cks1–Skp1–Skp2 complex can be built [156],

but whether any subtle rearrangements occur will require

determination of the structure of the CDK2–cyclin

A–pT187p27KIP1–SCFSkp2 complex.

The LXCXE motif located towards the N-terminus of the

D-type cyclins is highly conserved and represents an interest-

ing example of a short cyclin-encoded motif that assists in

substrate recruitment. D-type cyclins share this sequence

with other cellular and viral proteins that bind to pRB

[159]. In the CDK4–cyclin D1 structure, the motif is seques-

tered in the channel between the C-terminal CDK and

cyclin lobes (figure 4b). However, the quality of the electron

density map shows that it is flexible, suggesting it could dis-

engage and remodel to bind to pRB. The structure of a

complex of the pRB pocket domain and an LXCXE-contain-

ing peptide derived from the human papilloma virus E7

protein illustrates the interaction ([160], PDB code 1GUX). It

is not known whether pRB and cyclin D engagement of

LXCXE and RXL motifs, respectively, is synergistic or antag-

onistic for promoting pRB phosphorylation by CDK4 or

CDK6, but it may be hypothesized to contribute to the mech-

anism that restricts CDK4/6 activity. Mutation of the LXCXE

motif disrupts cyclin D1 activity in some cell line contexts

where cyclin D expression has been reduced [161], but its

mutation in a cyclin D1 ‘knock-in’ mouse study did not

reveal any significant differences to the authentic cyclin D1

sequence [162].

4.2. Cyclin motifs regulating stability
Cyclin levels are tightly controlled and their degradation

is a response to signalling pathway activation. Various E3

ubiquitin ligase complexes target cyclins for degradation,

collectively employing short, flexible degron motifs to recog-

nize their various cyclin substrates. The relationship

between cyclin A- and B-containing CDK complexes and

the anaphase-promoting complex/cyclosome (APC/C) illus-

trates this point [163]. Cyclins A and B are substrates of this

E3 ubiquitin ligase and contain destruction (D) box (consen-

sus motif RxxLx[D/E][Ø]xN[N/S], [164,165]) and KEN box

(consensus motif [DNE]KENxxP) degron motifs [166], and

in the cyclin A sequence, an ABBA motif (consensus motif

KxxFxxYxDxxE, in cyclin A1 residues 132–143) mediates

binding to the APC/C. The ABBA motif is also present in

other proteins that bind to Cdc20 and Cdh1, both activators

of the APC/C [167]. It has also been called a Phe box and

was originally described in BubR1 [167–170].
Structural studies exploiting the fact that many APC/C

inhibitors contain pseudo-substrate sequences that bind

more tightly to the APC/C and its regulators than do its sub-

strates have provided opportunities to visualize D-box, KEN

box and ABBA motif binding to the APC/C. How D- and

KEN-boxes bind to the Cdc20 b-propeller domain was

revealed by the structure of the Schizosaccharomyces pombe
mitotic checkpoint complex, the motifs being encoded in

the BubR1/Mad3 subunit [171]. However, optimal D-box

recognition requires an interface generated by an APC/C

co-activator (Cdh1 or Cdc20) WD40 b-propeller domain

and the APC/C subunit Apc10 [172]. The structure of a

BubR1 KEN box-derived peptide bound to Cdc20 confirmed

the nature of the KEN box–Cdc20 interface [173]. A complex

of a peptide containing the ABBA motif (in this case derived

from the S. cerevisiae APC/C inhibitor Acm1) provided a

structural model for this cyclin A sequence, in this case bind-

ing to the alternative APC/C activator Cdh1 [174]. Blades 2

and 3 of the Cdh1 WD40 domain create a channel in which

the peptide sits. As Acm1 also encodes a pseudo-substrate

inhibitory KEN box motif, it also provided models for

cyclin A and B engagement with Cdh1 through these

sequences. The structure of the APC/C and its interactions

with various of its regulators and substrates has been

reviewed recently [175].

Members of an alternative family of E3 ubiquitin ligases,

the Skp1–Cullin–F-box (SCF) complexes also recognize and

degrade cyclins. Structures of cyclin E and cyclin D1 peptides

bound to the F-box proteins Fbw7 and FBX031, respectively,

reveal the diverse mechanisms employed. The cyclin E phos-

pho-degron is encoded within the C-terminal tail (C-terminus

at A410). Cyclin E is phosphorylated by glycogen synthase

kinase 3 (GSK3) at T395 and undergoes autophosphorylation

bound to CDK2 (at S399) to generate the phospho-degron

motif recognized by Fbw7 [176,177]. A C-terminal 31 residue

cyclin E phospho-peptide adopts an extended conformation

straddling across the top of the WD40 propeller (figure 6e).

Phosphorylated S399 and T395 are embedded in networks

of hydrogen bonds, the phosphorylated S399 (S384 in

paper) being more solvent accessible, whereas T395 (T380)

is more buried within a shallow pocket.

Cyclin D1 phosphorylation at T286 by (inter alia) GSK3b

[178] signals its degradation by promoting its nuclear extru-

sion (reviewed in [179]). However, cyclin D1 degradation is

phosphorylation-independent when promoted through this

genotoxic stress-induced pathway. Subsequent recognition

of cyclin D1 by the E3 ubiquitin ligase SCF FBXO31 is not

through direct binding of a phospho-T286-containing amino

acid motif to FBXO31. Instead, the structure of the Skp1–

FBXO31–cyclin D1 phospho-peptide (residues 279–295)

complex revealed that essentially all the interactions between

cyclin D1 and FBXO31 are made by the last four C-terminal

cyclin D1 amino acids (292–295) and not the sequence

immediately around T286 (figure 6f ) [180].
4.3. Transcriptional CDKs: regulatory interactions
exploiting alternative protein interaction sites

A comparison of the CDK–cyclin complexes regulating tran-

scription illustrates ways in which the CDK–cyclin unit can

be redeployed to expand the potential options for regulation

by protein–protein interactions. The structural variety shown
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by P-TEFb transcription factor partners suggests that it may

exploit multiple alternative interaction mechanisms. The

determination of the monomeric cyclin T2 and CDK9–

cyclin T1 structures revealed that the N-CBF recruitment

site that is highly conserved in the cell cycle cyclins (A, B,

D and E, figure 7a) is not present in cyclin T (figure 7b).

The extra turn at the C-terminal end of cyclin T helix a4

folds over the surface of the N-CBF to occlude L43, the resi-

due structurally equivalent to cyclin A W217, which forms

the heart of the RXL-binding recruitment site. The loop link-

ing helix a4 to a5 composed of residues H112–D123 is also

extended when compared to the similar inter-helix sequence

in cyclin A (T282–T287).

The absence of an N-CBF recruitment site is also a feature

of the other cyclins that partner the transcriptional CDKs.

Cyclin K shares extended a4 and a4–a5 loop structures

with cyclin T, though the paths of the a4–a5 loops diverge

([181], PDB 2I53). But structurally, the effect is the same,

and cyclin K F56 equivalent to cyclin A W217 is occluded

from solvent (figure 7c). In the cyclin H structure ([182],

PDB 1JKW and [183], PDB 1KXU), a shorter a4 helix and

loop linking a4–a5 coupled with displacement of the

N-terminal end of a5 relative to its position in cyclin T exten-

sively remodel the cyclin H structure around R63, the residue

equivalent to cyclin A W217 (figure 7d ). However, the most

significant difference imposed on the surface of the cyclin

H N-CBF in this region is from the C-terminal helix that

extends up from the C-terminal CBF (C-CBF) to make
interactions with the loop linking the N-terminal helix and

a1 of the N-CBF.

Taken together, these structural changes suggest that this

set of cyclins must exploit alternative surfaces within their

CBFs to mediate protein–protein interactions. That this is

the case was first observed following the determination of

the structure of CDK9–cyclin T in complex with HIV Tat.

Tat promotes HIV transcription by competing with com-

ponents of the inhibitory 7SK snRNP for P-TEFb association

[184,185]. It recruits P-TEFb to the trans-activation response

(TAR) element located at the 50-end of the emerging HIV tran-

script, so that P-TEFb can phosphorylate and release the RNA

Pol II for transcript synthesis [186–188].

Tat adopts an extended conformation and its structure is

dictated by the multiple interactions it makes with P-TEFb

generating a large buried surface area. It exploits the fact

that CDK9 and cyclin T only interact through their respective

N-terminal lobes to occupy the cleft they create between their

C-terminal lobes and, in so doing, stabilizes the CDK9–cyclin

T structure ([189], PDB 3MI9). The Tat acidic/proline-rich

region binds within a depression between the two CBFs

and then forms an extended open hairpin structure to head

across to interact with the CDK9 activation loop. The

cysteine-rich sequence and core are more compact and also

bind into a groove between the CBFs. Two zinc ions are coor-

dinated through multiple cysteine residues within the Tat

sequence, the second zinc site completed by cyclin T1 C261

(figure 8a).
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To what extent the viral protein is mimicking and exploit-

ing authentic cyclin T interactions was appreciated with the

determination of the structures of (i) CDK9–cyclin T–AF4/

FMR2 Family member 4 (AFF4) ([190], PDB 4IMY), a scaf-

folding component of the super elongation complex (SEC)

[191], (ii) CDK9–cyclin T–AFF4–Tat ([192], PDB 4OR5 and

[190], PDB 4IMY) and ([193], PDB 4OGR) (figure 8b), and

(iii) CDK9–cyclin T–AFF4–Tat–RNA (PDB 5L1Z). Tat

binds to members of the SEC to rescue stalled RNA polymer-

ase II during the transcription of the TAR element, and thus

reinitiates the viral transcriptional regime [192]. AFF4 binds

to cyclin T1 on the C-CBF, situated on the opposite side of

cyclin T1 to the CDK9 interaction interface [190,192], although

an individual AFF4 helix has been resolved behind the aD

helix in the C-terminal lobe of CDK9 in several, but not all

crystallographic copies.

AFF4 is an intrinsically disordered scaffolding protein that

encodes short dispersed sequences that folds upon binding to

dock to protein partners sequestering them together. The

cyclin T-binding site is within the N-terminal 73 residues of

AFF4 (figure 8b). From L34–E45, the AFF4 sequence extends

along the lower edge of the cyclin T C-CBF, then folds to form

a short helix that docks to make interactions along one helical

face with cyclin T helix a50 (C-CBF) and the C-terminal end of

helix a30 (C-CBF). Beyond L56, AFF4 nudges into the groove

between the CBFs to contact Tat, the region being further

shaped by a modification to the path taken by the cyclin T
C-terminal sequence from that adopted in P-TEFb to accom-

modate the two proteins. Taken together, the interactions

help to explain the observed enhanced affinity of Tat for

P-TEFb bound to AFF4 than P-TEFb alone.

The binding of these two P-TEFb regulators to distinct but

adjacent sites within the cyclin T C-CBF provides an opportu-

nity for the integration of information from multiple

signalling pathways that affect P-TEFb activity. Though struc-

tural details are lacking, it is known that the binding of

hexamethylene bisacetamide (HMBA)-inducible protein 1

(HEXIM1), a component of the inhibitory 7SK snRNP particle

[194], interferes with Tat binding ([195–197]), suggesting that

its interaction is also mediated through the cyclin T C-CBF.

The bromodomain protein 4 (Brd4) C-terminal P-TEFb-inter-

acting domain (PID) has been reported to not only interact

with cyclin T [198], but also both Brd4 [197] and HEXIM1

[199,200] have been proposed to also bind to CDK9,

suggesting that the canyon between the two P-TEFb subunits

might also be a hotspot for protein interaction.

4.4. Non-canonical cell cycle CDK – cyclin functions

4.4.1. CDK4/6 – cyclin D

In addition to their well-established cell cycle roles, CDK4,

CDK6 and cyclin D also regulate many other aspects of cell

behaviour such as transcription, cell metabolism [201–203],
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differentiation [204,205] and DNA repair (reviewed in

[28,29,206,207]). Some of these functions are reported to

require CDK4 or CDK6 kinase activity, but others apparently

do not, suggesting that CDK4, CDK6 and cyclin D may, in

certain contexts, act independently and scaffold or maintain

the integrity of larger signalling complexes. Whether CDK4

and CDK6 can be cyclin D-associated but not have kinase

activity remains to be determined [208,209]. By analogy

with receptor tyrosine kinases, where downstream signalling

is elicited by limited activity against a small set of spatially

optimized substrates, it can be hypothesized that CDK4

and/or CDK6 roles in regulating transcription might result

in some cases from their incorporation into large, chroma-

tin-bound complexes at gene promoters where their

substrates are co-located. The importance of these emerging

CDK4/6 and cyclin D functions to disease is being revealed

by proteomic analyses to characterize differences in CDK4/

6 and cyclin D interactomes between normal and oncogenic

states with the aim to identify changes promoting cell

transformation (for example, see [77]).

Cyclin D isoform-specific functions distinguish the pheno-

types of the cyclin D knockout mice [210] and are clearly

important clinically (for example, see [211]). In some cases,

these functions appear to be kinase independent. For example,

D-type cyclins have been reported to act in a kinase-indepen-

dent manner to antagonize the activity of the transcription

factor DMP1 [212]. Subsequent studies have shown that

D-type cyclins can enhance the transcriptional activity of,

for example, the oestrogen receptor [213–215], but inhibit

the activity of another hormone receptor, namely the andro-

gen receptor [216–218]. Cyclin D can also engage with

general transcription regulators and chromatin-modifying fac-

tors such as the histone acetyltransferase p300 [219] and can

affect chromosome integrity [220]. The importance of cyclin

D1 to the regulation of transcription has been highlighted in

a recent proteomic study that identified cyclin D1-binding

transcription factors in different organs during both normal

mouse development and in tumorigenesis [221]. Cyclin D1

is also an important component of the cell’s response to

DNA damage, promoting repair [222–224]. Bound to chroma-

tin, it can recruit RAD51 and localize to sites of DNA double-

strand breaks through a BRCA2-dependent mechanism [225].

Tissue-specific roles of the D-type cyclins are also evident

outside of cancer in the central nervous system [226–228],

where cyclin D2, but not D1 or D3 knockout mice, are

incapable of adult brain neurogenesis [226], suggesting a

cell-cycle-independent role. Mutations to cyclin D2 T280

(equivalent to cyclin D1 T286) that prevent its phosphoryl-

ation by GSK3b and subsequent nuclear export leading to

proteasomal degradation result in elevated cyclin D2 levels

that cause megalencephaly–polymicrogyria–polydactyly–

hydrocephalus syndrome (MPPH, a developmental brain

disorder) [229]. Individuals with elevated cyclin D2 as a

result of cyclin D2 mutation rather than activating mutations in

the PI3 K–AKT–GSK3b pathway have an increased incidence

of polydactyly, suggesting that characteristics of the cyclin D2

overexpression phenotype might also result from a potential

role in regulating a programme of gene expression as well as

promoting the aberrant expansion of neural precursors.

A comparison of the structures of cyclin D1 and cyclin D3

illustrates the extent of sequence conservation between the

three isoforms and reveals the locations of conserved iso-

form-specific surfaces (figure 9). Many of the transcription
factors that bind to cyclin D do not encode an obvious RXL

motif, suggesting that they may employ an alternative binding

site on the cyclin D surface. It can also be hypothesized that

some of these interactions may be indirect, for example

bridged through binding of cyclin D to RXL-containing tran-

scriptional regulators such as members of the E2F family.

Many activities of cyclin D in transcription are reported to be

kinase-independent, which suggests that the cyclin D CDK4/

6 interface may be accessible, although a kinase activity-

independent scaffolding role of a CDK–cyclin D complex

cannot be excluded. Given the structural similarities between

the relative dispositions of the CDK and cyclin subunits in

CDK4–cyclin D1/D3 and CDK9–cyclin T (figure 10), it remains

a possibility that a protein interaction site on the cyclin

C-terminal lobe is conserved between cyclin T and cyclin D.

4.4.2. Cyclins E and A

Both cyclin A and cyclin E have also been reported to have

CDK-independent roles suggesting scaffolding or regulatory

functions. However, structural details as to whether these

protein interactions require the RXL-binding site on the

N-CBF overlap with other parts of the p27KIP1-interacting

surface or employ novel binding sites are not known. Simi-

larly, there are structurally unverified reports of cell cycle

regulators binding to RNA. As examples, CDK2 and

p21CIP1 have been reported to bind to Foxo3 circular RNA

[230] and cyclin A2 to the 30-untranslated region (UTR) of

Mre11 mRNA [231]. This latter interaction is independent

of an associated CDK partner and regulates Mre11 trans-

lation. Mutational analysis mapped the binding site to the

C-CBF at a surface not previously implicated in protein

association, suggesting that the surface of cyclin A may be

more widely exploited than previously thought.

A number of studies have highlighted potential kinase-

independent functions of cyclin E [232–234]. Cyclin E1 and

E2 knockout mice are, respectively, viable or infertile in

males, and double knockouts are embryonic lethal

[232,235]. These phenotypes demonstrate the necessity for

at least one E-type cyclin in the embryo. Mutations to alanine

within the CDK2-binding interface of cyclin E, in a loop

region between helices H3 and H4, permit weak, p21Cip1/

p27Kip1-dependent binding to CDK2, but abolish cellular

kinase activity. These kinase-activity-deficient mutants re-

established the observed transformative potential of cyclin

E and restored MCM protein loading onto the pre-replication

complex to facilitate G0–S-phase transition [232]. Cyclin E

also localizes to centrosomes independently of CDK2 [236],

which may be relevant to centrosome duplication [237]. In

terms of cancer transformative potential, analysis in rat

embryonic fibroblasts has also suggested that this property

of cyclin E may, in certain circumstances, be independent of

CDK2 [234], an observation that is also consistent with ana-

lyses conducted in hepatocellular carcinoma (HCC) [233].

Cyclin E12/2/E22/2 mice stopped tumour cell proliferation

in clonogenic assays [233], while the individual function of

cyclin E subtypes was resolved in hepatocyte-specific NEMO

and global CCNE1 or CCNE2 knockout mice [238]. Cyclin

E1, and not cyclin E2, was shown to be coupled with liver

disease and hepatocarcinogenesis in this model system [238].

The kinase-independent nature of cyclin E in HCC progression

was also highlighted by the finding that CRISPR/Cas9 CDK2

deletion and kinase dead forms of CDK2 were not sufficient to
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abolish cell growth [233]. These data appear to contrast with

evidence from cyclin E amplified high-grade serous ovarian car-

cinoma, which suggest that these particular subtypes are

sensitive to CDK2 knockdown through RNA interference

[239,240]. Taken together, these results suggest that cyclin E

has kinase-independent roles and that there are subtle differ-

ences by which cyclin E and its CDK–partner CDK2 are

exploited in cancer progression. Again, whether uncharac-

terized CDK2– and cyclin A or E–protein interaction sites

mediate these activities awaits further study.
5. Aberrant mutations/processing—
structures relate to dysregulated
function

CDK–cyclin-containing protein complexes have been impli-

cated in a range of disease settings [8,241,242]. In cancer, in

particular, therapeutic design and development has been

directed at targeting members and regulators of the cell

cycle CDK–cyclin families [25,30,72,243], with emphasis on
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combatting phenotypes driven by genetic amplification

of CDK or cyclin family proteins or genetic deletion of

their regulators (e.g. the INK4 family for CDK4/6 [27]). In

addition to genetic amplification, structural alterations

through point mutation are also evident and may be relevant

to the subcellular function of these enzymes within the

cancer microenvironment.

Mutation of CDK4 R24 to C/H/L/S, first described in

melanoma [244–246], and documented in a further 27

samples in the cBioPortal database [247,248], is known to

increase kinase activity (reviewed in [249]). R24 is located

on b2 of the N-terminal lobe of CDK4 and abolishes binding

to p16INK4A [139,250]. The corresponding arginine in CDK6,

R31, coordinates through hydrogen bonds to several

p16INK4a polar/acidic residue side chains, namely D74,

T79 and D84, which may, in turn, be stabilized by R87 of

p16INK4A ([148], PDB 1BI7) (figure 11). As the sequences

of CDKs 4 and 6 are highly conserved within the N-terminal

lobe, it is anticipated that mutation of CDK4 R24 also
abolishes p16INK4A association by breaking these key inter-

actions, although this hypothesis is yet to be confirmed by

determination of a CDK4–p16INK4A structure. That this

interaction is vital to CDK4/6–p16INK4a association is con-

firmed by reciprocal mutations to D84 in p16INK4a, one of

several proposed mutational hotspots [251]. Mutation

drives aberrant activation of CDK4/6–cyclin D [252]. The

p16INK4a D84N mutant shows a stark increase in CDK4

activity relative to WTp16INK4a in an Rb phosphorylation

assay [253], and limited ability to bind to CDKs 4 and 6 in

cell-free biochemical direct binding analyses [78].

Consultation of cancer genome repositories such as

cBioPortal [247,248], the COSMIC database [254] and Tumor-

Portal [255] reveals a variety of other missense mutations

within CDK–cyclins in the context of cancer (e.g. R168C in

CDK5, R86Q CDK9, R378G in cyclin A2). However, a

number of these are insufficiently characterized (mutations

reviewed in [256]). In a number of cases, this results from

the mutations being located outside of structured or
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crystallographically resolved regions, making constructs

difficult to interrogate biophysically/biochemically, while in

other instances it is amplification/upregulation of the

CDK–cyclin component rather than mutation that is likely

to drive proliferation.

Aside from mutations to key binding-partner interaction

sites, other aberrant processing of transcripts can also lead

to impaired cellular function of CDK–cyclins. In several

tumour types, the A/G870 polymorphism within the

CCND1 transcript can result in alternate splicing [257].

A/G870 is located at the end of exon 4 before intron 4

within the 5-exon long CCND1 DNA sequence. The A870

polymorphism is reportedly more likely to lead to an alterna-

tive CCND1 transcript, which in turn codes for the translation

of cyclin D1b protein [258,259]. Cyclin D1b includes

additional residues encoded by intron 4 and thus is bereft

of key regulatory residues at the C-terminal end [257,260].

These residues include the PEST motif (named using the

single letter amino acid code) and T286, important for protein

degradation and nuclear export, respectively [260], as well as

the LXXLL motif that is involved in cyclin D transcriptional

function [257]. As noted above, this region is flexible or

unstructured and not visible in the CDK4–cyclin D3 electron

density map. Mutations to equivalent residues in cyclin D2

(T280) and cyclin D3 (T283) have also been reported for a

small subset of acute myeloid leukaemia [261] and Burkitt

lymphoma [262] sufferers, respectively. Indeed, these

mutated proteins present with similar phenotypes to cyclin

D1b expressing cells, showing adverse degradation and

enhanced nuclear localization [261–264].

In addition to DNA mutations in CDK–cyclin partners,

aberrant post-translational processing is strongly linked to

dysregulated function. One particular example in the context

of cancer are the low-molecular-weight forms of cyclin E1,

though interestingly not cyclin E2 [265,266]. Cleaved post-

translationally by elastase [267], low-molecular-weight

forms of cyclin E1 facilitate increased kinase activity,

potentially through increased CDK2 affinity [267,268]. The

low-molecular-weight forms are cleaved within the sequence

N-terminal to the known structured CBFs, and thus, any

structural rationale for differences in affinity for CDK2 between
full-length and low-molecular-weight forms remains to be elu-

cidated. Whether cyclin E1 also contains additional N-terminal

regulatory motifs, reminiscent of those seen in cyclins A and B

such as the ABBA [167] or D-box [269] motifs, and whether

these sequences are lost in low-molecular-weight forms

remain to be confirmed.
6. Macromolecular CDK-containing
complexes and electron microscopy:
the future

While an enormous wealth of detail has been revealed by

X-ray crystallography studies, the question of how CDK–

cyclin partners participate in larger macromolecular com-

plexes is yet to be fully answered. However, cryo-electron

microscopy (cryo-EM) is emerging as a technique that can

address this deficit, and several CDK–cyclin-containing

complexes have been determined.

Transcription factor IIH (TFIIH) is a large 10 subunit com-

plex recruited by RNA polymerase II (RNA pol II) during

transcription initiation and is also important in nucleotide

excision repair (NER) [6,270]. The CAK complex of CDK7–

cyclin H and Mat1 is known to be required for phosphoryl-

ation of RNA pol II CTD, but is removed from TFIIH

during NER [271,272]. However, the binding of CDK7–

cyclin H to Mat1 is not fully resolved within the TFIIH struc-

ture [273], which may reflect the ability of CAK to disengage

from TFIIH. The extended helical structure of Mat1 links the

TFIIH ATPase and helicase subunits XPD and XPB [273].

TFIIH is also regulated by another CDK-containing com-

plex, termed the Mediator complex [274]. The Mediator

complex contains approximately 30 polypeptide chains and

has a molecular weight of greater than 1 MDa. It is formed

from four distinct modules: the head, middle and tail mod-

ules, and the reversibly bound CDK8 kinase module

(CKM), which can contain CDK8 or CDK19 bound to

cyclin C [275–277]. CDK8–cyclin C inhibits RNA pol II

CTD phosphorylation by TFIIH through phosphorylation of

cyclin H at the extreme N- and C-terminal helices (on
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residues S5 and S304, respectively) [274]. Using EM, the

structure of the yeast CKM revealed that cyclin C, and

not CDK8, binds to subunit MED12. The importance of

this interaction is highlighted by mutations to the cyclin

C–MED12-binding interface that inhibit Mediator activity

and have been linked to uterine leiomyoma [278]. MED12

bridges CDK8–cyclin C with MED13, which in turn associ-

ates with MED19 of the middle module. CDK8 is shown

to associate with the head module around subunits

MED18–20 [279]. The central modules of Mediator have

been revealed recently in a cryo-EM determined structure at

4.4 Å resolution [276,280].

Inactive kinase conformations within larger complexes

can also regulate function. An example of this phenomenon

is offered by CDK4 and the Hsp90 chaperone system [79].

Hsp90 protein kinase clients are selectively recruited through

the co-chaperone Cdc37 to form a complex that holds the

kinase in a protected state until it can be relinquished to an

appropriate partner [281–283]. Indeed, in the cryo-EM struc-

ture of the Hsp90–Cdc37–CDK4 complex (figure 12), CDK4

is partially unfolded at the N-terminus, where b5 of CDK4

has lost secondary structure and winds into Hsp90 [79].

Cdc37 also supports CDK4 at the C-terminal lobe between

the aC-helix and the loop linking to b4. CDK4 is a stronger

Cdc37–Hsp90 client than CDK6 [76], and this is reflected in
the ease with which the CDK can be handed off to partner

proteins such as the D-type cyclins and members of the

INK4 family [78].
7. Concluding remarks
The expansion of the CDK family from a single essential

CDK in lower eukaryotes has enabled individual CDKs to

develop tissue-specific functions and to respond more sensi-

tively and selectively to intra- and intercellular signals.

Structural studies have revealed their distinguishing features

and help to provide explanations for their mechanistic differ-

ences. CDK–cyclin complexes have proved to be more diverse

than was originally envisaged. This structural diversity has

recently been successfully exploited to identify the first CDK

inhibitors to be registered for clinical use targeting CDK4

and CDK6 (reviewed in [32,72]). ATP-competitive CDK

inhibitors that selectively target other family members simi-

larly exploit sequence differences within the active site and/

or unique conformations that permit optimization of inhibi-

tor–CDK interactions that discriminate the family members.

Whether these inhibitors will be useful in the clinic will

require careful target validation studies to identify cellular

settings in which aberrant CDK activity is the cancer driver.

For the future, more specific chemical probes and selec-

tive antibodies are now required to provide greater

understanding of CDK roles outside of the cell cycle, in par-

ticular understanding the links between their roles

controlling the cell cycle and cell differentiation. Another

exciting development is the application of electron

microscopy to study larger CDK-containing complexes.

These structures will further our understanding of CDK regu-

lation and may well provide additional opportunities to more

selectively inhibit CDK activity in clinically relevant settings.
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