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SUMMARY

Cells can sense temporal changes of molecular signals, allowing them to predict
environmental variations and modulate their behavior. This paper elucidates bio-
molecular mechanisms of time derivative computation, facilitating the design of
reliable synthetic differentiator devices for a variety of applications, ultimately
expanding our understanding of cell behavior. In particular, we describe and
analyze three alternative biomolecular topologies that are able to work as signal
differentiators to input signals around their nominal operation. We propose stra-
tegies to preserve their performance even in the presence of high-frequency
input signal componentswhich are detrimental to the performance ofmost differ-
entiators. We find that the core of the proposed topologies appears in natural
regulatory networks andwe further discuss their biological relevance. The simple
structure of our designs makes them promising tools for realizing derivative con-
trol action in synthetic biology.

INTRODUCTION

Measuring the speed at which a physical process evolves over time is of central importance to science and en-

gineering. This can be done by computing the time derivative of the function describing the process. Several

examples of cellular systems exhibiting derivative action indicate that calculating the rate of change of biolog-

ical processes is essential in nature. The retina of our eyes, for instance, is one of the best-studied neural net-

works of the brain. Its response to changes in light intensity reveals typical characteristics of derivative action

which stem from the interaction between cone and horizontal cells (Wilson, 1999; Åström and Murray, 2021).

In microbiology, the chemotaxis signaling pathway in bacteria such as Escherichia coli involves computation

of time derivatives: To navigate toward nutrients and away from toxins, bacteria are able to sample their envi-

ronment as theymoveandconvert spatial gradients into temporal ones (Alon, 2019; Shimizuet al., 2010; Iglesias

andDevreotes, 2008; Barkai and Leibler, 1997; Block et al., 1983; Macnab and Koshland, 1972). Furthermore, in

the context of cellular energy metabolism, in silico studies have revealed the role of creatine phosphate as a

buffering species that allows for adaptation to a changing demand of adenosine triphosphate (ATP), thus ex-

ploiting the anticipatory actionenabledbyderivative control (Cloutier andWellstead, 2010). This observation is

a specificexampleof abroader classofbiomolecularprocesseswhere thepresenceof rapidbufferingproves to

be equivalent to negative derivative feedback (Hancock et al., 2017).

In traditional engineering, differentiators refer to devices capable of applying time differentiation to an

input stimulus, for example a mechanical or electrical signal. In the rapidly growing field of synthetic

biology, the ability to build reliable biomolecular differentiators would offer considerable advantages

(Steel et al., 2017; Del Vecchio et al., 2016; Lu et al., 2009). As an immediate application, such genetic cir-

cuits would be able to track the rate of change of the concentration of biomolecules, thus acting as speed

biosensors. This is of interest when assessing uptake rates of certainmolecules, such as uptake of pollutants

into bacteria used for bioremediation (Chen and Wilson, 1997; Pieper and Reineke, 2000). They can also

allow for advanced regulation strategies in the cellular environment by enabling the construction of

more efficient bio-controllers, e.g., Proportional-Integral-Derivative (PID) control schemes, the workhorses

of modern technological process control applications (Åström and Murray, 2021). In general, derivative

control can enhance the stability of a feedback system and provide a smoother transient response.

Recent efforts in this rather underexplored research area include the design of a differentiator module con-

sisting of linear input/output functions realized by specific processes of protein production (Halter et al.,

2017; Halter et al., 2019). It has further been demonstrated that calculation of time derivatives is possible

by using ultrasensitive topologies operating within a negative feedback loop (Samaniego et al., 2019), and

a motif capable of computing positive and negative temporal gradients, which includes input delays and
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Figure 1. Biomolecular structures capable of signal differentiation

(A) Schematic representation of the notion of signal differentiation carried out by a biomolecular device inside the cell.

(B)Graphical representation of the biological concepts found in the signal differentiator motifs. To describe the different

kind of biomolecular reactions the following notation is adopted: ( / ) means that the transformation of reactants into

products only happens in the direction of the arrow. (—,) indicates that reactants enable product formation without being

consumed. (—j) denotes inhibition of products by a reactant where the reactant is not consumed. In addition, the

depicted concept of enzymatic degradation is further analyzed in STAR Methods Equilibria and stability of biomolecular

signal differentiators: Biomolecular Signal Differentiator-I.

(C) Topology of Biomolecular Signal Differentiator - I or BioSD-I (Equation (1)).

(D) Topology of Biomolecular Signal Differentiator - II or BioSD-II (Equation (2)).

(E) Topology of Biomolecular Signal Differentiator - III or BioSD-III (Equation (3)).
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the idea of an incoherent feedforward loop, has been presented (Samaniego et al., 2020). With the aim of

providing derivative action in PID control architectures, networks directly inspired by bacterial chemotaxis

(Chevalier et al., 2019) or based on the so-called dual rail encoding have also been proposed (Whitby et al.,

2021; Paulino et al., 2019). This approach enables the representation of both positive and negative signals

via biomolecular species by decomposing a signal into two non-negative parts (Oishi and Klavins, 2011).

Finally, a derivative controller tailored to gene expression is analyzed in (Modi et al., 2019), while in the

PID architecture introduced in (Filo and Khammash, 2021), derivative control is carried out with inseparable

connection to proportional and integral actions.

In this article, we introduce novel differentiator modules aiming to elucidate unexplored mechanisms that cells

potentially exploit to achieve signal differentiation. In parallel, these motifs can pave the way for designing effi-

cient and reliable synthetic signal differentiator devices in a cellular context. Notably, our motifs offer consider-

able ease of experimental implementation compared to some of the earlier discussed designs which are based

onmore ‘‘artificial’’ mechanisms such as dual-rail encoding. In addition, themotifs under consideration can func-

tion as independent, general-purpose differentiators, whichmay be a challenging task for other topologies, such

as somecontrol-oriented topologies showingderivative action.Moreover, under suitable tuninghigh accuracy of

temporal derivative calculation for a wide range of molecular signals can be guaranteed.

Specifically, we present three biomolecular architectures capable of functioning as signal differentiators

around their equilibria. We call them Biomolecular Signal Differentiators (BioSD). Each of these networks

can be interpreted as a modular and tunable topology inside the cell that accepts a molecular signal as

an input and produces an output signal proportional to the time derivative of the input signal (Figure 1A).

The output corresponds to a biochemical species whose concentration can bemeasured. The proposed ar-

chitectures provide simple blueprints for the design of synthetic biomolecular differentiators, but can also

be interpreted as lenses through which derivative action in natural systems can be identified and studied.
2 iScience 24, 103462, December 17, 2021
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We demonstrate the special characteristics and the performance trade-offs of the three BioSD architec-

tures (BioSD-I, II, and III) via theoretical analyses and numerical simulations. We also discuss a major

obstacle of both technological and biological differentiators, namely amplification of undesired high-fre-

quency components of the input signal, and propose strategies to overcome this obstacle. Finally, we show

the occurrence of one of the BioSD topologies in natural regulatory networks involved in bacterial adap-

tation to stress conditions and present potential synthetic implementations for all three topologies, high-

lighting the biological relevance of our designs.
RESULTS

Biological structure

We begin by presenting the molecular interactions in the BioSD circuits as chemical reaction networks

(CRNs). These circuits represent three alternative topological entities which, under certain assumptions,

realize the same concept of signal differentiation. In the analysis that follows, the input and output signals

of the differentiators are generally treated as biomolecular species, namelyU and X respectively. Neverthe-

less, an input signal may also refer to different concepts such as light, temperature or pH.

Figure 1C illustrates the first architecture, BioSD-I, which consists of the following reactions:

B/
kinU

X ; B/
b
X ; X/

k2
X + Z

X + Z/
k1
Z; X/

d
B; Z/

dEsat
B

(Equation 1)

Here, the production of output species X depends on two reactions. One of them has a constant rate while

the other occurs at a rate proportional to the concentration of input species U. It is convenient to represent

such processes via reactions of the form B/
r
X , where r can be a constant or a time-varying quantity, e.g.,

biomolecular concentration. This allows us to describe general concepts of production without the need to

specify their impact on the reactants involved. Furthermore, X also catalyzes the formation of species Z

which, in turn, inhibits X. Note that the process of inhibition is interpreted as catalysis of degradation.

Finally, the removal rate of X is proportional to its concentration (first-order decay) while, as indicated by

the notation dEsat (defined in Figure 1B), Z adheres to a constant rate of decay (0th-order decay). The latter

behavior is attained through enzyme-catalyzed degradation of Z where the enzyme is operating at satu-

rating substrate levels (for more details see STAR Methods Equilibria and stability of biomolecular signal

differentiators: biomolecular signal differentiator-I).

In the second architecture, BioSD-II (Figure 1D), the formation process of output species X is the same as in

BioSD-I, while Z1, the production of which is facilitated by X, and Z2 annihilate each other. Z1inhibits Xwhich

decays in the same way as in BioSD-I. The reactions that form the corresponding CRN are:

B/
kinU

X ; B/
b
X ; X/

k2
X + Z1

X + Z1/
k1
Z1; B/

k3
Z2; Z1 + Z2/

h
B; X/

d
B

(Equation 2)

Finally, Figure 1E shows the third topology, BioSD-III, which is described by the reactions:

B/
kinU

X ; B/
b
X; X/

k2
X + Z1; X + Z1/

k1
Z1

B/
k3
Z2; X + Z2/

k1
X +X + Z2; Z1 + Z2/

h
B; X/

d
B

(Equation 3)

This CRN includes an autocatalytic-like reaction: X is able to produce more of itself in the presence of Z2.

The rest of its structure is identical to the CRN of BioSD-II.
Mathematical description

We now derive the dynamics of the proposed BioSD networks using the law of mass action (Del Vecchio and

Murray, 2015) unless otherwise stated, adopting the same order of presentation as in the preceding section.

BioSD-I (CRN given by Equation (1)) can be described by the following system of Ordinary Differential

Equations (ODEs):

_X = kinU +b � k1XZ � dX (Equation 4a)
_
Z = k2X � k3 (Equation 4b)
iScience 24, 103462, December 17, 2021 3
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Note that the enzymatic degradation of Z is assumed to follow saturated (0th-order) Michaelis-Menten ki-

netics, as previously discussed.

Next, from the CRN given by Equation (2) we obtain the following ODE model for BioSD-II:

_X = kinU +b � k1XZ1 � dX (Equation 5a)
_
Z1 = k2X � hZ1Z2 (Equation 5b)
_
Z2 = k3 � hZ1Z2 (Equation 5c)

For the last circuit, BioSD-III, the CRN given by Equation (3) can be modeled using the following ODEs:

_X = kinU +b � k1XZ1 + k1XZ2 � dX (Equation 6a)
_
Z1 = k2X � hZ1Z2 (Equation 6b)
_
Z2 = k3 � hZ1Z2 (Equation 6c)

By assuming a constant input U� and setting the derivatives to zero, we can show that each of the BioSD

network models has a unique equilibrium. In addition, we can prove through linearization that the equi-

librium is locally exponentially stable (a detailed analysis can be found in STAR Methods Equilibria and

stability of biomolecular signal differentiators). Near their steady-states, the circuits are able to exhibit

derivative action, as shown in the next section. Furthermore, for the purpose of this study we assume

that the parameter h in BioSD-II is sufficiently large which can lead to a practically insignificant concen-

tration of species Z2 (more details can be found in STAR Methods The notion of strong rate of annihila-

tion between Z1, Z2 (large h) in biomolecular signal differentiator-II). This constraint does not have to

hold for BioSD-III, which includes the same annihilation reaction. Finally, Equations (5b) and (5c) indicate

that in case _Z2z0, the removal rate of Z1 is roughly constant and equal to k3, similar to the 0th-order

removal of Z in BioSD-I.
Achieving biological signal differentiation

In order for the proposed biomolecular modules to work as signal differentiators, we desire for their output

X to be proportional to the derivative of their input U. This immediately raises the following challenge: Both

U and X refer to biomolecular species concentrations and, by extension, represent non-negative signals.

However, in the general case, the derivative of a nonnegative signal can take negative values and, as a

result, X would need to go below zero. Thus, it could be argued that X is unable to express the rate of

change of an arbitrary input signal. An obvious way to overcome this obstacle is to add a bias to the

computed derivative. As we demonstrate here, the perfect candidate for realizing this bias is the steady

state of X around which derivative action can be achieved.

We are interested in the local behavior of the BioSD networks and, therefore, consider input stimuli that do

not force them to operate far away from their equilibrium. Subsequently, we assume that every input signal

can be described as:

U = U� +UTV (Equation 7)

where U� is constant while UTV is time-varying. Here, we focus on Fourier transformable signals which is

typically the case for physical signals in practical applications (for more details see STAR Methods Signals

under consideration).

By linearizing and applying appropriate transformations, we can show that the dynamics of the output of

any of the three BioSD topologies presented in the previous section can be approximated by the following

non-dimensional second - order differential equation (see STAR Methods Behavior analysis of biomole-

cular signal differentiators):

ε€xn + ε _xn + xn = _un (Equation 8)

wherexn and un refer to the output and input, respectively and:

ε =
k22
k1k33

ðkinU� +bÞ2 (Equation 9)
4 iScience 24, 103462, December 17, 2021
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Equation (8) represents a signal differentiator accompanied with some filtering action. Indeed, the input/

output relation in the Laplace domain can be described by the following transfer function (Oppenheim

et al., 1996):

~DBSDðsÞ =
~XnðsÞ
~UnðsÞ

=
s

εðs2 + sÞ+ 1
(Equation 10)

where ~XnðsÞ and ~UnðsÞ are the Laplace transform of the output xn and input un, respectively and s is the Lap-

lace variable (complex frequency). As can be seen from Equation (10), a BioSD network is the series com-

bination of an ideal differentiator and a second-order low pass filter (Samoilov et al., 2002). Therefore, for a

given positive ε, the accuracy of signal differentiation depends on the frequency spectrum of the input

signal or, in other words, the range of frequencies contained by it (see STARMethods Signals under consid-

eration). Accompanying a differentiator with a low-pass filter is a widely used strategy in traditional engi-

neering in order to deal with high-frequency input noise (this topic is analyzed in Response to input signals

corrupted by high-frequency noise and A structural addition for enhanced performance).

To gain a deeper insight, we calculate the Fourier transform (Oppenheim et al., 1996) of the output:

~XnðjuÞ = ~DBSDðjuÞ ~UnðjuÞ (Equation 11)

where u represents the frequency, j is the imaginary unit number (j =
ffiffiffiffiffiffiffi�1

p
) and ~XnðjuÞ, ~UnðjuÞ are the Four-

ier transform of the output xn and input un, respectively. Furthermore, ~DBSDðjuÞ is the Fourier transform of

the system’s impulse response, also known as the frequency response of the system. (ibid.). Since we have a

linear, asymptotically stable, system we can compute the latter Fourier transform from Equation (10) by

setting s = ju. Thus, we have:

~XnðjuÞ = ju

εð�u2 + juÞ+ 1
~UnðjuÞ (Equation 12)

The operation of (ideal) differentiation in the frequency domain is defined as:

~XndðjuÞ = ju ~UnðjuÞ (Equation 13)

To compare the output of an ideal differentiator to the one of a BioSD device, we introduce the following

performance metric:

~LðjuÞ =
~XnðjuÞ
~XndðjuÞ

=
1

εð�u2 + juÞ+ 1
(Equation 14)

Using the magnitude-phase representation of Equation (14) we get:

j~LðjuÞj = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε
2u2 + ð1� εu2Þ2

q (Equation 15)

and

:~LðjuÞ = arctan
� �εu

1� εu2

�
Signal differentiation of high accuracy is carried out when ~LðjuÞ is close to 1:0+. As shown in Figure 2,

there is a ‘‘low-frequency’’ range where this is true, but as ε decreases the aforementioned range expands

toward ‘‘higher frequencies’’. In the time domain this entails that for a given positive ε, a BioSD device can

work as an accurate signal differentiator for sufficiently slow input signals and, in that case, the BioSD

output can be approximated by (see STAR Methods Behavior analysis of biomolecular signal

differentiators):

X =
kin
k1k3

_U +
k3
k2

(Equation 16)

There is a family of input signals for which the BioSD topologies are able to provide accurate differentiation

regardless of the exact value of ε (see STAR Methods Behavior analysis of biomolecular signal differentia-

tors). More specifically, this holds for input signals for which the term UTV in Equation (7) is of the form:

UTV = x1e
�x3 t + x2t; (Equation 17)
iScience 24, 103462, December 17, 2021 5



Figure 2. A performance metric for Biomolecular Signal Differentiators in the frequency domain

Bode plot of the metric given by Equation (14). Different colors represent the magnitude and the phase of the

corresponding transfer function for different values of ε. The case of ideal differentiation corresponds to ε= 0 and the

direction in which the latter increases indicated by an arrow.
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where x1, x2 are arbitrary constants and x3 =
k2
k3

ðkinU� +bÞ. If x2 is not zero which implies linear growth over

time, we assume that the above holds as long as the system stays near its equilibrium. This means that the

term x2t is sufficiently small. Indeed, several biological processes can generate (bounded) signals some

part of which can be viewed as linear growth (Del Vecchio and Murray, 2015). We study such a scenario

in Sensing the response speed of biomolecular networks.

As Equation (8) states, the response of a BioSD network, is given as the solution of a second-order non-ho-

mogeneous differential equation with constant coefficients where the forcing function is _un. The response

can therefore be seen as the sum of two terms: a ‘‘transient’’ term which highly depends on the initial con-

ditions and dies out with time; and a ‘‘steady-state’’ term which, under the conditions discussed above, can

approximate the derivative of the input signal (Zill, 2012). Therefore, for input signals applied for a suffi-

ciently long time, the BioSD output practically coincides with the latter since the effect of the former is

negligible. However, this may not be always the case for short duration input signals where any undesired

initial transient phenomena can greatly compromise the accuracy of the differentiator output.

FromEquation (16), we can see that the BioSDmodules use the biomolecular concentration
k3
k2

as a bias. Around

this point they canoperate as signal differentiators, producinganoutput signal componentwhich is proportional

to the derivative of the input. The bias therefore depends only on two parameters which, ideally, can be adjusted

asdesired. Thisprovidesuswith the freedomof choosingany (fixed) concentrationofXas abias,whichwill remain

unchanged regardless of the rest of themodel parameters, the input stimulus, or potential constantdisturbances

on the output. To appreciate this further, we recall the production reaction for X with constant rate b, which is

included in each of the proposed CRNs. Besides its role as a structural requirement, this production reaction

can also represent an external constant disturbance applied on X; this, however, does not affect the zero-level

we choose for our measurements. Once the concentration of X reaches this level, it will stay there until an input

excitation appears and it will come back once the excitation stops. Hence, the previously mentioned fixed con-

centration can also be seen as a ‘‘rest position’’ for the differentiators.
6 iScience 24, 103462, December 17, 2021
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The feature just described is of key importance and stems mainly from the following two sources: the sta-

bility that characterizes BioSDs and the fact that the steady-state of the output coincides with the afore-

mentioned zero-level concentration. The latter is achieved due to integration carried out by the ‘memory’

function which is realized via species Z within BioSD-I and the quantity Z1 � Z2 within BioSD-II, III.

Tunability and accuracy

It is convenient for the circuit designer who aims to implement the BioSD topologies to be able to choose

the parameter values and ensure that the resulting differentiators meet the expected performance require-

ments. Nonetheless, there may be cases where the number of system parameters that can be suitably

tuned is limited, for instance due to constraints related to the cellular processes involved in the circuits un-

der investigation. Even in this case, the architecture of our circuits allows for some tunability as long as the

designer can choose some crucial parameters.

Consider for example the extreme scenario where only one of the model parameters can be regulated. If

this parameter is k3, then, according to Equation (16), its appropriate tuning may result in an acceptable

gain by which the output signal is multiplied (output gain) and bias based on which this signal is measured.

At the same time, Equation (9) reveals that (contrary to other parameters) a small change in k3 can affect ε

significantly since the latter is inversely proportional to the cube of k3.

It immediately emerges from the above that the way we tune the BioSD networks defines the level of ac-

curacy regarding their derivative action. Indeed, ε is subject to almost all parameter rates in these networks

and, as pointed out in the previous section, the value of ε defines the range of frequencies over which Bio-

SDs can accurately compute the rate of change of a biological signal.

Sensing the response speed of biomolecular networks

Wenow demonstrate through an example the ability of BioSDmodules to compute the temporal derivative

of biological signals. At the same time, we highlight one of their potential applications discussed above,

namely as rate-of-change detectors or speed biosensors.

We consider the antithetic motif (Figure 3) (Briat, Gupta, and Khammash, 2016, 2018; Chevalier et al., 2019;

Olsman et al., 2019a, 2019b; Olsman and Forni, 2020; Baetica et al., 2020):

B/
n1
C1; C1/

n2
C1 +Y1; Y1/

n3
Y1 +Y2

Y2/
n4
Y2 +C2; C1 +C2/

n5
B; Y1/

n6
B; Y2/

n7
B

(Equation 18)

Species Y1, Y2 represent an arbitrary biological process whose output, Y2, can be robustly steered toward a

desired value

�
n1

n4

�
. This is feasible through the feedback integral control which is implemented via species

C1, C2, thus achieving robust perfect adaptation. Depending on the parameter rates, the dynamics of the

above architecture can be either stable or unstable. Nonetheless, even in a stable system, the species of

interest, Y2, sometimes displays a long-lasting transient response with damped oscillations before it settles

to a steady-state. This provides an opportunity to assess the ability of the BioSD networks to calculate the

speed at which these oscillations evolve.

In order for a BioSD device to function as a biosensor for the CRN given by (Equation 18), a suitable inter-

connection between these circuits is required while preserving the modularity of the two networks and

avoiding any loading problems, i.e., effects of retroactivity (Del Vecchio and Murray, 2015; Del Vecchio

et al., 2008, 2016). One way to accomplish this is through the reaction:

Y2/
kin
Y2 +X (Equation 19)

whereY2 plays the role of the input species U without being consumed. Alternatively, in case the nature of Y2

prevents it from directly producing X, we can use a separate sensory species S which is capable of participating

in the formation of X. In particular, we assume that S is co-expressed with and decays at the same rate as Y2, i.e.:

Y1/
n3
Y1 + Y2 + S; S/

kin
S +X ; S/

n7
B (Equation 20)

Adopting thesecond interconnectionas themostgeneralone,wedemonstrate inFigure3 that the rateofchange

of the concentration of Y2 can be accurately represented by the output of the BioSD networks. We also
iScience 24, 103462, December 17, 2021 7



Figure 3. Sensing the rate-of-change of the output of a synthetic regulatory biomolecular network through a

Biomolecular Signal Differentiator

(A) Schematic of CRN (18) (network of interest) accompanied by a BioSD device (differentiator) which measures the speed

of the output, Y2 of the network via the sensing mechanism in Equation (20). We adopt the same arrow notation as in

Figure 1 while the symbol ð«Þ represents any of the three BioSD devices.

(B) ODE model capturing the dynamics of the topology given by Equations (18) and (20). As anticipated, the behavior of

species Y2 and S is described by the same equation.

(C) Input U of the differentiator coincides with species S and results from the simulation of the ODE model depicted in (B)

with the following parameters: n1 = 2 nM min�1, n2 = n4 = 2 min�1, n3 = 4 min�1, n5 = 12 nM�1 min�1 , n6 = n7 = 1 min�1.

(D) Simulation of BioSD-I (Equations (4a) and (4b)) response to the input shown in (C) using the following parameters: kin =

100 min�1, k3 =b= 100 nM min�1, k1 = 1 nM�1 min�1, k2 = 1 min�1, d= 0:5 min�1. Equation (9) therefore yields ε = 0:01. As

can be seen, the output, X, of the differentiator is an accurate replica of the derivative of input U.

(E) The simulation in (D) is repeated after replacing the value of both kin and k3 with 10. Equation (9) therefore yields ε =

10. Although the output, X, of the differentiator remains close to the derivative of input U, there is some loss of accuracy

compared to (D). The respective simulations regarding BioSD-II and BioSD-III are presented in Figure S1. As expected,

their responses are identical to those of BioSD-I.
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Figure 4. Sensing the rate-of-change of a production - removal biomolecular process through a Biomolecular

Signal Differentiator

(A) Schematic of CRN (21) (network of interest) accompanied by a BioSD device (differentiator), which measures the speed

of the output of the network (Y3) via the sensing mechanism in Equation (20). We adopt the same arrow notation as in

Figure 1 while the symbol ð«Þ represents any of the three BioSD devices.

(B) ODE model capturing the dynamics of the topology given by Equations (20) and (21). As anticipated, the behavior of

species Y3 and S is described by the same equation.

(C) Input U of the differentiator coincides with species S and results from the simulation of the ODE model depicted in

Bwith the following parameter values: nb = 0:1 nM min�1, nd = 0:001 min�1.

(D) Simulation of the BioSD-I (Equation (4a),(4b)) response to the input presented in (C) using the following parameters:

kin = 10 min�1, k3 = 10 nMmin�1, b= 100 nM min�1, k1 = 1 nM�1 min�1, k2 = 1 min�1, d= 0:5 min�1 (same as in Figure 3E, ε =

10). The output, X, of the differentiator is now an accurate replica of the derivative of input U. The latter (shown in C)

belongs to the class of signals defined by Equations (7) and (17). The respective simulations regarding BioSD-II and

BioSD-III are presented in Figure S2. As expected, their responses are identical to those of BioSD-I.
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demonstrate that, foragiven input signal, thereexist sufficiently largevaluesof ε forwhich theBioSDperformance

may not be satisfactory due to some loss of accuracy (discussed in Achieving biological signal differentiation).

We now replace the circuit described by (18) with the general production-removal process:

B/
nb
Y3; Y3/

nd
B (Equation 21)

maintaining the same type of interconnection, as illustrated in Figure 4. Although the response of this pro-

cess eventually converges to an equilibrium, for some period of time it practically increases linearly with

time. Here, we focus on this linear regime of the response which is clearly aligned with Equation (17).

Thus, as can be seen from Figure 4, BioSD networks are now able to provide accurate signal differentiation

regardless of the high value of ε which, in the case of Figure 3, lead to a noticeable loss of accuracy.
Response to input signals corrupted by high-frequency noise

Potentially the most important problem of differentiator devices is their sensitivity to high-frequency noise

components which the applied input signal may contain (Åström and Murray, 2021). To this end, we

consider an input signal with a time-varying component

UTV = Ausinðuut +4uÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
useful information

+Adsinðudt +4dÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
noise

(Equation 22)
iScience 24, 103462, December 17, 2021 9



Figure 5. Response of Biomolecular Signal Differentiators to input signals with undesired high frequency

components

(A) Without loss of generality we select BioSD-I (Equations (4a) and (4b)) to plot: A simulated response to an input of the

form given by Equations (7) and (22) using the following parameters: U� = 1:2 nM, Au = 1 nM uu = 1 rad min�1, Ad = 0:2 nM,

ud = 400 rad min�1, 4u =4d = 0 rad, kin = 100 min�1, k3 =b= 100 nM min�1, k1 = 1 nM�1 min�1, k2 = 1 min�1, d= 0:5 min�1.

Equation (9) therefore yields ε = 0:0484. Consequently, with respect to the input signal, the frequency of the undesired

component (noise) is 400 times higher than that of the component of interest (useful information). It is evident that

significant noise attenuation takes place and the accuracy of signal differentiation therefore remains very high.

(B) The simulation in (A) is repeated after changing the value of ud to 50 which makes the noise 50 times faster compared

to the useful information. As can be seen, there is a decrease in the accuracy level of signal differentiation since the input

noise of this frequency cannot be filtered adequately. For demonstration purposes, in both (A) and (B) we have chosen a

baseline (around of which derivative action is carried out) much larger than the amplitudes of the (ideal) derivatives

regarding all the input stimuli. The useful information is represented by a signal component whose (ideal) derivative has

an amplitude much smaller than the one of the (ideal) derivative of the noise. Consequently, the former can be drowned

out by the latter if no noise attenuation is performed.
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where the actual signal we want to differentiate–useful information–is accompanied by undesired fluctua-

tions (noise) arising, for instance, from unintended cross-talk interactions (Del Vecchio and Murray, 2015).

Note that although we model both the useful information and the noise as sinusoids, this is without loss of

generality as they can be thought of as Fourier components of more general signals (see STAR Methods

Signals under consideration). Assuming perfect differentiation, we get:

_U
TV

= uuAusin
�
uut +4u +

p

2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
derivative of useful information

+udAdsin
�
udt +4d +

p

2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

derivative of noise

(Equation 23)

Hence, even if the level of input corruption is low (e.g., Ad is much smaller than Au - Equation (22)), the dam-

age in the output of a perfect differentiator may be detrimental in case of a rapidly fluctuating noise signal

(ud high). That is, udAd can be made arbitrarily large compared to uuAu (Equation (23)) and, therefore, it is

possible for the derivative of the useful signal to be completely drowned out by the derivative of some high

frequency input noise. It is also apparent that the behavior of such an ideal differentiator module in the

cellular environment is undesirable since it can lead to generation of greatly amplified output signals, which

can be catastrophic.

Interestingly, the BioSD topologies allow us to deal with this noise amplification by suitably adjusting ε. As

already discussed, BioSDs possess a low-pass filtering property defined by ε (see Equation (10)). Although

this may be viewed as an ‘‘imperfection’’ in terms of their signal differentiation ability, it turns out to be a

saving feature of great significance. Recalling the performance metric given by Equation (10) which coin-

cides with the frequency response of the embedded filter and the Bode plot of Figure 2, we can see

that there is a range of high frequencies over which signal attenuation can be effectively performed (see

also STAR Methods Behavior analysis of biomolecular signal differentiators and Figure S3). This implies

that Equation (15) approaches zero. Moreover, as ε increases, this range expands toward lower frequencies.

Nevertheless, between the aforementioned range and the low-frequency one corresponding to signal dif-

ferentiation, we can detect the existence of a relatively narrow frequency band where BioSD circuits may

not be able to differentiate or attenuate input signals with satisfactory accuracy. The characteristics

described above are demonstrated in Figure 5.
10 iScience 24, 103462, December 17, 2021



Figure 6. An alternative version of Biomolecular Signal Differentiators with an enhanced capability of input noise filtering

(A) Schematic structure of BioSDF. We adopt the same arrow notation as in Figure 1 while the symbol ð«Þ represents the remaining reactions composing any of

the three BioSD devices. (B) Bode plot of the performance metric given by Equation (25) with ε = 0:1. We consider different values of m, where m = m1 = m2,

that correspond to solid lines of different colors while the increasing direction of m indicated by an arrow. We also depict the bode plot (magnitude and

phase) of Equation (14) for the same value of ε and the case of ideal differentiation which are represented by blue and black dashed lines, respectively. In

addition, for comparison purposes, we focus on a BioSDF device based on BioSD-I to re-plot the simulation of c Figures 5A and d Figure 5B for the same

values of the mutual parameters and m1 =m2 = 5 min�1. It is apparent that in both (C) and (D) very strong input noise attenuation takes place and the

differentiation of the useful signal is thus conducted with significantly high accuracy.
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A structural addition for enhanced performance

In case there are increased requirements for noise reduction that cannot be easily met via parameter tun-

ing, we present an alternative version of the BioSD networks with higher noise insensitivity, which we call

BioSDF (Figure 6A). These topologies are described by the same CRNs presented in the section Biological

structure, but amended appropriately.

More analytically, recalling the CRNs given by Equations (1), (2), and (3), we see that input signals are

applied to BioSD modules through the reaction:

B/
kinU

X

In BioSDF topologies, the above is replaced by the following set of reactions:

B/
m1U

Z3; Z3/
kin
Z3 +X ; Z3/

m2
B

The additional species Z3 is produced by the input species and degrades in the traditional manner while it

catalyzes the formation of the output species. This structural addition is inspired by the work in (Samoilov

et al., 2002; Laurenti et al., 2018), where biomolecular concepts from the area of signal processing were

studied. In the following, we briefly present the main features of BioSDF modules – a comprehensive
iScience 24, 103462, December 17, 2021 11
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analysis of their behavior can be found in STAR Methods An alternative version of biomolecular signal dif-

ferentiators (Figures S4 and S5).

The input/output relation of BioSDF networks in the Laplace domain can be described by the transfer

function:

~DBSDF ðsÞ = m1

s+m2

,
s

εðs2 + sÞ+ 1
(Equation 24)

Similarly to BioSDs, we introduce the (normalized) performance metric:

~LFðjuÞ = m2

m1

~XnFðjuÞ
~XndðjuÞ

=
m2

ju+m2

1

εð�u2 + juÞ+ 1
(Equation 25)

where ~XnFðjuÞ refers to the output of a BioSDF network.

Using the magnitude-phase representation of Equation (25) we get:

j~LFðjuÞj = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

�
u
m2

�2
s 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε
2u2 + ð1� εu2Þ2

q (Equation 26)

and

:~LFðjuÞ = arctan
� �εu

1� εu2

�
+ arctan

��u

m2

�
When ~LFðjuÞ is close to 1:0+ signal differentiation of high accuracy is achieved (Figure 6B) and the BioSDF

output can be approximated by:

X =
m1kin
m2k1k3

_U +
k3
k2

(Equation 27)

Compared to the original BioSD topologies (Equation (16)), we now have two additional tuning parameters

(m1, m2) with respect to the output differentiation gain when it comes to the low-frequency regime. However,

the major advantage of this version of differentiators is an enhanced capability of noise filtering. In fact, we

can have a greatly extended frequency range across which very strong attenuation of high frequency input

noise can be achieved (Figures 6C and 6D). In that case, Equation (26) approaches zero. At the same time,

the width of this frequency band depends on m2 and can be adjusted appropriately. As Equation (24) imme-

diately reveals, the latter advantage stems from the fact that compared to BioSD circuits, BioSDsF are

equipped with an additional low-pass filter.
Biomolecular signal differentiators in natural regulatory networks

As outlined in the introduction, derivative action appears to be an important mechanism in various biolog-

ical systems. To explore the biological relevance of the proposed BioSDs for cellular adaptations to envi-

ronmental changes, we identified two naturally occurring and well-investigated regulatory network motifs

that resemble the BioSD-II network. Note that these natural topologies are operating in the larger context

of complex regulatory networks involving a plethora of signaling factors, some of which remain to be iden-

tified. We therefore describe the relevant motifs but do not comprehensively detail all interactions occur-

ring in the biological system.

Stationary phase and starvation response - RpoS regulatory network

As shown in Figure 7A, we found the BioSD-II motif in the context of adaptation to nutrient starvation and

entry into stationary phase, which is mediated by the sigma factor RpoS in E. coli and related bacteria (re-

viewed in (Battesti et al., 2011; Hengge-Aronis, 2002)). Stress conditions, such as nutrient depletion or high

pH, serve as the inputU. While RpoS is present at low levels (b) in exponentially growing cells, its expression

is substantially increased through both transcriptional and post-transcriptional regulation in response to

environmental stresses or starvation (Battesti et al., 2011). One of the genes whose expression is depen-

dent on RpoS is rssB, which encodes a response regulator. RssB binds to RpoS and mediates its degrada-

tion by the ClpXP protease (Pruteanu and Hengge-Aronis, 2002), thus functioning as Z1. Nutrient starvation

also induces the expression of several anti-adaptor proteins (Ira; inhibitor of RssB activity). These proteins
12 iScience 24, 103462, December 17, 2021



Figure 7. Examples of the Biomolecular Signal Differentiator-II motif in natural systems

Simplified schematics of BioSD-II topologies occurring as part of (A) the RpoS-mediated stress response and (B) the

RpoH-mediated heat shock response in Escherichia coli. Corresponding components of BioSD-II are indicated.
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bind to RssB and prevent RpoS degradation (Battesti et al., 2013), which corresponds to the action of Z2 in

BioSD-II.

Heat shock response - RpoH regulatory network

A second example for the BioSD-II motif was identified in the regulatory network of the sigma factor RpoH,

which coordinates the heat shock response in E. coli (Figure 7B) (Straus et al., 1987; Roncarati and Scarlato,

2017). Upon heat shock, cellular RpoH levels rise above their low baseline concentration (b), inducing the

expression of several chaperones (e.g. DnaKJ and GroELS) and proteases (e.g. FtsH and Lon). DnaK and

DnaJ can bind to RpoH and facilitate its degradation by FtsH (Straus, Walter, and Gross, 1989a; Gamer

et al., 1992), thereby acting as Z1. Unfolded or misfolded proteins will sequester chaperones and proteases

(Gamer et al., 1992), thus increasing the stability of RpoH and fulfilling the function of Z2. In this network, the

amount of active RpoH (as opposed to the total amount of RpoH) should be considered as X, since it has

been found that the activity rather than the concentration of RpoH inside the cell drops during temperature

downshifts (Straus, Walter, and Gross, 1989b).

Guidelines for experimental implementation of biomolecular signal differentiators

In addition to the natural regulatory networks described in the preceding section, here we outline possible

synthetic implementations for all BioSD circuits inside a living cell and, in particular, in E. coli (Figure 8).

Inducible expression of species X can be achieved from any well-characterized promoter, such as the

IPTG-inducible Plac. Leakiness of the lac promoter will ensure nonzero expression levels (b) even in the

absence of inducer. Alternatively, if higher baseline expression levels are required, X could additionally

be expressed from a weak constitutive promoter. To minimize undesirable interference with other cellular

processes, X should be an orthogonal sigma factor, such as sF from Bacillus subtilis (Bervoets et al., 2018). A

translational fusion of X to GFP will allow for easy tracking of the system output. sFwill then induce expres-

sion of a Lon protease (Z in BioSD-I, Z1 in BioSD-II and III) from its cognate promoter PF1. In this case, a Lon�

strain of E. coli would be used to avoid interference of naturally present Lon protease. Addition of a degra-

dation tag to sF will target it for degradation by the Lon protease. To approximate 0th-order degradation

of Z in BioSD-I, an ssrA tag will be fused to the Lon protease as described in (Wong et al., 2007; Ang et al.,

2010).
iScience 24, 103462, December 17, 2021 13



Figure 8. Possible experimental implementations of Biomolecular Signal Differentiators

Schematic representation of synthetic designs for ABioSD-I, BBioSD-II and CBioSD-III.
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For BioSD-II, we additionally introduce constitutive expression of the protease inhibitor PinA from phage

T4 (Z2), which has been shown to specifically inhibit the Lon protease in E. coli with high affinity (Hilliard

et al., 1998). A synthetic promoter from the BioBrick collection (Kelly et al., 2009) may be used to achieve

the desired expression level of Z2. Ideally, an orthogonal Lon protease should be used (e.g. Lon protease

from Mesoplasma florum (Aoki et al., 2019)) to prevent cross-talk with other cellular proteins. However,

since the interaction of PinA with proteases has been characterized only in E. coli so far, we have suggested

use of the E. coli Lon protease.
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Due to the number of required interactions in BioSD-III, it will likely be necessary to introduce auxiliary spe-

cies for X, Z1and Z2, which we refer to as Xaux , Z1;aux and Z2;aux , respectively. These auxiliary species would

ideally have identical behavior to the main species X, Z1and Z2, even though simulations indicate that

completely identical behavior is not required (see STAR Methods Analysis of the experimental topology

of Biomolecular Signal Differentiator-III and Figure S6). One option is to augment the design for BioSD-

II with the Hrp system from Pseudomonas syringae, which has previously been implemented in synthetic

biology studies (Wang et al., 2014). HrpR (Xaux ) is expressed from Plac together with sF , and HrpS (Z2;aux)

is expressed as a protein fusion with PinA. HrpR and HrpS are both required to induce additional produc-

tion of sF and HrpR from PhrpL. At the same time, HrpV (Z1;aux ) binds HrpS rendering it inactive. The struc-

tural addition required for BioSDF can be implemented by, for example, expressing X from a T7 promoter

and expressing T7 RNA polymerase (Z3) from a separate inducible promoter.
DISCUSSION

In this study, we propose three biomolecular topologies that are able to act as highly accurate signal differ-

entiators inside the cell. These designs provide guidance for building cellular devices capable of

computing time derivatives of molecular signals. At the same time, they reveal concepts that are found

in natural biological networks implementing differentiation and derivative feedback.

More specifically, we introduce three general biomolecular architectures BioSD-I, II, and III. Their generality

lies in the fact that they are represented by CRNs without being restricted by the biological identity of

reactants and products and, by extension, the corresponding biological pathway. Important structural

components of the BioSDs are a negative feedback loop created by a special process of excitation and in-

hibition between two species (Iglesias and Shi, 2014), an enzymatic degradation of zero-order kinetics

(BioSD-I), an autocatalytic-like reaction (BioSD-III) and an antithetic-like motif based on annihilation (Oishi

and Klavins, 2011; Briat et al., 2016) (BioSD-II, BioSD-III). We theoretically analyze their features and show

the conditions under which high performance can be guaranteed. Among others, important concepts such

as stability, tunability, and accuracy are discussed in detail.

Special emphasis is placed on the expected sensitivity of differentiators to input signals corrupted by high-

frequency noise. We demonstrate that this issue can be resolved to a certain extent through suitable

parameter tuning. Nevertheless, for cases in which stronger noise attenuation is needed, we present a

structural modification that gives rise to three slightly different architectures, namely BioSDF-I, II and III,

with enhanced capabilities. However, the price for this improvement is the addition of an extra biomole-

cular species, which implies an increase in structural complexity. Moreover, we introduce performance

metrics both for BioSDs and BioSDsF based on which the circuit designer can assess the quality of signal

differentiation and attenuation. These metrics take into account both the frequency content of the input

signal and the reaction rates involved in the circuits, thus facilitating tuning according to the expected per-

formance standards.

The ability to perform time differentiation is of central importance in various biological systems, contrib-

uting to stability and fast adaptation to changing conditions (Barkai and Leibler, 1997; Bazellières et al.,

2015; Cloutier and Wellstead, 2010). Owing to the generality of the presented topologies, we anticipate

that the present study will facilitate the investigation of naturally occurring systems capable of derivative

action. In this study, we discuss the regulatory networks of two bacterial sigma factors, RpoS and RpoH,

which play a central role in the response and adaptation to stress conditions and heat shock, respectively.

Interestingly, these networks share structural characteristics with one of the proposed topologies, BioSD-II.

In addition, the motifs presented here provide building blocks that can be both implemented in stand-

alone applications, such as speed biosensors, and also combined with existing biochemical control struc-

tures in a modular fashion, e.g., for building biomolecular PID controllers (Chevalier et al., 2019). We

describe potential designs for synthetic experimental implementation of all three BioSDs, which can be

readily adapted depending on the nature of the system and available biological parts. To realize the anti-

thetic motif in BioSD-II and III, we propose the use of a protease/protease inhibitor pair as an alternative to

the previously described systems using sigma and anti-sigma factors (Aoki et al., 2019) or sRNAs and

mRNAs (Huang et al., 2018; Kelly et al., 2018). To allow for greater flexibility in choosing the biomolecular

species, we introduce a concept of auxiliary species whose usefulness is demonstrated through BioSD-III.

Furthermore, to enhance the biological significance of our work in STARMethodsModeling amore realistic
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case of Biomolecular Signal Differentiator-II (Figures S7 and S8, Table S1), we investigate the behavior of

one of the differentiator modules, namely BioSD-II, under more realistic conditions stemming from our

experimental designs.

Stochasticity is an essential characteristic of biomolecular systems which operate in a noisy environment

(Del Vecchio and Murray, 2015; Laurenti et al., 2018; Raj and Van Oudenaarden, 2008; Eldar and Elowitz,

2010; Cardelli et al., 2016; Warne et al., 2019). The biomolecular motifs introduced in the current study

were analyzed through ODE models (deterministic analysis) which generally approximate well the dy-

namics of CRNs whose species are present in high copy-numbers. It therefore remains an interesting

endeavor to identify the probabilistic effects of the molecular reactions involved that may have a significant

impact on the behavior of these motifs when the biomolecular counts are low.

The speed or higher derivatives of the output of a system offers important information about its properties.

For an electromechanical system this is not difficult, but it has been a challenging question for biological

systems. In this article, we provide an approach to gain access to this information, which will be invaluable

for assessing and improving the performance of biological systems. We believe that our BioSD topologies

will expand the tools available for understanding and engineering biological systems for robustness and

reliability.
Limitations of the study

As emphasized in the Discussion, the behavior of the topologies presented here is studied via deterministic

mathematical analysis and simulations; the effect of inherent stochasticity of living systems stemming from

the random nature of molecular reactions on these topologies is left for future work.
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Data and code availability

All numerical simulations were performed in MATLAB R2020 using the ODE solver ode23s except for those

in Figure 5 where the ODE solver ode113 was used. Simulation parameter values can be found in the figure

captions. Initial conditions for the biomolecular species involved are considered zero except for BioSDs

and BioSDsF where the corresponding equilibria (‘‘rest-positions’’) are used (see STAR Methods Equilibria

and stability of Biomolecular Signal Differentiators and An alternative version of Biomolecular Signal Differ-

entiators). The corresponding programming code is available at: https://github.com/emgalox/

BioS-Differentiators.
METHOD DETAILS

Signals under consideration

In this study we consider Fourier-transformable signals (unless otherwise stated) (Lathi, 1998; Oppenheim

et al., 1996). The Fourier transform exists for any signal, sðtÞ, satisfying the following conditions, also known

as Dirichlet conditions:

� sðtÞ is absolutely integrable, i.e.:

Z +N

�N

jsðtÞjdt<N

� sðtÞhas a finite number of maxima and minima within any finite interval.

� sðtÞhas a finite number of discontinuities within any finite interval. In addition, each of these discon-

tinuities must be finite.

The Dirichlet conditions are sufficient but not necessary for the existence of Fourier transform of a signal.

Moreover, it should be noted that the Fourier transform of periodic signals can be computed from their

Fourier series representation (assuming it exists) with the help of impulse functions.

The main idea behind Fourier analysis is the decomposition of a signal into a sum of sinusoids, the relative

amplitudes and phases of which are determined by the Fourier spectrum of that signal. In the case of a

linear, time invariant system, transmission of a signal can be therefore treated as transmission of its constit-

uent sinusoids. Moreover, the frequency-domain description of such a system using its frequency response

is an alternative to the time-domain description based on convolution.
iScience 24, 103462, December 17, 2021 19

mailto:antonis@eng.ox.ac.uk
https://github.com/emgalox/BioS-Differentiators
https://github.com/emgalox/BioS-Differentiators
http://www.mathworks.com
https://github.com/emgalox/BioS-Differentiators
https://github.com/emgalox/BioS-Differentiators


ll
OPEN ACCESS

iScience
Article
Finally, in the current study we focus on physical signals that can be generated in a cellular environment.

Such naturally-occurring signals typically satisfy the Dirichlet conditions and, thus, have a Fourier represen-

tation - signals that do not satisfy these conditions do not normally arise in practical applications. Further

details on the above can be found in (Lathi, 1998; Oppenheim et al., 1996).
Equilibria and stability of biomolecular signal differentiators

We assume that all biomolecular circuits in this study are represented by chemical reaction networks (CRNs)

whose dynamics are described by the law ofmass action unless otherwise stated. For the purposes of determin-

istic modeling, we consider inputs UðtÞ that are bounded, non-negative, continuous-time signals of finite

duration, the time derivatives of which exist and are also bounded and continuous. This is clearly aligned with

the biological nature ofUðtÞwhich can correspond, for example, to the concentration of a biomolecular species.

Biomolecular signal differentiator-I. Biomolecular Signal Differentiator-I (BioSD-I) is described by the

CRN:

B/
kinU

X ; B/
b
X ; X/

k2
X + Z

X + Z/
k1
Z ; X/

d
B; Z/

k3=Z
B

(Equation S1)

where kin, b, k2, k1, k3, d ˛R+ . Note that the removal rate of Z is constant and equal to k3. To achieve this we

assume that Z participates in an enzyme-catalyzed degradation process which is traditionally described by

Michaelis-Menten kinetics. More precisely, the removal rate of Z is equal to

k3
Z

Z +Km
(Equation S2)

where Km ˛R+ is the Michaelis-Menten constant. When the enzyme that catalyzes the degradation process

is saturated by its substrate, we have:

Z[Km (Equation S3)

which entails, in effect, zero-order kinetics since Equation (S2) becomes practically equal to k3.

The dynamics of the above CRN (Equation (S1)) are given by the following system of Ordinary Differential

Equations (ODEs):

_X = kinU +b � k1XZ � dX (Equation S4)
_
Z = k2X � k3 (Equation S5)

For any constant input U�, a steady state (X�, Z�) of the system given by Equations (S4) and (S5) exists and is

finite. By setting the time derivatives of this system to zero, we can obtain the following unique steady-state:

X� =
k3
k2

(Equation S6)

�

Z� =

k2ðkinU +bÞ
k1k3

� d

k1
(Equation S7)

Clearly X� is positive while, due to Equation (S3), the same is true for Z� (in fact: Z�[0).

To study the local stability of the above equilibrium, we linearize Equations (S4) and (S5) around (X�, Z�) for a
constant input U� to get:

"
_X
_Z

#
=

2
64 �

k2ðkinU� +bÞ
k3

�k1k3
k2

k2 0

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G1

"
X
Z

#
(Equation S8)

As far as the linear system described by Equation (S8) is concerned, the steady state (X�, Z�) is exponentially
stable since matrix G1 is Hurwitz. To prove this, we find the characteristic polynomial of G1 as:
20 iScience 24, 103462, December 17, 2021
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P1ðsÞ = detðsI�G1Þ= s2 +
k2
k3

ðkinU� + bÞs+ k1k3 (Equation S9)

According to Routh-Hurwitz criterion, the second-order polynomial given by Equation (S9) has both roots in

the open left half plane if, and only if, both
k2ðkinU� +bÞ

k3
and k1k3 are positive, which is always true. Conse-

quently, (X�, Z�) is a positive locally exponentially stable steady state for the nonlinear system given by

Equations (S4) and (S5).

Following the same procedure, we next analyze BioSD-II and BioSD-III.

Biomolecular signal differentiator-II. TheCRN that corresponds to Biomolecular Signal Differentiator-II

(BioSD-II) is:

B/
kinU

X ; B/
b
X ; X/

k2
X + Z1

X + Z1/
k1
Z1; B/

k3
Z2; Z1 + Z2/

h
B; X/

d
B

(Equation S10)

where kin, b, k2, k1, d, h ˛R+ .

The dynamics of the above CRN (Equation (S10)) are described by the set of ODEs:

_X = kinU +b � k1XZ1 � dX (Equation S11)
_
Z1 = k2X � hZ1Z2 (Equation S12)
_
Z2 = k3 � hZ1Z2 (Equation S13)

For any constant input U�, provided that:

k2ðkinU� + bÞ>dk3; (Equation S14)

we have a unique positive (finite) steady state:

X� =
k3
k2

(Equation S15)

k ðk U� +bÞ d

Z�
1 =

2 in

k1k3
�
k1

(Equation S16)

k

Z�
2 =

3

h

�
k2ðkinU� +bÞ

k1k3
� d

k1

� (Equation S17)

We now linearize Equations (S11), (S12), and (S13) around the fixed point defined by Equations (S15), (S16),

and (S17) to obtain:

2
4 _X

_Z1
_Z2

3
5=

2
66664
�k2ðkinU� +bÞ

k3
�k1k3

k2
0

k2 �hZ�
2 �hZ�

1

0 �hZ�
2 �hZ�

1

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G2

2
4X
Z1

Z2

3
5

The characteristic polynomial of G2 is:

P2ðsÞ = detðsI�G2Þ= s3 +a2s
2 +a1s+a0 (Equation S18)

where

a2 = s+ h
�
Z�
1 + Z�

2

	
(Equation S19)� � �	
a1 = k1k3 + sh Z1 + Z2 (Equation S20)

a = k k hZ� (Equation S21)
0 1 3 1

and

s =
k2ðkinU� +bÞ

k3
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The polynomial given by Equation (S18) has all roots in the open-half plane if and only if a2;a0 are positive

and a2a1>a0 (Routh-Hurwitz criterion). Indeed:�
s+ h

�
Z�
1 + Z�

2

		�
k1k3 + sh

�
Z�
1 + Z�

2

		
>hk1k3z

�
1

or

sk1k3 + s2h
�
Z�
1 + Z�

2

	
+ k1k3h

�
Z�
1 + Z�

2

	
+ sh2

�
Z�
1 + Z�

2

	2
>hk1k3z

�
1

or

sk1k3 + s2h
�
Z�
1 + Z�

2

	
+ sh2

�
Z�
1 + Z�

2

	2
+ hk1k3Z

�
2>0

which is always true since all the quantities involved are positive. Therefore, (X�, Z�
1 , Z

�
2 ) is a positive locally

exponentially stable steady state (G2 is Hurwitz) for the nonlinear system described by Equations (S11),

(S12), and (S13).

Note that outside the parameter regime defined by Equation (S14) BioSD-II is unable to reach equilibrium.

In particular, assuming non-negative initial conditions for Equations (S11), (S12), and (S13) (which is always

the case because the variables involved represent biomolecular concentrations) the states of the latter

remain always non-negative (as expected from mass action kinetics). Indeed, when X = 0, Equation (S11)

implies _X = kinU +b>0. Furthermore, when Z1 = 0, Equation (S12) results in _Z1 = k2XR0 and, finally, when

Z2 = 0, Equation (S13) imposes _Z2 = k3>0. However, outside the parameter regime in question, one of

the following must hold: k2ðkinU� +bÞ<dk3or k2ðkinU� +bÞ = dk3. In the first scenario, it is apparent from

Equations (S16) and (S17) that the steady state of Z1, Z2 becomes negative while in the second case Equa-

tion (S17) indicates that Z2 tends to infinity - thus, BioSD-II cannot approach a finite steady state.

Biomolecular signal differentiator-III. Biomolecular Signal Differentiator-III (BioSD-III) is represented

by the CRN:

B/
kinU

X; B/
b
X ; X/

k2
X + Z1; X + Z1/

k1
Z1

B/
k3
Z2; X + Z2/

k1
X +X + Z2; Z1 + Z2/

h
B; X/

d
B

(Equation S22)

where kin, b, k2, k1, d, h˛R+ .

The corresponding ODE model describing the dynamics is

_X = kinU +b � k1XZ1 + k1XZ2 � dX (Equation S23)
_
Z1 = k2X � hZ1Z2 (Equation S24)
_
Z2 = k3 � hZ1Z2 (Equation S25)

For any constant input U�, we have a unique positive steady state (providing that it exists and is finite):

X� =
k3
k2

(Equation S26)


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 �2s

Z�
1 =

1

2

k2ðkinU� +bÞ
k1k3

� d

k1
+
1

2

k2ðkinU� +bÞ
k1k3

� d

k1
+ 4

k3
n

(Equation S27)


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 �s

Z�
2 = � 1

2

k2ðkinU� +bÞ
k1k3

� d

k1
+
1

2

k2ðkinU� +bÞ
k1k3

� d

k1

2

+ 4
k3
n

(Equation S28)

Linearizing the system given by Equations (S23), (S24), and (S25) around its steady state (Equations (S26),

(S27), and (S28)) yields:

2
4 _X

_Z1
_Z2

3
5 =

2
66664

�
k2ðkinU� +bÞ

k3
�k1k3

k2

k1k3
k2

k2 �hZ�
2 �hZ�

1

0 �hZ�
2 �hZ�

1

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}G3

2
4X
Z1

Z2

3
5

The characteristic polynomial of G3 is:

P3ðsÞ = detðsI�G3Þ= s3 +a02s2 +a01s+a00 (Equation S29)

where a02, a01 are identical to a2 (Equation S19), a1 (Equation S20), respectively and:
22 iScience 24, 103462, December 17, 2021
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a00 = k1k3h
�
Z�
1 + Z�

2

	
In order to show that G3 is Hurwitz we need to verify that a02a01>a00 (from Routh-Hurwitz criterion).

This inequality is satisfied because:�
s+ h

�
Z�
1 + Z�

2

		�
k1k3 + sh

�
Z�
1 + Z�

2

		
>hk1k3

�
Z�
1 + Z�

2

	
or

sk1k3 + s2h
�
Z�
1 + Z�

2

	
+ k1k3h

�
Z�
1 + Z�

2

	
+ sh2

�
Z�
1 + Z�

2

	2
>k1k3h

�
Z�
1 + Z�

2

	
or

sk1k3 + s2h
�
Z�
1 + Z�

2

	
+ sh2

�
Z�
1 + Z�

2

	2
>0

which is always true as a sum of positive quantities. Hence, (X�, Z�
1 , Z

�
2 ) is a positive locally exponentially sta-

ble steady state for the nonlinear system described by Equations (S23), (S24), and (S25).
The notion of strong rate of annihilation between Z1, Z2 (large h) in Biomolecular Signal

Differentiator-II

This reaction describes a process where species Z1, Z2 bind to each other irreversibly to form a product

which can be considered as biologically inactive. In other words, this product does not participate in any

of the reactions in BioSD-II. Here we demonstrate that the steady state of Z2 as well as its deviation from

it is practically negligible if the formation rate, h, of the product in question is sufficiently high. At the

same time, the effect of Z2 on the dynamics of BioSD-II can be considered insignificant, too.

By adopting the coordinate transformations: u = U�U�, x = X � X�, z1 = Z1 � Z�
1 , z2 =Z2 � Z�

2 which denote

small perturbations around (U�, X�, Z�
1 , Z

�
2 ), we obtain through linearization of Equations (S11), (S12), and

(S13):

2
4 _x

_z1
_z2

3
5 =

2
66664
�k2ðkinU� +bÞ

k3
�k1k3

k2
0

k2 �hZ�
2 �hZ�

1

0 �hZ�
2 �hZ�

1

3
77775
2
4 x
z1
z2

3
5+

2
4 kin
0
0

3
5u (Equation S30)

We now introduce the non-dimensional variables:

tn = b1t (Equation S31)
1

xn =
b2

x (Equation S32)

b

z1n = 1

b2k2
z1 (Equation S33)

b

z2n = 1

b2k2
z2 (Equation S34)

k

un =

in

b1b2

u (Equation S35)

where

b1 =
k3�

k2ðkinU� +bÞ
k1k3

� d

k1

� (Equation S36)

and b2 is an arbitrary scaling parameter that carries the same units as xn. In addition, we introduce the non-

dimensional parameters:

l1 =
b2
1

hk3
(Equation S37)

k ðk U� +bÞ

l2 =

2 in

b1k3
(Equation S38)

k k

l3 =

1 3

b1k2
(Equation S39)
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By substituting Equations (S31), (S32), (S33), (S34), (S35), (S36), (S37), (S38), and (S39) into themodel given by

Equation (S30), we obtain:

_xn = un � l2xn � l3z1n
1

_z1n = k2xn � z1n �
l1
z2n

1

_z2n = � z1n �

l1
z2n

or

_xn = un � l2xn � l3z1n
_
l1z1n = l1xn � l1z1n � z2n
l _z = � l z � z
1 2n 1 1n 2n

We now introduce the linear transformation gn = z1n � z2n resulting in the following mathematically equiv-

alent system:

_xn = un � l2xn � l3gn � l3z2n (Equation S40)
_g = x (Equation S41)
n n

l _z = � l g � ð1 + l Þz (Equation S42)
1 2n 1 n 1 2n

According to Equation (S37), l1/0as h/N. This means that we canmake l1 negligible by choosing a large

value for h:

h[
b2
1

k3
(Equation S43)

We now regard l1 as a singular perturbation parameter and use Theorem 11.1 in (H. K. Khalil, 2002). From

Equations (S40), (S41), and (S42) we obtain the following reduced model for l1 = 0:

_xn = un � l2xn � l3gn (Equation S44)
_g = x (Equation S45)
n n

since z2n = 0.

For a finite time interval ½0; tf � of interest, Equations (S44) and (S45) produce a unique solution xnðtÞ;gnðtÞ
taking into account the initial conditions of the system. In addition, the origin is an exponentially stable

equilibrium point of the boundary layer model:

dz2n
dt

= � z2n

where t = tn=l1.

Thus, according to Tikhonov’s theorem (Theorem 11.1 in (Khalil, 2002)), there exist a positive constant l�1
such that for 0<l1<l

�
1 the singular perturbation problem of Equations (S40), (S41), and (S42) has a unique

solution xnðt;l1Þ, gnðt;l1Þ, z2nðt; l1Þ on ½0; tf � and

xnðt; l1Þ� xnðtÞ=Oðl1Þ

gnðt; l1Þ�gnðtÞ=Oðl1Þ

Moreover, given any tb>0, there is l��1 such that

z2nðt; l1Þ = Oðl1Þ
whenever l1<l

��
1 .

Finally, combining Equations (S16), (S17), (S36), and (S37) results in:

l1 =
Z�
2

Z�
1

Assuming that Z�
1 corresponds to some finite (nonzero) concentration, Z�

2/0 as l1/0.
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Behavior analysis of biomolecular signal differentiators

Here we prove that, near their equilibria, BioSD networks are capable of signal differentiation.

We begin with BioSD-I whose dynamics close to its steady state are derived via linearization of Equations

(S4) and (S5) as:



_x
_z

�
=

2
64�k2ðkinU� +bÞ

k3
�k1k3

k2

k2 0

3
75
 xz

�
+



kin
0

�
u (Equation S46)

assuming the coordinate transformations: u = U� U�, x = X � X�, z =Z � Z� which represent small pertur-

bations around (U�, X�, Z�). Note that u represents UTV of the main text. We next consider the non-dimen-

sional variables:

tn = c1t (Equation S47)
1

xn =
c3

x (Equation S48)

c1
zn =
k2c3

z (Equation S49)

c k

un =

1 in

k2c2c3
u (Equation S50)

where

c1 =
k2ðkinU� +bÞ

k3
(Equation S51)

k k

c2 =

1 3

k2
(Equation S52)

andc3 is an arbitrary scaling parameter that carries the same units as xn. We also introduce the non-dimen-

sional parameter:

ε =
c21
k2c2

(Equation S53)

Substituting Equations (S47), (S48), (S49), (S50), (S51), (S52), and (S53) into the system (S46) results in:

_xn = � xn � 1

ε

zn +
1

ε

un

_z = x
n n

or

ε _xn = � εxn � zn + un (Equation S54)
_
zn = xn (Equation S55)

The system described by Equations (S54), (S55) is mathematically equivalent to the following second - order

differential equation:

ε€xn + ε _xn + xn = _un (Equation S56)

We see immediately that if εð€xn + _xnÞ= 0 then xn = _un which gives through Equations (S47), (S48), (S50), and

(S52):

x =
kin
k1k3

_u (Equation S57)

By recalling Equation (S6) and our initial coordinate transformations, this relationship can be rewritten as:

X =
kin
k1k3

_U +
k3
k2

(Equation S58)

Having this in mind and taking into account that ε is positive as a combination of positive parameters (Equa-

tion (S53)) we calculate the general solution of €xn + _xn = 0 as:

xn = q1e
�tn + q2 (Equation S59)

whereq1; q2 are arbitrary constants. Subsequently, from Equations (S47), (S48), (S57), and (S59) we get:
iScience 24, 103462, December 17, 2021 25



ll
OPEN ACCESS

iScience
Article
u = f1e
�c1t + f2t + f3 (Equation S60)

where f1, f2, f3 are arbitrary constants.

To study the behavior of BioSD-I in the more general case where the input signal does not satisfy Equa-

tion (S60) we consider the following transfer function describing the system defined by Equations (S54)

and (S54) in the Laplace domain:

~DBSDðsÞ =
~XnðsÞ
~UnðsÞ

=
s

εðs2 + sÞ+ 1
(Equation S61)

where ~XnðsÞ and ~UnðsÞ are the Laplace transform of the output xn and input un, respectively and s is the com-

plex frequency. As can be seen, BioSD-I can compute the derivative of the input signal filtered by a second -

order low - pass filter.

As pointed out in Signals under consideration, Fourier transform is a powerful tool that allows the decom-

position of a signal into its constituent sinusoids. Thus, focusing on the frequency response of the system,

we set s= ju (where j =
ffiffiffiffiffiffiffi�1

p
) in Equation (S61) to get:

~DBSDðjuÞ = ju

εð�u2 + juÞ+ 1
(Equation S62)

which can be equivalently represented by:

j~DBSDðjuÞj = uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε
2u2 + ð1� εu2Þ2

q (Equation S63)

and

:~DBSDðjuÞ = arctan

�
1

εu
�u

�
(Equation S64)

As shown in Figure S3, for a given ε, there is a low-frequency range over which BioSD-I functions as a pure

signal differentiator and, by extension Equation (S58) holds (the filtering action is practically zero), and a

high-frequency one over which it works as a signal attenuator instead. At the same time, there is a narrow

frequency band in between where the aforementioned operations may not be carried out with the ex-

pected accuracy. The behavior of BioSD-I therefore depends on the value of ε as well as on ’’how fast’’

an input signal varies over time.

Following the same procedure, we study the local dynamics of BioSD-III by linearizing Equations (S23),

(S24), and (S25):

2
4 _x

_z1
_z2

3
5 =

2
66664
�k2ðkinU� +bÞ

k3
�k1k3

k2

k1k3
k2

k2 �hZ�
2 �hZ�

1

0 �hZ�
2 �hZ�

1

3
77775
2
4 x
z1
z2

3
5+

2
4 kin
0
0

3
5u

where the variables u = U�U�, x = X � X�, z1 = Z1 � Z�
1 , z2 =Z2 � Z�

2 refer to small perturbations around the

equilibrium (U�, X�, Z�
1 , Z

�
2 ). Introducing the linear transformation g= z1 � z2 results in the following math-

ematically equivalent system:

2
4 _x

_g
_z2

3
5 =

2
66664
�k2ðkinU� +bÞ

k3
�k1k3

k2
0

k2 0 0

0 �hZ�
2 �h

�
Z�
1 + Z�

2

	

3
77775
2
4 x
g
z2

3
5+

2
4 kin
0
0

3
5u (Equation S65)

We notice that the dynamics of x and g of the system given by Equation (S65) are identical to that of x and z

of the system given by Equation (S46), respectively. Hence, the output, x, of BioSD-III behaves in the exact

same way as the one of previously analyzed BioSD-I.

Subsequently, we recall Equation (S30) describing the dynamics of BioSD-II near its equilibrium. It is evident

that using the linear transformation g= z1 � z2 again and assuming a sufficiently large h (Equation (S43)
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holds), the dynamics of x and g in BioSD-II are described by Equation (S46), namely the dynamics of BioSD-I

(see The notion of strong rate of annihilation between Z1, Z2 (large h) in Biomolecular Signal Differentiator-

II). By extension, the output behavior of these two circuits is identical.
An alternative version of biomolecular signal differentiators

Here we analyze a slightly different version of the previously studied BioSD networks which we call Biomol-

ecular Signal DifferentiatorsF (BioSDsF) that include an additional biomolecular species, Z3. In particular, we

describe the following three biomolecular topologies:

� BioSDF-I

We have the CRN:

B/
m1U

Z3; Z3/
kin
Z3 +X ; Z3/

m2
B; B/

b
X

X/
k2
X + Z ; X + Z/

k1
Z ; X/

d
B; Z/

k3=Z
B

where m1, m2, kin, b, k2, k1, d, k3 ˛R+ . The 0th-order removal of Z is the result of enzymatic degradation

following saturated Michaelis - Menten kinetics (see Equilibria and stability of biomolecular signal differ-

entiators: biomolecular signal differentiator-I).

The corresponding ODE model is:

_Z3 = m1U � m2Z3

_
X = kinZ3 +b � k1XZ � dX
_
Z = k2X � k3

� BioSDF-II

We have the CRN:

B/
m1U

Z3; Z3/
kin
Z3 +X ; Z3/

m2
B

B/
b
X; X/

k2
X + Z1; X + Z1/

k1
Z1

B/
k3
Z2; Z1 + Z2/

h
B; X/

d
B

where m1, m2, kin, b, k2, k1, d, h˛R+ . We assume that the parameter rate h is sufficiently large (see The notion

of strong rate of annihilation between Z1, Z2 (large h) in Biomolecular Signal Differentiator-II).

The corresponding ODE model is:

_Z3 = m1U � m2Z3

_
X = kinZ3 +b � k1XZ1 � dX
_
Z1 = k2X � hZ1Z2

_
Z2 = k3 � hZ1Z2

� BioSDF-III

We have the CRN:

B/
m1U

Z3; Z3/
kin
Z3 +X ; Z3/

m2
B

B/
b
X ; X/

k2
X + Z1; X + Z1/

k1
Z1; B/

k3
Z2

X + Z2/
k1
X +X + Z2; Z1 + Z2/

h
B; X/

d
B

where m1, m2, kin, b, k2, k1, d, h ˛R+ .

The corresponding ODE model is:

_Z3 = m1U � m2Z3
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_X = kinZ3 +b � k1XZ1 + k1XZ2 � dX
_
Z1 = k2X � hZ1Z2

_
Z2 = k3 � hZ1Z2

Each of the above circuits can be seen as the interconnection of two subsystems. More specifically, we have

the linear, asymptotically stable, subsystem (the first equation in each of above ODE models):

_Z3 = m1U � m2Z3 (Equation S66)

which receives the signal U we want to differentiate as input and produces an output Z3. This is, in turn,

applied as input to a second subsystem whose output is X. While the first subsystem is the same in all Bio-

SDF topologies, the second one differs. In fact, the latter is identical to BioSD-I, BioSD-II, BioSD-III (see pre-

vious sections) for BioSDF-I, BioSDF-II, BioSDF-III, respectively, with the only difference lying in the input,

which is now Z3 (instead of U as before).

For a constant input U� the first subsystem defined by Equation (S66) has a unique positive steady state

(assuming it exists and is finite):

Z3 =
m1U

�

m2

(Equation S67)

Since Equation (S66) is linear and (m2) is always positive then Equation (S67) is a globally exponentially stable

equilibrium point.

We now concentrate on the local behavior of BioSDF modules and, consequently, we consider the coordi-

nate transformations: u = U� U�, x = X � X�, z = Z � Z�, z1 = Z1 � Z�
1 , z2 = Z2 � Z�

2 , z3 =Z3 � Z�
3 denoting

small perturbations around the corresponding equilibria of BioSDF networks - (U�, X�, Z�, Z�
3 ) for BioSDF-I

and (U�, X�, Z�
1 , Z

�
2 , Z

�
3 ) for BioSD

F-II, BioSDF-III (the steady states of the last two networks do not necessarily

coincide).

First, we study Equation (S66) separately. In the Laplace domain, we have:

~DLPFðsÞ =
~Z3ðsÞ
~UðsÞ =

m1

s+m2

(Equation S68)

where ~Z3ðsÞ, ~UðsÞ are the Laplace transform of z3, u, respectively. Focusing on the frequency response, we

get:

~DLPFðjuÞ = m1

m2

1

j
u

m2

+ 1
(Equation S69)

This is a transfer function of a first-order low-pass filter which is capable of preserving low-frequency signals

and rejecting high-frequency signals. Indeed, the magnitude and the phase of the system in question are

given by:

j~DLPFðjuÞj = m1

m2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

�
u
m2

�2
s

and

:~DLPFðjuÞ = � arctan
u

m2

;

respectively.

We can easily see that in practice, when u � m2, there is a constant input/output gain

�
m1

m2

�
and no phase

lag. On the other hand, for u2[m2
2 strong attenuation takes place. The general behavior of the filter can be

easily understood through the Bode diagram in Figure S4.
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We now consider a BioSDF design which can be described by the transfer function of the series connection

of the previously studied filter and a BioSD design (as already outlined in Behavior analysis of biomolecular

signal differentiators, all three BioSD circuits are described by the same transfer function), i.e.:

~DBSDF ðsÞ =
~XnðsÞ
~UnðsÞ

= ~DLPFðsÞ~DBSDðsÞ

or

~DBSDF ðsÞ = m1

s+m2

,
s

εðs2 + sÞ+ 1
(Equation S70)

where ~DLPFðsÞ =
~Z3ðsÞ
~UnðsÞ

, ~DBSDðsÞ=
~XnðsÞ
~Z3nðsÞ

with ~Z3nðsÞ=p~Z3ðsÞ and p=
un
u
(see Behavior analysis of biomolecular

signal differentiators).

Shifting our focus on the frequency response we have:

~DBSDF ðjuÞ = ~DLPFðjuÞ~DBSDðjuÞ (Equation S71)

for which: ��~DBSDF ðjuÞ�� = j~DLPFðjuÞjj~DBSDðjuÞj
and

:~DBSDF ðuÞ = :~DLPFðjuÞ+:~DBSDðjuÞ
Consequently, for a given ε, BioSDF circuits are characterized by an enhanced capability of high-frequency

signal attenuation compared to BioSD ones. In fact, as demonstrated in Figure S5, we can extend the fre-

quency band where strong signal attenuation is carried out by appropriately tuning the filter module. In

other words, we can adjust the bandwidth of the extra filter as desired through the parameter rate m2.

The price we pay for this significant improvement is the increase in structural complexity due to the addition

of the species Z3 via which the additional filtering is accomplished. Finally, in the low-frequency regime,

where only signal differentiation takes place (the filtering action is practically zero), the BioSDF output

can be approximated in the time domain as (recall Behavior Analysis of Biomolecular Signal

Differentiators):

X =
m1kin
m2k1k3

_U +
k3
k2

Analysis of the experimental topology of Biomolecular Signal Differentiator-III

Here we further analyze the proposed synthetic design of BioSD-III, the behavior of which may be more

complicated due to the use of three auxiliary species (see Guidelines for experimental implementation

of biomolecular signal differentiators).

The biomolecular topology shown in Figure 8C can be described by the following set of ODEs:

_X = kinU +b � k1XZ1 + k1aXauxZ2;aux � dX (Equation S72)
_
Xaux = kinU +b � k1bXauxZ1 + k1aXauxZ2;aux � daXaux (Equation S73)

_
Z1 = k2X � hZ1Z2 (Equation S74)
_
Z1;aux = k2X � haZ1;auxZ2;aux (Equation S75)

_
Z2 = k3 � hZ1Z2 (Equation S76)
_
Z2;aux = k3 � haZ1;auxZ2;aux (Equation S77)

where kin, b, k2, k1, k1a, k1b, d, da, h, ha ˛R+ .

In order for the behavior of X (measured output species) in the system described by Equations (S72)-(S77) to

perfectly match the one of X in themodel given by Equations (S23)-(S25), we need: k1 = k1a = k1b, d= da and

h = ha. Nevertheless, non-satisfaction of the aforementioned conditions does not necessarily entail consid-

erable loss of accuracy regarding signal differentiation (Figure S6).
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Modeling a more realistic case of Biomolecular Signal Differentiator-II

Here we study the behavior of Biomolecular Signal Differentiator-II under more realistic conditions result-

ing from the corresponding experimental design discussed in Guidelines for experimental implementation

of biomolecular signal differentiators.

First, we consider the ODE model:

_X = kinU +b � k1XZ1 � dX (Equation S78)
X
_Z1 = VmaxX +Km

� hZ1Z2 (Equation S79)

_
Z2 = k3 � hZ1Z2 (Equation S80)

For a constant input U�, provided that:

ðkinU� + bÞ>dX�;

we have a unique positive (finite) steady state:

X� =
k3Km

Vmax � k3
(Equation S81)

ðk U� +bÞ d

Z�
1 =

in

k1X� �
k1

(Equation S82)

k

Z�
2 =

3

hZ�
1

(Equation S83)

Compared to the original model of BioSD-II (Equations (S11), (S12), and (S13)), we now use a Michaelis-

Menten function to describe the activation of species Z1 by species X (Equation S79) through gene expres-

sion (Aoki et al., 2019). It is evident that, assuming small perturbations around (U�, X�, Z�
1 , Z

�
2 ), linearization

of Equations (S78), (S79), and (S80) yields a system of the same form as Equation (S30). Consequently, we

can follow a similar analysis to study its local behavior as the one used for the original model (see The notion

of strong rate of annihilation between Z1, Z2 (large h) in biomolecular signal differentiator-II and Behavior

analysis of biomolecular signal differentiators). Nevertheless, it should be emphasized that when no satu-

ration occurs and the slope of the Michaelis-Menten function is approximately linear, the corresponding

production rate can be effectively considered proportional to the concentration of the regulator species

(ibid.). In that case, the results of our original analysis can be used directly.

Implementation of BioSD-II in living cells implies the existence of an additional degradation mechanism

due to cell growth affecting all the biomolecules involved, known as dilution (Aoki et al., 2019; Qian and

Del Vecchio, 2018). This can lead to a ‘‘leaky’’ integration process realized by species Z1, Z2 and, by exten-

sion, it can affect the output response (see Achieving biological signal differentiation). To this end, we

consider the following, more complex, ODE model:

_X = kinU +b � k1XZ1 � ðd + gÞX (Equation S84)
X
_Z1 = VmaxX +Km

� hZ1Z2 � gZ1 (Equation S85)

_
Z2 = k3 � hZ1Z2 � gZ2 (Equation S86)

where g represents a dilution rate constant.

In general, linearization of Equations (S84), (S85), and (S86) around their steady-state (which is obviously

different than before) results in a system which does not have the same form as Equation (S30) and,

thus, the procedures of our original analysis are not valid here. Nevertheless, if the dilution effect is not

strong, it can be seen from simulations that the behavior of this model approaches the one of Equations

(S78), (S79), and (S80).

Note that the above structural ’’perturbations’’ appear also in the natural systems discussed in Biomole-

cular signal differentiators in natural regulatory networks. In parallel, activation of species X by Z and Z1
in BioSD-I and BioSD-III, respectively is also done through gene expression (see Guidelines for experi-

mental implementation of biomolecular signal differentiators). In addition, dilution is present when real-

izing the latter topologies in living cells. Consequently, we can draw similar conclusions about them as

with BioSD-II.
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We now numerically investigate the behavior of BioSD-II. Figure S7A shows the response of the system

given by Equations (S78), (S79), and (S80) to the input presented in Figure 3C using the parameter rates

in Table S1, except for the dilution rate g which is considered zero. As can be seen, BioSD-II can accurately

calculate the rate of change of the input applied.

Note also the following:

� From Equation (S85) and Table S1 we calculate the steady-state concentration of species X which is

equal to 20 nM. Based on the values of Vmax , Km and taking into account that X moves around the

aforementioned point, the production rate of species Z1 can be approximated well by the term

k2X , where k2z1 (no saturation occurs).

� To facilitate the comparison of the BioSD output with the derivative of the input we choose a value for

kin equal to the value of the quantity k1k3 (see Equation (S58)). At the same time, here input U rep-

resents an actuator species whose concentration is related linearly with the corresponding produc-

tion rate of output species X (which may result from the linear regime of a Hill function as discussed

above). Nevertheless, in the general case the term kinU can represent any (nonlinear) function

describing the activating mechanism of the output species.

� From Equation (S53) we get εz0:125. Moreover, h can be considered sufficiently large since h= 425

nM�1 min�1[
b21
k3
z14:18 nM�1 min�1 (see Equation (S36)). Consequently, Equation (S43) holds.

� Protein production rates regarding gene expression can be easily adjusted, for example, by chang-

ing gene copy number and, thus, a wide range of values can be achieved - a typical parameter range

for E. coli is 0:5� 104 nM nM (Aoki et al., 2019). This implies extensive tunability which is important for

meeting different performance standards (see Tunability and accuracy) since a considerable number

of parameter rates in BioSD-II is associated with gene expression, i.e. b, k2 (which is related to Vmax ,

Km), k3 and kin.

Figure S7B shows the response of the system given by Equations (S84), (S85), and (S86) to the same input

stimulus.We also use the same parameters rates as before except for the dilution rate which is now nonzero

and equal to a typical value for E. coli (see Table S1). It is evident that the output remains an accurate replica

of the derivative of the input.

Subsequently, in Figures S7C and S7D we further investigate the impact of dilution on the output of BioSD-

II by repeating the simulation of Figure S7B with a 5 and 10 times larger dilution rate, respectively. We

notice that as this rate gets stronger the actual response moves away from the zero-level ‘‘bias’’ which co-

incides with the corresponding output steady-state. Moreover, although the accuracy drops to some

extent, the form of the output remains close to the one of the ideal derivative.

As already pointed out, the annihilation rate h is chosen to be sufficiently large so that the condition given

by Equation (S43) is satisfied (only BioSD-II entails such a requirement). More specifically, h is approximately

30 times larger than the quantity
b21
k3
. Nevertheless, it remains unclear to us if such suitable values of h can be

always guaranteed in vitro by the interaction between the pair of protease/protease inhibitor proposed in

Guidelines for experimental implementation of biomolecular signal differentiators. It is therefore impor-

tant to investigate the behavior of the differentiator module in the case where h is not as large as our theo-

retical analysis demands. As shown in Figure S8, non-satisfaction of the condition given by Equation (S43)

does not necessarily entail significant loss of accuracy regarding signal differentiation. Note also that the

quantity
b21
k3

can be easily adjusted to a suitable value by appropriately tuning the protein production rates

involved in BioSD-II (discussed earlier).

Finally, to make the above analysis even more realistic (Del Vecchio and Murray, 2015), one could model

gene expression as a multi-stage process, thus capturing the dynamics of transcription and translation.

At the same time, the dynamics of complexes participating in intermediate stages of inhibition and anni-

hilation reactions could also be considered. Nonetheless, it is important to emphasize that such an

approach would increase the complexity of the resulting mathematical models.
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