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Abstract: Neural stem cells (NSCs), crucial for memory in the adult brain, are also pivotal to buffer
depressive behavior. However, the mechanisms underlying the boost in NSC activity throughout life
are still largely undiscovered. Here, we aimed to explore the role of deacetylase Sirtuin 3 (SIRT3),
a central player in mitochondrial metabolism and oxidative protection, in the fate of NSC under
aging and depression-like contexts. We showed that chronic treatment with tert-butyl hydroperoxide
induces NSC aging, markedly reducing SIRT3 protein. SIRT3 overexpression, in turn, restored
mitochondrial oxidative stress and the differentiation potential of aged NSCs. Notably, SIRT3 was
also shown to physically interact with the long chain acyl-CoA dehydrogenase (LCAD) in NSCs and
to require its activation to prevent age-impaired neurogenesis. Finally, the SIRT3 regulatory network
was investigated in vivo using the unpredictable chronic mild stress (uCMS) paradigm to mimic
depressive-like behavior in mice. Interestingly, uCMS mice presented lower levels of neurogenesis
and LCAD expression in the same neurogenic niches, being significantly rescued by physical exercise,
a well-known upregulator of SIRT3 and lipid metabolism. Our results suggest that targeting NSC
metabolism, namely through SIRT3, might be a suitable promising strategy to delay NSC aging and
confer stress resilience.
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1. Introduction

Adult neurogenesis constitutively occurs in the adult mammalian brain where neural
stem cells (NSCs) are able to differentiate into three neural lineages, including neurons,
astrocytes, and oligodendrocytes [1]. Moreover, these multipotent cells are also able to
self-renew through cell proliferation in order to maintain their pool [2]. This process
occurs mainly in two restricted brain areas, the subventricular zone (SVZ) lining the
lateral ventricles, and the subgranular zone (SGZ) within the dentate gyrus (DG) of the
hippocampus [3,4]. In fact, these regions are rich in NSCs that originate neuroblasts, which
then migrate toward their final destinations, where they complete their differentiation into
mature neurons and are integrated into the neuronal circuitry [5–7].

Neurogenesis is a highly complex process of generating functional neurons from NSCs
and comprises several steps: proliferation and neuronal fate specification, migration, and
the differentiation and survival of the newly formed neurons, with functional integration
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in the existing neuronal circuits [8]. Due to its immense intricacy, this process occurs under
tight regulation by a plethora of regulatory mechanisms [4]. There are several factors that
contribute to the systemic regulation of adult neurogenesis. One of the most important
is age. In fact, the number of NSCs, as well as their potential for self-renewal and differ-
entiation, sharply drops throughout the age of the organism [9,10]. NSCs are therefore
particularly responsive to several stimuli present in the aging process, including oxidative
stress, mitochondrial dysfunction, and a compromised bioenergetic metabolism [11,12]. Ac-
cordingly, the progressive decrease in NSCs’ ability to self-renew and differentiate into new
neurons throughout aging ends up reflected in the progressive loss of brain physiological
integrity and in the lower regenerative ability that follows the aging process [9,10,13].

In addition, recent reports have also shown that NSC decline is a risk factor for
psychiatric disorders, including anxiety and depression [14,15]. Notably, depression has
been shown to be the most common type of mental illness in adulthood. It is commonly
encountered with dementia in the elderly and the correlation between both neurological
problems has become increasingly evident [16,17]. The major depressive disorder has been
associated with decreased levels of neural markers, expressed by both NSCs and mature
neurons, as well as with a lower neurogenic niche volume [18]. In fact, previous evidence
shows that anxiety- and depression-like states lead to impairments in adult subventricular
neurogenesis [18]. Nevertheless, the vast majority of studies have been correlative, and
there are several gaps in our understanding of the molecular mechanisms responsible for
this strong association between physiological neurogenesis and individual wellbeing.

Although the underlying molecular mechanisms of adult neurogenesis are still not
fully unraveled, mitochondria have been shown to be a key regulator of the fate of
NSCs [19,20]. Indeed, the role of mitochondria activity in NSC biology has been dissected
in numerous recent studies, which in turn have suggested that mitochondria bioenergetic
and biogenesis are driving forces in NSC regulation and adult neurogenesis [19,21,22].
In particular, we and others have demonstrated that metabolic plasticity, including the
subtle balance between lipogenesis and lipid catabolism, is crucial to the transition between
stemness maintenance and commitment to differentiation [23,24]. Notably, a reduction
in the mitochondrial content and a lower oxidative metabolism have been reported in
aged NSCs [25] as well as a metabolic dysfunction in psychiatric-disorder-affected brains
postmortem [26].

The mitochondrial deacetylase Sirtuin 3 (SIRT3) is a central player in mitochondrial
metabolism and oxidative protection [27–29] often associated with aging [28]. Aside
from histones, SIRTs target other proteins in the cytoplasm and mitochondria by post-
translationally removing acetyl groups attached to their lysine residues by acetyltrans-
ferases [30]. SIRT3 exhibits a nuclear and mitochondrial localization and is responsible
for major mitochondrial deacetylase activity, having a profound contribution in mitochon-
drial biology [31]. Evidence shows that SIRT3 is involved in mitochondrial dynamics and
biogenesis, ATP generation, mitochondrial unfolded protein response (mtUPR), and cell
death signaling [28,29]. More frequently, SIRT3 is known for influencing mitochondrial
reactive oxygen species (ROS) homeostasis, namely by increasing the activation of superox-
ide dismutase 2 (SOD2)-deacetylase, a major superoxide-scavenger in mitochondria [32].
The acetylation status of SOD2 lysine 68 inversely correlates with its antioxidant activity,
suggesting a post-translational regulatory mechanism by means of acetylation [33]. Thus,
SIRT3 participates in SOD2 fine-tuning through the removal of the acetyl group therefore
increasing its activity and cell survival [33]. Apart from the regulatory effect on the mi-
tochondrial oxidative state [34], mitochondrial SIRT3 also influences energy metabolism
and nutrient-sensing pathways. It has been shown that SIRT3 can interact with pyruvate
dehydrogenase, regulating its acetylation/deacetylation status, and therefore having a
preponderant regulatory role in glycolysis [35]. Additionally, SIRT3 is able to promote
fatty acid (FA) catabolism and the use of triacylglycerols by deacetylating and activating
long chain acyl-CoA dehydrogenase (LCAD) [36]. LCAD is a key enzyme in mitochon-
drial β-oxidation, a catabolic process responsible for the degradation of short, medium,
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and long chain FAs to acetyl-CoA [37]. SIRT3 promotes fatty acid β-oxidation by directly
deacetylating LCAD at lysine 42 thus increasing its activity and promoting mitochondrial
β-oxidation [36].

Although the impact of mitochondria in NSC fate has been well-established, the
precise role of mitochondrial SIRT3 state in mediating NSC function is still not fully
understood. Dissecting the mechanistic connection between key metabolic regulators and
NSC biology might provide a broader perspective for understanding the processes of adult
neurogenesis, and thus novel opportunities to design new and suitable strategies to boost
NSC-driven regeneration in conditions associated with a decline in neurogenesis, such
as aging and depression. Hence, here we sought to explore the molecular mechanisms
underlying SIRT3’s regulation of the fate of NSCs, and whether SIRT3 and its downstream
targets would be good pharmacological targets to rescue neurogenic potential in aging and
depression contexts.

2. Materials and Methods
2.1. Neural Stem Cell Cultures

The CGR8-NS cells were derived from embryonic stem cell line CGR8, established
from the inner cell mass of a 3.5 day male pre-implantation mouse embryo (ECACC
07032901) [38]. This robust cellular model can be stably expanded in vitro and maintain
neuronal and glial differentiation potential even after long-term passaging [39–41]. These
cells were obtained from Prof. Smith’s laboratory, University of Cambridge, and kindly
provided by Dr. Margarida Diogo, Universidade de Lisboa.

NSCs were grown in a monolayer and routinely maintained in self-renewal condi-
tions in Euromed-N medium (EuroClone® S.p.A., Milan, Italy), at 37 ◦C, in a humidified
atmosphere of 5% CO2. The self-renewal medium was supplemented with 1% penicillin-
streptomycin, 1% N-2 supplement, 20 ng/mL epidermal growth factor (EGF), and 20 ng/mL
basic fibroblast growth factor (βFGF). Medium supplements were from Gibco™ (Thermo
Fisher Scientific Inc., Waltham, MA, USA). All experiments were performed in self-renewal
medium, and NSCs were plated onto uncoated tissue culture plastic dishes at a density of
around 1 × 105 cells/cm2.

2.2. Chronic Cell Aging Model

Chronic aging was induced in NSCs by sequential short-term exposure to the oxidative
agent tert-butyl hydroperoxide (tBHP, Luperox® TBH 70x, Sigma-Aldrich Corp., St. Louis,
MO, USA), and the protocol was adapted as described elsewhere [42]. Chronic treatment
started 22 h after plating, where NSCs were incubated with 50 µM tBHP for 2 h/day,
for 4 consecutive days. In parallel, an equal volume of the vehicle was added to control
cultures. After each 2 h incubation, all NSC cultures were washed with PBS (Gibco™) and
then rested in self-renewal medium for 22 h. At the end of the fourth tBHP-treatment (or
vehicle for controls) NSC cells were detached with StemPro® Accutase® (Gibco™) and
processed for further analysis.

2.3. Evaluation of Cell Death and Viability

Viability and cell death levels were assessed by Guava Nexin® reagent (4500-0450;
Luminex Corp., Austin, TX, USA), according to the manufacturer’s instructions. At the
end of the chronic tBHP regimen, the culture medium containing death cells was collected
together with adherent NSCs detached with StemPro® Accutase®, centrifuged for 5 min at
600× g, and resuspended in PBS with 2% FBS (Gibco™). The subsequent suspension was
mixed with Guava Nexin® reagent (1:1) and incubated for 20 min at room temperature (RT)
protected from light. Sample acquisition was performed using Guava® easyCyte™ 5HT
flow cytometer (Merck Millipore Corp., Darmstadt, Germany). The data were analyzed
using FlowJo X 10.0.7 software (Tree Star, Inc., Ashland, OR, USA).
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2.4. Proliferation Index

Proliferation levels were determined by the incorporation of BrdU, a synthetic thymi-
dine analogue, using the APC BrdU Flow Kit (552598; BD Pharmingen™, BD Biosciences,
San Jose, CA, USA) according to the manufacturer’s instructions. Briefly, BrdU was incu-
bated for 2 h in self-renewal medium, after the last tBHP treatment (day 5). The incorporated
BrdU was stained with APC-conjugated anti-BrdU antibody and samples were acquired
using the BD LSRFortessa™ Flow Cytometer (BD Biosciences). FlowJo X 10.0.7 software
(Tree Star, Inc.) was used for data analysis.

2.5. Transfection Assays

Transfections were performed using Lipofectamine™ 3000 (Invitrogen™, Thermo
Fisher Scientific Inc.), according to the manufacturer’s instructions, in both tBHP-treated
and untreated NSCs. SIRT3 overexpression was induced at day 2 post-plating, i.e., 4 h after
the second exposure to tBHP or vehicle (control), by transfecting NSCs with pCMV6-AC-
GFP as control, and the same plasmid encoding human GFP tagged SIRT3 (RG217770).
Both plasmids were kindly provided by Dr. Ana Cristina Rego, University of Coimbra.
For transfection, Opti-MEM® (Gibco™) containing the mixture of Lipofectamine and DNA
(2 µL:1 µg) was added and the NSCs were incubated (37 ◦C, 5% CO2) to the following day
until the end of the third tBHP-treatment. To assess the effect of SIRT3 overexpression and
LCAD downregulation (co-modulation studies), NSCs were simultaneously co-transfected
with SIRT3 or control (the abovementioned plasmids) and with 60 nM of small interfering
RNA (siRNA) specific to LCAD (Acadl Silencer Pre-designed siRNA, ID162072, Ambion™,
Thermo Fisher Scientific Inc.) or the respective negative control (Silencer® Select Negative
Control #1 siRNA, Ambion™). Co-transfection was performed with the same timing as
mentioned above, i.e., at day 2 of culturing and after a 4 h resting period post-tBHP
incubation). For all transfection assays cells were collected two days afterwards (day 5, at
the end of chronic aging treatment) and processed for flow cytometry, immunoblotting,
and qRT-PCR.

To evaluate transfection efficiency, both overexpression and silencing, SIRT3 and
LCAD levels were determined by Western blot, respectively.

2.6. Mitochondrial ROS Detection

mtROS levels were measured using MitoSOX™ Red mitochondrial superoxide indica-
tor (M36008; Invitrogen™). Briefly, NSCs were incubated for 10 min at 37 ◦C with 5 µM
MitoSOX™ Red in Hank’s balanced salt solution (14025; Gibco™). Cells were then washed,
collected, and resuspended in DPBS with 2% FBS. Samples were subsequently acquired
with Accuri C6 Flow Cytometer (BD Biosciences) and data analysis was performed in
FlowJo X 10.0.7 software (Tree Star, Inc.).

2.7. ATP Measurement

ATP content was assessed by performing the Mitochondrial ToxGlo™ assay (G8001;
Promega Co., Madison, WI, USA), following the manufacturer’s instructions. ATP Detec-
tion Reagent was added to NSCs, resulting in cell lysis and the generation of a luminescent
signal proportional to the amount of ATP present. Emission of luminescence was detected
using the GloMax® 96 Microplate Luminometer (Promega Co.).

2.8. Total Protein Extraction

NSCs were collected and lysed using ice-cold lysis buffer (10 mM Tris-HCl, pH 7.6,
5 mM MgCl2, 1.5 mM potassium acetate, 1% Nonidet P-40, 2 mM dithiothreitol and 1X Halt
Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific Inc.)) for 30 min in
ice. Samples were subsequently sonicated for 30 s and centrifuged for 10 min at 3200× g at
4 ◦C. The supernatant was recovered and stored at −80 ◦C. Protein content was measured
by the Bio-Rad protein assay kit (5000002; Bio-Rad Laboratories, Hercules, CA, USA),
according to the manufacturer’s specifications, using bovine serum albumin as standard.
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2.9. Immunoblotting

Protein levels of p16, p21, p53, NeuN, Sox2, SIRT3, LCAD, acetyl-SOD2, and SOD2 were
determined by Western blot analysis. Briefly, 40 µg of protein extracts were separated on a
12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then transferred onto a
nitrocellulose membrane and blocked with 5% milk solution. Uniform protein loading and
transfer was confirmed by transient staining with 0.2% Ponceau S (Sigma-Aldrich Corp.).
Blots were incubated overnight with mouse primary antibodies reactive to p53 (1:200; sc-99;
Santa Cruz Biotechnology Inc., Dallas, TX, USA), NeuN (1:500; MAB377; Merck Millipore)
or rabbit primary antibodies reactive to p16 (1:200; sc-1207; Santa Cruz Biotechnology Inc.),
p21 (1:200; sc-397; Santa Cruz Biotechnology Inc.), Sox2 (1:500; AB5603; Merck Millipore),
SIRT3 (1:1000; D22A3; Cell Signaling Technology, Danvers, MA, USA), LCAD (1:1000; 17526-
1-AP; Proteintech, Rosemont, IL, USA), acetyl-SOD2 (1:1000; acetyl-K68; ab137037; Abcam,
Cambridge, UK), and SOD2 (1:200; sc-30080; Santa Cruz Biotechnology Inc.) Blots were
subsequently incubated with anti-mouse or anti-rabbit secondary antibodies conjugated
with horseradish peroxidase (1:5000, Bio-Rad Laboratories) for 2 h at RT. Membranes were
processed for protein detection using the Immobilon™ Western Chemiluminescence HRP
Substrate (WBKLS0500; EMD Millipore, Merck Millipore Corp.) in a ChemiDoc MP system
(Bio-Rad Laboratories). Finally, the relative intensities of protein bands were analyzed using
the ImageLab Version 5.1 densitometric analysis program (Bio-Rad Laboratories).

2.10. Immnunoprecipitation Assay

The physical association of SIRT3 and LCAD was detected by immunoprecipitation
analysis. In brief, whole cell extracts were prepared by lysing cells in lysis buffer (50 mM
Tris-HCl pH 7.4, 180 mM NaCl, 1 mM EDTA, 0.5% Triton X-100, and 1X Halt Protease and
Phosphatase Inhibitor Cocktail). Immunoprecipitation experiments were carried out using
the antibody specific to LCAD (17526-1-AP; Proteintech) and Ezview Red Protein G Affinity
Gel (Sigma-Aldrich Corp.). Typically, 500 µg of lysate was incubated overnight with 1 µg
of the abovementioned primary rabbit polyclonal antibody to LCAD at 4 ◦C. Immunoblots
were then probed with LCAD antibody.

SIRT3 (1:1000; D22A3; Cell Signaling Technology) and acetyl-lysine (1:1000; ab190479;
Abcam) expression were determined in the same membrane after stripping off the immune
complex for the detection of LCAD. In parallel, immunoprecipitation assays using rabbit
monoclonal antibodies reactive to IgG were used as controls. The results of SIRT3 and
acetyl-lysine after LCAD immunoprecipitation were normalized with those obtained using
rabbit monoclonal antibodies reactive to IgG immunoprecipitation assays as well as with
the LCAD total levels. The initial input was also used as a loading control of LCAD in
immunoprecipitation analysis (Supplementary Materials).

2.11. Total RNA Extraction and Quantitative RT-PCR (qRT-PCR)

Total RNA was extracted using 0.5 mL TRIzol® reagent (15596; Invitrogen™) per
sample. After mixing with 0.1 mL chloroform and centrifuging at 12,000× g for 15 min
at 4 ◦C, the aqueous phase was collected and total RNA precipitated by incubation with
0.25 mL isopropyl alcohol at −20 ◦C for 1 h. Samples were centrifuged at 12,000× g for
10 min at 4 ◦C and the RNA pellet was washed with 75% ethanol and centrifuged at 7500× g
for 5 min at 4 ◦C. RNA pellets were air dried and resuspended in RNase-free water. The
purity of the RNA was checked and DNA contaminations were eliminated with DNase I
recombinant (04716728001; Roche Applied Science, Mannheim, Germany) following the
manufacturer’s instructions.

cDNA was prepared from 1000 ng total RNA using NZY Reverse Transcriptase
(MB12402; NZYTech, Lisbon, Portugal) according to manufacturer’s instructions. Real-time
RT-PCR was performed using a SensiFastTM SYBR® Hi-ROX kit (BIO-92020; Bioline USA
Inc., Taunton, MA, USA) in an Applied Biosystems QuantStudio 7 Flex Real-Time PCR
system (Thermo Fisher Scientific Inc.). Primer sequences are listed in Table 1. Relative
gene expression was calculated based on the standard curve and normalized to the level of
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hypoxanthine phosphoribosyltransferase (Hprt) housekeeping gene and expressed as fold
change from controls.

Table 1. List of primers used for qRT-PCR.

Gene Sequence (5′-3′)

Hprt
5′ -GGTGAAAAGGACCTCTCGAAGTG- 3′ (fwd)

5′ -ATAGTCAAGGGCATATCCAACAACA- 3′ (rev)

Mki67 (for ki67)
5′ -CCTTTGCTGTCCCCGAAGA- 3′ (fwd)

5′ -GGCTTCTCATCTGTTGCTTCCT- 3′ (rev)

Ppargc1a (for PGC-1α)
5′ -GGACATGTGCAGCCAAGACTCT- 3′ (fwd)

5′ -CACTTCAATCCACCCAGAAAGCT- 3′ (rev)

Map2
5′ -GTTCAGGCCCACTCTCCTTC- 3′ (fwd)

5′ -CTTGCTGCTGTGGTTTTCCG- 3′ (rev)

Tfam
5′ -CACCCAGATGCAAAACTTTCAG- 3′ (fwd)

5′ -CTGCTCTTTATACTTGCTCACAG- 3′ (rev)

PLIN2
5′ -TGCTGTGTGGTGATCTGGAC- 3′ (fwd)

5′ -CGGAGGACACAAGGTCGTAG- 3′ (rev)

VLCAD
5′ -CAGCGACTTTATGCCAGGGA- 3′ (fwd)

5′ -TGGCAGGGTCATTCACTTCC- 3′ (rev)

2.12. Senescence Associated β-Galactosidase Activity

Senescence was determined by staining cells for SA-β-galactosidase detection, that is,
a widely used biomarker of cellular senescence [43]. Cells were treated with tBHP for 4 days
and co-transfected for SIRT3 overexpression and/or LCAD silencing at day 2 post-plating
(as described in Section 2.5). Subsequently, 24 h before the last tBHP treatment (or vehicle),
a senescence staining protocol was performed using specific commercial kits, according to
the manufacturer’s instructions. More specifically, (a) for the tBHP validation model, the
Cellular Senescence Assay kit (KAA002RF; Merck Millipore) and (b) for co-transfections,
the Senescence β-galactosidase Staining kit (9860; Cell Signaling Technology). Regarding
the co-transfections assays, for the positive control of senescence the induction of oxidative
stress was performed by an overnight incubation with 25 µM H2O2. Images were acquired
for three independent experiments (in each one, all the six groups were run simultaneously)
with the Invitrogen™ EVOS FL Auto 2 Imaging system, model AMAFD2000. At least seven
images were obtained for each group condition, and on average more than 250 total cells
were scored for tBHP treatment groups. Scoring was performed with ImageJ Fiji 1.53c
Software. The total cell population and SA-β-gal positive cells (blue color) were counted to
calculate the percentage of SA-β-gal positive cells for a given group.

2.13. Animal Model of Depressive-Like Behavior and Physical Exercise (PE) Protocol

Adult male C57BL/6 mice (20 ± 2 g, 8–12 weeks old; Charles River Laboratories,
Barcelona, Spain) were group-housed and kept under standard laboratory conditions
(22 ± 2 ◦C; 12 h light/12 h dark cycles; ad libitum access to food and water), before
exposure to an unpredictable chronic mild stress (uCMS) regimen to induce depressive-like
behavior.

One week after acclimatization to iMM’s rodent facility, mice were subjected to differ-
ent mild stressors in a random and unpredictable fashion several times a day for 8 weeks
(uCMS group). The selected stressors included reversed light/dark cycles, confinement to
a restricted space (1–3 h), cage shaking (1–3 h), strobe illumination (1–3 h) and overnight
housing on damp bedding or placement in a tilted cage (40◦) with restricted access to food
and water. Unstressed mice (control group) were handled only for cage changes. Following
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the uCMS induction regimen, one group of uCMS mice was exposed to a PE protocol over
a 2-week period with a concomitant mild uCMS as described elsewhere [44,45]. Briefly,
mice were exposed to 30 min daily sessions on a treadmill (LE8710MTS, Panlab/Harvard
Apparatus S.L.U.) at a 10 m/min speed in the first week and at a 15 m/min speed in the
second week (uCMS + PE group). During this time, the other uCMS mice and control group
were handled without PE.

At the end of experiments, all mice were anesthetized with isoflurane and perfused
transcardially with PBS. After decapitation, their brains were carefully removed and dis-
sected into the two cerebral hemispheres on a cold platform. The SVZ neurogenic region
was isolated from one hemisphere and flash-frozen in liquid nitrogen for mRNA analysis
as aforementioned (see Section 2.11). The contralateral hemisphere was post-fixed in 4%
paraformaldehyde (24 h, 4 ◦C) for immunohistochemistry assays.

2.14. Free-Floating Immunohistochemistry

After fixation, brain hemispheres were cryoprotected with a 30% sucrose solution
(48 h, 4 ◦C), then gelatin-embedded and coronally sectioned (40 µm thickness), from the
olfactory bulb to the hippocampus (Leica CM 3050S cryostat; Leica Biosystems, Wetzlar,
Germany), to produce free-floating sections that were collected into 10 series. Each series
contained an anterior–posterior reconstruction of brain slices separated by 400 µm between
them. Free-floating sections were stored at −20 ◦C in anti-freezing medium, and only the
ones located at the level of SVZ were processed for immunohistochemistry.

Tissue sections were degelatinized in PBS at 37 ◦C and then subjected to antigen
retrieval in 10 mM sodium citrate buffer, pH 6.0, for 25 min at 80 ◦C. After repeated washing
in PBS (3 × 10 min at RT), nonspecific staining was blocked for 1 h at RT with blocking
solution (1% BSA, 2% Triton-X-100, 10% normal donkey serum in PBS). Subsequently, slices
were incubated for 2 days at 4 ◦C with both primary antibodies goat anti-doublecortin
(DCX) (1:500; sc-8066; Santa Cruz Biotechnology Inc.) and rabbit anti-SIRT3 (1:100; D22A3;
Cell Signaling Technology) diluted in blocking solution. After rinsing in PBS, a mixture
of the secondary antibodies anti-goat Alexa Fluor 488 and anti-rabbit Alexa Fluor 568
(all 1:500; Thermo Fisher Scientific Inc.) plus the DNA stain Hoechst 33258 (5 µg/mL;
Sigma-Aldrich Corp.) was incubated for 2 h at RT. Finally, tissue samples were mounted on
Superfrost Plus™ microscope slides (Thermo Scientific) using Mowiol 4-88 (Calbiochem,
San Diego, CA, USA). Negative controls, in which the primary antibodies were omitted,
were performed simultaneously to validate the results.

All samples were analyzed in a Zeiss Cell Observer SD spinning disk confocal mi-
croscope using ZEN 2.6 Software (Carl Zeiss Inc., Jena, Germany). Immunofluorescence
SVZ images were captured with a 63x Oil Immersion Plan-Apochromat DIC (NA 1.4)
objective (representative images) and a 40x Water Immersion LD C-Apochromat (NA
1.1) objective (for quantification analysis). All acquisition conditions were kept constant
between samples during the capture process. Tissue background autofluorescence was
determined and subtracted for immunofluorescence quantification. Maximum intensity
Z-stack projection was carried out and ImageJ Fiji 1.53c software was used to measure the
intensities of fluorescence signals for DCX (green) and SIRT3 (red), after grayscale threshold
determination. Using Hoechst and DCX staining, a defined area in the SVZ region was
manually traced (ROI) and was considered in all images for fluorescence quantification. A
total of eight brain slices per group condition were evaluated (one or two measurements
per slice, four mice per group) rendering between 10 to 13 data points per group. The
researcher performing image analysis was blind to the experimental group to which the
animals belonged.

2.15. Statistical Analysis

Statistical significance was assessed using an unpaired two-tailed Student’s t test when
two groups where compared, and a one-way ANOVA followed by Dunnett’s post-test for
multiple comparisons to one control or a two-way ANOVA followed by the Tukey post-test
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for multiple comparisons. All statistical analyses were performed using GraphPad Prism
6.01 (GraphPad Software, Inc., San Diego, CA, USA). Values of p < 0.05 were considered
significant.

3. Results
3.1. Tert-Butyl Hydroperoxide Induces Aging Features in NSCs and Reduces Mitochondrial
Antioxidant Defence System

Adult neurogenesis is strongly impaired during aging and psychiatric disorders, in-
cluding anxiety and depression [14,15]. Although a healthy balanced diet and a regular
exercise practice have been extensively described as key factors to arrest aging and mood
disorders [46,47], the precise role of metabolism in abrogating NSC dysfunction under these
two scenarios has never been reported. To further dissect the involvement of mitochon-
drial players in abrogating age-related NSC changes, we first used a cell line established
using a method that produces pure cultures of adherent NSCs. These cells, continuously
expanding by symmetrical division and capable of tripotential differentiation [39,41], were
incubated with small levels of the prooxidant molecule tert-butyl hydroperoxide (tBHP)
for 4 days, as described in Section 2. Our results show that chronic treatment with tBHP
induced alterations in the fate of NSCs, diminishing NSC viability (Figure 1A, left panel),
but, further, their proliferation potential, as assessed by BrdU incorporation (p < 0.001)
(Figure 1B). In fact, the decrease in NSC proliferation after tBHP exposure was accompa-
nied with the presence of senescence signals in NSCs, such as β-galactosidase droplets
(Figure 1A, center panel) and high levels of the cell-cycle-arrest proteins p16, p21, and p53
(p < 0.001) (Figure 1A, right panel). We also found that, along with proliferation deficits, the
differentiation potential of NSCs was also markedly affected after tBHP incubation, since
immunoblot analysis showed a significant decrease in neural stem cell (Sox2) and neuronal
(NeuN) markers (p < 0.05 and p < 0.001, respectively) (Figure 1C). More interesting, SIRT3,
a central player in mitochondrial metabolism and oxidative protection, was also markedly
reduced in this cellular context (p < 0.01) (Figure 1D). These results demonstrate that tBHP
induces a feasible NSC aging model, possibly through a reduction in the SIRT3-dependent
mitochondrial antioxidant defense system.

3.2. SIRT3 Rescues Mitochondrial Oxidative Stress and Differentiation Potential of Aged NSCs

To further investigate the role of SIRT3 in regulating NSC behavior under aging
and in an oxidative context, we overexpressed SIRT3 in tBHP-induced NSC aging and
re-evaluated NSC proliferation and the differentiation potential of SIRT3 overexpressing
aged NSCs. After 24 h of transfection, SIRT3 protein levels significantly increased, when
compared with control transfected cells (Figure 2A). Interestingly, qRT-PCR experiments
showed that increased levels of SIRT3 are only capable of rescuing the differentiation, not
the proliferation potential of NSCs (Figure 2B). In fact, SIRT3 overexpression in aged NSCs
(Figure 2A) markedly increased the mRNA levels of the neuronal marker MAP2 (p < 0.05)
but had no effect on the proliferation marker ki67.
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Figure 1. tBHP induces aging features in NSCs and reduces SIRT3 levels. Mouse NSCs were
treated with 50 µM tBHP for short periods of 2 h, for 4 consecutive days, in self-renewal conditions.
After the fourth tBHP-treatment, NSCs were collected to assess viability, proliferation, and protein
expression as described in Section 2. Senescence staining protocol was performed 24 h before
the last tBHP treatment. (A) Quantification of NSC viability (left); senescence SA-β-galactosidase
detection (center, representative images of bright-field microscopy; scale bar: 10 µm; and quantitative
analysis); expression levels of cell-cycle-arrest proteins p16, p21, and p53 (right, immunoblots and
densitometry analysis. β-Actin was used as loading control). (B) Quantification of proliferation
by BrdU incorporation. Immunoblot densitometry analysis reflecting the total protein levels of (C)
Sox2—stemness marker, NeuN—neuronal marker, and (D) the antioxidant mitochondrial protein
SIRT3. Data is expressed as fold change over control and represent mean values ± SEM for at least
three individual experiments. Each data point represents an individual value. * p < 0.05, ** p < 0.01,
and *** p < 0.001 compared to control NSCs. Abbreviations: BrdU, bromodeoxyuridine; NeuN,
neuronal nuclei; SA-β-GAL, SA-β-galactosidase; Sox2, SRY (sex determining region Y)-box 2; tBHP,
tert-butyl hydroperoxide.
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known scavenger of mitochondrial reactive oxygen species (ROS) in cells. The SIRT3-in-
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Figure 2. Mitochondrial oxidative damage and differentiation potential of aged NSCs are rescued by
SIRT3. Mouse NSCs were exposed to 50 µM tBHP treatment for 4 days (2 h/day), in self-renewal
conditions. After the fourth tBHP-treatment, cells were collected for luminescence detection, western
blot, qRT-PCR and flow cytometry analysis as described in Section 2. (A) Immunoblotting and
densitometry of SIRT3 overexpression assessed 24 h post-transfection. (B) qRT-PCR analysis of
proliferation and differentiation markers, i.e., ki67 and MAP2, in aged NSCs. Hprt was used as
loading control. (C) Immunoblotting (top) of Ac-SOD2 and total SOD2 protein levels, and respective
ratio from densitometry analysis (bottom). Quantification of mitochondrial ROS levels (D) and ATP
levels (E). Data is expressed as fold change over control. Data represent mean values ± SEM for
at least three individual experiments. Each data point represents an individual value. * p < 0.05,
** p < 0.01, and *** p < 0.001 compared to control cells; § p < 0.05 and §§§ p < 0.001 compared to tBHP
treated cells. Abbreviations: Ac-SOD2, acetyl-SOD2; MAP2, microtubule-associated protein 2; SOD2,
superoxide dismutase 2; tBHP, tert-butyl hydroperoxide.

SIRT3 is the main positive regulator of the superoxide dismutase 2 (SOD2), the
most known scavenger of mitochondrial reactive oxygen species (ROS) in cells. The
SIRT3-induced SOD2 activation results from SOD2 deacetylation promoted by SIRT3 [32].
Therefore, we evaluated the protein levels of acetyl-SOD2, SOD2, and mitochondrial ROS
(mtROS) in aged NSCs, and particularly, the role of SIRT3 in abrogating mitochondrial
oxidative stress in this cellular context. Our results revealed that although the chronic
oxidative insult with tBHP did not alter the total levels of acetyl-SOD2 and SOD2 content
(Figure 2C), it triggered a significant increase in mtROS in NSCs (p < 0.01) (Figure 2D).
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Conversely, tBHP strongly reduced cellular ATP supplies (p < 0.01) (Figure 2E). Upregula-
tion of SIRT3, in turn, restored ATP production (Figure 2E) and significantly reduced the
ratio of acetyl-SOD2/SOD2 levels (p < 0.001) (Figure 2C) decreasing mtROS in aged NSCs
(p < 0.05) (Figure 2D). Hence, these results demonstrate that, under oxidative conditions,
SIRT3 directs NSCs towards differentiation while also abrogating mitochondrial oxidative
damage and increasing the bioenergetic levels of these cells.

3.3. SIRT3 Further Activates the Long Chain Acyl-CoA Dehydrogenase (LCAD) in Aged NSCs

It is well-established that the differentiation and activation of NSCs is an ROS-dependent
process, in which mtROS act as key cellular signals to block NSC proliferation [48]. On the
other hand, SIRT3 has other important metabolic targets, such as LCAD, an enzyme in-
volved in mitochondrial β-oxidation of unsaturated fatty acid lipid metabolism [36]. Since
we recently demonstrated that LCAD levels are increased throughout the differentiation
of NSCs, we hypothesized that SIRT3 abrogates age-related neurogenesis impairment, by
activating LCAD. To clarify this hypothesis, we investigated the physical interaction between
SIRT3 and LCAD in NSCs undergoing age-induced alterations. Indeed, immunoprecipitation
assays demonstrated that SIRT3 physically interacts with LCAD in NSCs but this interac-
tion is diminished under tBHP-induced aging conditions (p < 0.001) (Figure 3A). Notably,
upregulation of SIRT3 in aged NSCs re-established the interaction levels between SIRT3
and LCAD (Figure 3A). To clarify whether SIRT3 and LCAD interaction would result in
LCAD activation, we then evaluated the levels of LCAD acetylation in aged NSCs overex-
pressing SIRT3 (Figure 3B). Interestingly, immunoprecipitation experiments showed that
the inactive form of LCAD, assessed by its acetylation levels, was significantly increased
in NSCs undergoing tBHP-induced aging conditions (p < 0.001) (Figure 3B). In contrast, in
SIRT3 overexpressing NSCs (with or without chronic tBHP treatment), the levels of LCAD
acetylation were similar to those found in untreated NSCs. These results demonstrated that,
in NSCs, SIRT3 physically interacts with LCAD to promote its activation, further inducing its
activation in aging conditions.

3.4. SIRT3 Requires LCAD and Oxidative Control to Decelerate NSC Aging

To better understand the mechanism by which SIRT3 modulates the fate of NSCs
throughout aging, namely whether LCAD activation and the balance of mtROS were linked
to previously observed SIRT3-rescued effects, we performed co-modulation assays in this
cellular context. Therefore, the expression levels of the neuronal marker MAP2 were re-
evaluated in NSCs co-transfected with SIRT3 overexpression plasmid and siRNA LCAD.
Interestingly, the knockdown of LCAD revealed that SIRT3 requires this lipid metabolism
enzyme to prevent age-induced impaired neurogenesis (Figure 4A). To further understand
the role of general lipid metabolism on SIRT3-mediated effects, we also evaluated the
expression levels of a cytosolic lipid droplet binding protein, Perilipin 2 (PLIN2), in this NSC
context. Interestingly, our results showed that PLIN2 expression significantly decreased
in aged NSCs, being only prevented by SIRT3 when LCAD was not silenced. These data
reinforce the role of lipid metabolism in SIRT3-mediated effects on NSCs (Figure 4A).
Regarding the effects of tBHP in inducing NSC senescence, these were re-evaluated in
both NSCs co-transfected with SIRT3 overexpression plasmid and LCAD siRNA, as well
as in SIRT3 overexpressing NSCs treated with a prooxidant molecule, hydrogen peroxide
(H2O2) (Figure 4B). In fact, senescence-associated growth arrest has been shown to deeply
dependent on oxidative stress-mediated regulation [49]. Our results showed tBHP-induced
NSC senescence was abrogated in NSCs by the upregulation of SIRT3 (p < 0.001) (Figure 4C).
Nevertheless, the SIRT3 protective effect was reverted when LCAD was simultaneously
downregulated and/or a prooxidant cell environment was created (p < 0.001 vs. SIRT3
overexpressing cells with or without tBHP) (Figure 4C). These results strongly support the
idea that SIRT3 requires to control both oxidative state and lipid metabolism of long chain
fatty acids to rescue aged-induced NSC senescence and impairment of neurogenesis.
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Figure 3. LCAD is further activated by SIRT3 in aged NSCs. Mouse NSCs were exposed to 50 µM
tBHP treatment for 4 days (2 h/day), in self-renewal conditions. At day 2 post-plating, cells were
transfected with SIRT3 overexpression plasmid or control plasmid. After the fourth tBHP-treatment,
total proteins were collected for immunoprecipitation assays as described in Section 2. (A) Represen-
tative immunoblots with LCAD and SIRT3 specific antibodies (top) and the SIRT3/LCAD association
(densitometry analysis, bottom). (B) Representative immunoblots with acetyl-lysine and LCAD and
specific antibodies (top) and levels of acetylated LCAD (densitometry, bottom). All densitometry
values for SIRT3 and acetyl-lysine were normalized to the respective LCAD expression. Data are
expressed as fold change over control. Data represent mean values ± SEM mean values for at least
four individual experiments. Each data point represents an individual value. *** p < 0.001 compared
to control cells; § p < 0.05, §§ p < 0.01, and §§§ p < 0.001 compared to tBHP-treated cells. Abbreviations:
Ac-Lys, acetyl-lysine; IP, immunoprecipitation; LCAD, long chain acyl-CoA dehydrogenase; tBHP,
tert-butyl hydroperoxide.

3.5. Reduced Neurogenesis in Depressive-Like Mice Is Associated with LCAD Downregulation

Finally, the SIRT3 regulatory network was investigated in vivo using the unpredictable
chronic mild stress (uCMS) paradigm to mimic depressive-like behavior in mice. Adult
male mice were chronically exposed to unpredictable mild stressors over 8 weeks, as
indicated in Section 2. Controls were age-matched mice without stress exposure. After an
initial 8-week period of uCMS, half of the animals in the uCMS group were subjected to a
physical exercise (PE) protocol for 2 weeks. This procedure aimed to clarify whether PE, a
well-established inducer of SIRT3 [50], could have any impact on an impaired neurogenesis-
associated pathology, such as depression. Animals were tested on a battery of behavioral
and memory tasks to validate the depression phenotype of these mice. After 8 weeks of
mild stress, all animals subjected to the uCMS protocol had developed depressive behavior.
uCMS animals that underwent PE treatment (uCMS+PE) showed a partial recovery of
depressive-like symptoms (data not shown—manuscript in preparation). More importantly,
immunohistochemistry for DCX, a marker of new-born neurons, showed that the SVZ
of uCMS mice presented lower levels of fluorescence intensity for DCX when compared
with unstressed controls (p < 0.001) (Figure 5A,B). Notably, PE was capable of rescuing
neurogenesis levels in stressed animals (p < 0.01) (Figure 5A,B). To clarify the involvement
of SIRT3 in regulating neurogenesis in these mice, we evaluated the SIRT3 levels in the
same neurogenic SVZ regions and, surprisingly, a significant increase in SIRT3 levels was
observed in uCMS mice, when compared with the control and uCMS-PE groups (p < 0.001)
(Figure 5B). To further understand the inconsistent data regarding SIRT3 and neurogenesis
levels in this model of depressive-like behavior, we assessed the expression levels of several
mitochondrial regulators, including LCAD but also players of mitochondria biogenesis,
such as the peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) and the
mitochondrial transcription factor A (Tfam). In fact, although uCMS mice presented
evident amounts of SIRT3, our results revealed that LCAD expression was significantly
compromised in these animals when compared with the control group (p < 0.01) (Figure 5C).
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Interestingly, in agreement with what we found for DCX+ cells, the PE was capable of
restoring LCAD levels in uCMS mice (p < 0.05). The expression levels of PGC-1α were not
affected by PE in uCMS mice, and although we found a marked decrease in Tfam, PE did
not affect the expression levels of this mitochondrial transcription factor in these specific
neurogenic niches. Thus, targeting NSC metabolism, namely through SIRT3-mediated
LCAD activation, appears to be a suitable strategy to recover adult neurogenesis and confer
stress resilience.

Cells 2022, 11, x FOR PEER REVIEW 13 of 21 
 

 

strongly support the idea that SIRT3 requires to control both oxidative state and lipid me-
tabolism of long chain fatty acids to rescue aged-induced NSC senescence and impairment 
of neurogenesis. 

 
Figure 4. SIRT3 requires LCAD and oxidative control to prevent NSC aging. Mouse NSCs were 
treated with 50 μM tBHP for 2 h/day, during 4 consecutive days, in self-renewal conditions. At day 
2 post-plating, cells were co-transfected with SIRT3 overexpression plasmid and siRNA LCAD, and 
48 h after cells were collected for analysis, as described in Section 2. Senescence staining protocol 
was performed 24 h before the last treatment. (A) qRT-PCR analysis of differentiation marker MAP2 
and lipid accumulation marker PLIN2. Hprt was used as loading control. Data is expressed as fold 
change over control or siRNA LCAD groups (reference conditions, no tBHP added). (B) Representa-
tive images of SA-β-gal staining in NSCs exposed to tBHP treatment for 4 days (control group, no 
tBHP added), and subjected to SIRT3 overexpression or plus LCAD silencing. H2O2 overnight treat-
ment served as a positive control. Scale bar: 100 μm. Lower panels: selected sections enlarged 4×. 
(C) Quantitative analysis of cells positive for SA-β-gal for a given group, expressed as the percentage 
of the total number of cells. (A,C) Data represent mean values ± SEM for three independent experi-
ments, rendering at least 7 data points per group. Each data point represents an individual value. ** 

Figure 4. SIRT3 requires LCAD and oxidative control to prevent NSC aging. Mouse NSCs were
treated with 50 µM tBHP for 2 h/day, during 4 consecutive days, in self-renewal conditions. At
day 2 post-plating, cells were co-transfected with SIRT3 overexpression plasmid and siRNA LCAD,
and 48 h after cells were collected for analysis, as described in Section 2. Senescence staining
protocol was performed 24 h before the last treatment. (A) qRT-PCR analysis of differentiation
marker MAP2 and lipid accumulation marker PLIN2. Hprt was used as loading control. Data
is expressed as fold change over control or siRNA LCAD groups (reference conditions, no tBHP
added). (B) Representative images of SA-β-gal staining in NSCs exposed to tBHP treatment for 4 days
(control group, no tBHP added), and subjected to SIRT3 overexpression or plus LCAD silencing.
H2O2 overnight treatment served as a positive control. Scale bar: 100 µm. Lower panels: selected
sections enlarged 4×. (C) Quantitative analysis of cells positive for SA-β-gal for a given group,
expressed as the percentage of the total number of cells. (A,C) Data represent mean values ± SEM
for three independent experiments, rendering at least 7 data points per group. Each data point
represents an individual value. ** p < 0.01 and *** p < 0.001 compared to control cells, § p < 0.05 and
§§§ p < 0.001 compared to tBHP treated cells, ‡ p < 0.05 compared to SIRT3 transfected cells, and
† p < 0.001 compared to SIRT3 transfected cells with or without tBHP treatment. Abbreviations: LCAD,
long chain acyl-CoA dehydrogenase; MAP2, microtubule-associated protein 2; PLIN2, perilipin 2;
SA-β-GAL, SA-β-galactosidase; siLCAD, LCAD silencing; tBHP, tert-butyl hydroperoxide.
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Figure 5. Reduced neurogenesis in depressive mice is associated with LCAD downregulation. Total
RNA from SVZ-enriched extracts was processed for qRT-PCR and brain slices were processed for
immunofluorescence analysis, as described in Section 2. (A) Representative confocal images of
immunostaining for DCX (green, early neuronal differentiation marker) and SIRT3 (red) from SVZ.
Nuclei were counterstained with Hoechst 33258 (blue). Scale bar, 20 µm. (B) Quantitative results
of DCX and SIRT3 fluorescence signals from SVZ. Data expressed as percentage of the control
group (non-depressed/unstressed animals). Data represent mean values ± SEM for at least ten
data points per group. (C) Effect of physical exercise (PE) on LCAD, PGC-1α, and Tfam mRNA
levels of uCMS mice. Hprt was used as loading control. Data are expressed as fold change over
control group. Data represent mean values ± SEM for four individual mice per group (details in
Section 2). ** p < 0.01 and *** p < 0.001 compared to control, § p < 0.05, §§ p < 0.01 and §§§ p < 0.001
compared to depressive animals (uCMS). Abbreviations: DCX, doublecortin; LCAD, long chain
acyl-CoA dehydrogenase; PGC-1α, peroxisome proliferator-activated receptor γ coactivator α; tBHP,
tert-butyl hydroperoxide; Tfam, mitochondrial transcription factor A; uCMS+PE, depressive mice
undergoing physical exercise (PE).

4. Discussion

The world’s population is aging but most people live their lives in a reactive health
response system, only seeking treatments when they have specific symptoms. Therefore,
the identification of effective and non-pharmacologic strategies capable of improving brain
homeostasis and physiological neural repair in asymptomatic adulthood represents a right
step to delay the new cases of neurodegeneration and psychiatric disorders identified every
year. Adult NSCs are pivotal to reinforce the adult synaptic network [51], assure cognitive
performance, and promote resilience to chronic stress [15,52]. However, the number and
activity of these cells drop throughout life. The poor survival and differentiation levels
of NSCs have been one of the major drawbacks of these cells. It has been shown that
lifespan of NSC activity, including their proliferation and differentiation potential, is deeply
dependent on their metabolic changes. Here, we uncovered a new role of SIRT3, a major
regulator of mitochondrial metabolism, in mediating the fate of NSCs under conditions
of aging and psychiatric stress. Our data clearly demonstrate that activation of lipid
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metabolism by SIRT3 is essential for both the preclusion of NSC senescence and proper
NSC differentiation.

Throughout life, adult neurogenic niches experience a progressive decline in homeo-
static and regenerative abilities, greatly attributed to redox cues of age-associated intracel-
lular and extracellular changes [53]. In the present study, we began to validate an in vitro
model of NSC aging induced by tert-butyl hydroperoxide, tBHP. Indeed, the chronic treat-
ment of NSCs with this prooxidant molecule resulted in features of cell aging, including
senescence and cell cycle arrest. In accordance with previous reports, the proliferation
and differentiation potential of NSCs were also found to be significantly reduced by tBHP,
corroborating the fact that this molecule is indeed capable of inducing a feasible aging
model in NSCs [54]. More importantly, tBHP-induced NSC aging was associated with a
reduction of the mitochondrial regulator SIRT3 levels. Although it is possible that other
SIRTs, such as SIRT1 and SIRT2, might also regulate neurogenesis, aging, and even depres-
sion, we decided to focus only on SIRT3 in this study, given its central role in mitochondrial
metabolism and oxidative protection. In fact, the individual metabolism slows down dur-
ing aging, rendering the aging brain more vulnerable to oxidative and cell damage. These
compromised bioenergetics during aging result, in turn, in a wide range of downstream
alterations, including inflammation. After dissecting the underlying mechanism of SIRT3 in
NSCs, we found that age-reduced SIRT3 was responsible for triggering senescence and the
differentiation decline of NSCs. In fact, forced SIRT3 upregulation recovered the expression
levels of the neurogenic marker MAP2 and abrogated senescence signals of NSCs. The
effect of SIRT3 in rescuing NSC differential potential could be further explored in the future,
namely by the evaluation of additional neuronal and glial markers, since the precise role
of SIRT3 in NSC lineage determination is still not clear. Unexpectedly, the proliferation
rate, which may be regulated by SIRT3-independent pathways, was not influenced. We
also showed that increased levels of SIRT3 in NSCs resulted in the activation of the major
superoxide-scavenger in mitochondria, SOD2, and consequently in a marked reduction of
mtROS. However, based on the role of both ROS and LCAD in the neural differentiation
process [23], and the fact that LCAD is one of other major targets of SIRT3 in cells [36], we
hypothesized that LCAD could be a major player in SIRT3-mediated NSC differentiation.
We first confirmed the physical interaction between SIRT3 and LCAD in our cells. Our
results showed for the first time that SIRT3 physically interacts with LCAD in NSCs, pro-
moting its activation, particularly in the context of aging. More importantly, co-modulation
of SIRT3 and LCAD confirmed our hypothesis that this enzyme of lipid degradation is
indeed required by SIRT3 to restore the balance of lipid storage-related proteins, such as
PLIN2, and rescue the neurogenic potential of NSCs.

In age-related diseases, cell senescence has been shown to be modulated by both redox
and metabolic shifts [55,56]. Here, we also revealed that SIRT3-inhibited NSC senescence
really depends on SIRT3’s role in mediating both LCAD activation and oxidative protection.
Thus, it is tempting to think that the reinforcement of both oxidative protection and
metabolic rate are perfectly orchestrated by SIRT3 to mitigate NSC senescence. In fact, this
idea is also in agreement with a growing body of literature, in other cell types, indicating
that SIRT3 counteracts senescence by targeting SOD2 [49,57]. In this regard, it would be also
interesting to evaluate changes in SOD2 activation in LCAD downregulated aged NSCs.

The lifelong activity of adult NSCs is markedly dependent on individuals’ age but also
on different components of their environment and lifestyles, including diet and physical
exercise (PE) [46,47]. On the other hand, adult neurogenesis was shown to buffer stress re-
sponses and depressive behaviors [15]. Therefore, we decided to also explore the regulatory
network of SIRT3-induced neurogenesis in an in vivo model of depressive-like behavior.
Evidence supports a role for PE in delaying aging and increasing stress resilience [58], while
several studies have already demonstrated an upregulation of SIRT3 activity in neurons by
exercise [50]. However, no information has yet been reported for the role of SIRT3 and PE
in mediating stress resilience and cognition, namely through NSC activity. For this reason,
a group of animals subjected to chronic stress undergoing PE was also included in our
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study. Interestingly, stressed mice presented significantly lower levels of neurogenesis in
SVZ, which was partially rescued by PE. The biological link between adult neurogenesis
and depression has been already elucidated. In fact, several studies have demonstrated that
human adult neurogenesis is severely depleted in major depressive disorder, as indicated
by the reduction of distinct neurogenic markers and neurogenic niche volumes [14,59].
Further, the observation that the treatment of depression by antidepressants depends on
an increased rate of neurogenesis also corroborates the key role of adult neurogenesis
on this type of neurological disorder [59]. Although the majority of studies reporting a
role for adult neurogenesis and stress resilience have been performed in hippocampal
neurogenic niches, it has been already shown that the adult SVZ neurogenic process is also
compromised under unpredicted prolonged stress [60,61]. Curiously, it has been recently
demonstrated that both anxiety- and depression-like states lead to marked olfactory deficits
along with impaired adult neurogenesis [18]. Indeed, the SVZ-derived neural progenitors
migrate towards the olfactory bulb, where they differentiate into local neurons involved in
olfactory system [62], while an association between olfactory function and depression has
also been revealed [63]. In this regard, it was recently proposed that the rejuvenation of
SVZ neurogenesis would be a promising strategy to arrest aging and come to resemble a
youthful and health brain [64]. Certainly, more studies will help us to further clarify the
precise role of SVZ neurogenesis in abrogating stress-induced depression behavior.

Notably and unexpectedly, depressive mice (uCMS) presented high levels of SIRT3
when compared with control and stressed mice undergoing physical exercise (uCMS+PE).
We might speculate that the increase in total SIRT3 levels observed in the brains of uCMS
mice could represent an adaptative cellular mechanism to counteract the decrease in NSC
activation under a harmful scenario, not necessarily correlated with SIRT3 activation
levels. More importantly, although depressive mice present high levels of SIRT3, the LCAD
expression was found significantly reduced in the neurogenic niches of these mice. In
fact, recent discoveries have also revealed that mental illness and obesity are common
conditions that tend to co-occur within individuals [65]. Besides the absent effect of PE on
mitochondrial-biogenesis-related markers, the lipid metabolism of unsaturated fatty acids
was completely restored by PE in uCMS mice, possibly explaining the re-establishment
of neurogenesis observed in the same animals. This observation is in line with previous
studies showing the positive effect of PE in increasing fatty acid oxidation and lipid
metabolism [66]. However, exploring possible changes in lipidomics upon PE-, depression-
and SIRT3-mediated effects appears to be of upmost importance for future studies.

Altogether, these findings led us to hypothesize that exercise training increases the
lipid metabolic rate, and that, under stress- and depression-like scenarios, SIRT3 cooperates
with PE-induced LCAD to allow a proper neuronal differentiation process. However,
further experiments will be required to prove this hypothesis in vivo.

Indeed, it has become clear that certain factors of environmental enrichment, such
as PE, require adult neurogenesis to facilitate the recovery from psychosocial stress [47].
Although the mechanisms by which PE protects the brain from stress-induced depression
would involve a wide range of molecular mechanisms, including tryptophan’s metabo-
lites [67], the intrinsic metabolic changes in PE responsible for lifelong adult neuroge-
nesis are not completely understood. They will be surely crucial to arrest aging and
stress-induced depression, since exercise has been shown to increase the NSC pool and
neurogenesis in adult mice [46].

The pivotal role of mitochondrial switching in regulating the fate of NSC has been
already well-established and -characterized by our group and others [19,68–71]. In past
years, we demonstrated that a strong inhibitor of mitochondrial apoptosis and a potent
neuroprotective molecule in animal models of neurodegenerative diseases [72] increases
the NSC pool and neurogenesis in adult rats by preventing mitochondrial dysfunction
and increasing ATP levels [69,70]. More recently, we also identified a fatty acid metabolic
reprograming in NSCs treated with such molecule [23]. Interestingly, we recently demon-
strated that a specific high caloric diet is capable of upregulating microbial metabolisms
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that, in turn, induce premature neuronal differentiation and depletion of NSC pool in
adult mice in a mitochondrial and oxidative stress-dependent manner [71]. Indeed, mice
fed with a high fat diet have been shown to present anxiety- and depression-like behav-
ior [73]. In agreement with this, this type of diet has also been reported to induce memory
impairment, depressive-like behavior, and stress-induced depression by inhibiting adult
neurogenesis [74], further demonstrating the strong link between host metabolism, adult
neurogenesis, and mental health.

Despite the well-established link between mitochondrial metabolism and neurogenesis,
the precise molecular changes underlying NSC differentiation in aging- and stress-induced
depression scenarios have never been explored. Herein, we dissected the mechanism
by which a master mitochondrial regulator, SIRT3, regulates the fate of NSC in these
contexts. We clearly demonstrated that, under age-related oxidative conditions, SIRT3
directly interacts and activates a key enzyme of lipid metabolism, LCAD, to inhibit NSC
senescence and enable NSC differentiation. We also showed that exercise training restores
the levels of LCAD in a mouse model of stress-induced depression, reestablishing functional
neurogenesis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11010090/s1, Figure S1: Detection of LCAD and SIRT3
proteins in input sample for the immunoprecipitation assays.
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