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Abstract 

Background  Malignant digestive tract tumors are highly prevalent and fatal tumor types globally, often diagnosed 
at advanced stages due to atypical early symptoms, causing patients to miss optimal treatment opportunities. 
Traditional endoscopic and pathological diagnostic processes are highly dependent on expert experience, facing 
problems such as high misdiagnosis rates and significant inter-observer variations. With the development of artificial 
intelligence (AI) technologies such as deep learning, real-time lesion detection with endoscopic assistance and auto-
mated pathological image analysis have shown potential in improving diagnostic accuracy and efficiency. However, 
relevant applications still face challenges including insufficient data standardization, inadequate interpretability, 
and weak clinical validation.

Objective  This study aims to systematically review the current applications of artificial intelligence in diagnosing 
malignant digestive tract tumors, focusing on the progress and bottlenecks in two key areas: endoscopic examina-
tion and pathological diagnosis, and to provide feasible ideas and suggestions for subsequent research and clinical 
translation.

Methods  A systematic literature search strategy was adopted to screen relevant studies published between 2017 
and 2024 from databases including PubMed, Web of Science, Scopus, and IEEE Xplore, supplemented with searches 
of early classical literature. Inclusion criteria included studies on malignant digestive tract tumors such as esophageal 
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cancer, gastric cancer, or colorectal cancer, involving the application of artificial intelligence technology in endoscopic 
diagnosis or pathological analysis. The effects and main limitations of AI diagnosis were summarized through compre-
hensive analysis of research design, algorithmic methods, and experimental results from relevant literature.

Results  In the field of endoscopy, multiple deep learning models have significantly improved detection rates 
in real-time polyp detection, early gastric cancer, and esophageal cancer screening, with some commercialized 
systems successfully entering clinical trials. However, the scale and quality of data across different studies vary widely, 
and the generalizability of models to multi-center, multi-device environments remains to be verified. In pathological 
analysis, using convolutional neural networks, multimodal pre-training models, etc., automatic tissue segmentation, 
tumor grading, and assisted diagnosis can be achieved, showing good scalability in interactive question-answering. 
Nevertheless, clinical implementation still faces obstacles such as non-uniform data standards, lack of large-scale 
prospective validation, and insufficient model interpretability and continuous learning mechanisms.

Conclusion  Artificial intelligence provides new technological opportunities for endoscopic and pathological diag-
nosis of malignant digestive tract tumors, achieving positive results in early lesion identification and assisted decision-
making. However, to achieve the transition from research to widespread clinical application, data standardization, 
model reliability, and interpretability still need to be improved through multi-center joint research, and a complete 
regulatory and ethical system needs to be established. In the future, artificial intelligence will play a more important 
role in the standardization and precision management of diagnosis and treatment of digestive tract tumors.

Highlights 

1.	 Early symptoms of malignant digestive tract tumors are often atypical, resulting in high misdiagnosis rates, which 
urgently calls for more precise diagnostic methods; artificial intelligence has demonstrated significant application 
potential in the two core areas of endoscopy and pathology.

2.	 Real-time endoscopic assisted detection systems driven by deep learning can significantly improve the detection 
rate of early lesions, reducing the risk of missed diagnoses due to physician inexperience or fatigue.

3.	 Pathological AI technologies based on multimodal and vision-language pre-training models can achieve auto-
matic segmentation, grading, and  interactive diagnosis of  digital slides, providing objective quantitative basis 
for individualized treatment decisions.

4.	 The main obstacles to current AI applications in endoscopy and pathology include insufficient data standardi-
zation, poor model interpretability, and  lack of  large-scale prospective validation; multi-center collaboration 
and standardized regulation urgently need to be strengthened.

5.	 With the  continued advancement of  multidisciplinary integration and  technological breakthroughs, artificial 
intelligence is expected to further improve early diagnosis and precise management of digestive tract tumors, 
enhancing patient prognosis and  promoting the  standardized development of  diagnostic and  treatment pro-
cesses.

Keywords  Malignant digestive tract tumors, Endoscopy, Pathology, Artificial intelligence, Deep learning, Diagnosis
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Graphical Abstract

Introduction
Epidemiology and current clinical status of malignant 
digestive tract tumors
Malignant digestive tract tumors are among the malig-
nant tumors with high incidence and mortality rates 
globally. According to the Global Cancer Observatory 
(GLOBOCAN) 2020 estimates, new cases of malignant 
digestive tract tumors (including esophageal cancer 

(3.1%), gastric cancer (5.6%), and colorectal cancer (10%)) 
account for approximately 18.7% of all new malignant 
tumor cases, with colorectal cancer and gastric can-
cer ranking third and fifth in incidence, respectively [1]. 
China is a high-incidence area for malignant digestive 
tract tumors, with consistently high incidence and mor-
tality rates. Esophageal cancer, gastric cancer, and colo-
rectal cancer rank among the top six in incidence for 
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both men and women, constituting a major public health 
problem that seriously threatens population health and 
life [2].

Currently, clinical diagnosis and treatment of malig-
nant digestive tract tumors cover multiple aspects, 
including endoscopic examination, imaging examina-
tion, pathological diagnosis, surgical treatment, radio-
therapy and chemotherapy, molecular targeted therapy, 
and immunotherapy. Despite rapid developments in 
medical technology, clinical diagnosis and treatment still 
face many challenges due to the inherent heterogeneity 
and complexity of tumors: (1) Low early diagnosis rate: 
Early symptoms of malignant digestive tract tumors are 
atypical and easily overlooked by patients and doctors, 
resulting in most patients being diagnosed at advanced 
stages, missing the optimal treatment window. This high-
lights the importance and urgency of early screening and 
diagnosis [3]; (2) Difficulties in precise diagnosis: Some 
tumors lack specific manifestations under endoscopy, 
and pathological diagnosis is highly dependent on phy-
sician experience, making the risk of misdiagnosis and 
missed diagnosis non-negligible. Pathological diagnosis 
of malignant tumors faces multiple challenges, including 
morphological and functional heterogeneity, standardi-
zation of specimen collection and processing, and con-
sistency of diagnostic standards [4]; (3) Poor treatment 
effects: Patients with advanced disease have poor prog-
nosis, and traditional single treatment modalities have 
limited efficacy. There is an urgent need to explore new 
treatment targets and strategies from aspects such as 
molecular typing, immune microenvironment, and host 
characteristics to improve efficacy and prolong survival 
[5–7]; (4) Lack of standardized management: China still 
lacks standardized guidelines and processes for diagno-
sis, treatment, and follow-up of digestive tract tumors. 
The varied levels of diagnostic and treatment capabili-
ties, equipment configuration, and talent cultivation in 
primary healthcare institutions affect patients’ long-term 
management and quality of life.

Given these clinical challenges, there is an urgent need 
for innovative technologies and emerging methods to 
enable precise diagnosis and treatment of malignant 
digestive tract tumors and improve patient prognosis. 
Artificial intelligence (AI) technology, with its power-
ful data analysis and massive information processing 
capabilities, has the potential to solve clinical problems 
from multiple dimensions: by using AI algorithms to 
build efficient and accurate computer-aided diagnos-
tic systems to standardize endoscopic and pathological 
diagnostic processes; combining liquid biopsy technol-
ogy to improve early diagnostic accuracy (Appendix  1); 
integrating surgical robot technology to enhance surgical 
precision and safety (Appendix 2); optimizing automated 

radiotherapy planning and quality control to reduce com-
plications (Appendix  3); and accelerating drug develop-
ment to promote precision medication (Appendix  4). 
Additionally, AI demonstrates enormous potential in 
prognosis prediction and management of malignant 
digestive tract tumors. By analyzing large amounts of 
clinical data, AI can more accurately identify risk fac-
tors and predict disease risk, providing early intervention 
recommendations for high-risk populations (Appen-
dix  5). During treatment, AI-assisted molecular typing 
can provide more precise individualized treatment plans 
for patients (Appendix 6). Meanwhile, machine learning-
based prognosis and survival analysis models can pro-
vide more reliable evidence for clinical decision-making, 
helping to improve long-term patient prognosis (Appen-
dix 7). Therefore, in-depth exploration of AI applications 
throughout the diagnosis and treatment process of diges-
tive tract malignant tumors, including diagnosis, surgery, 
radiotherapy, drug development, and prognosis manage-
ment, has important scientific significance and practi-
cal value for improving diagnostic efficiency, enhancing 
prognosis, and promoting standardized management.

Overview of artificial intelligence technology development
Artificial Intelligence (AI) is an important branch of com-
puter science dedicated to researching and developing 
theories, methods, technologies, and application systems 
that can simulate, extend, and expand human intelligence 
[8, 9]. Its core goal is to enable machines to perform per-
ception, cognition, decision-making, and task execu-
tion similar to humans. The prototype of this concept 
can be traced back to 1950, when Alan Turing published 
"Computing Machinery and Intelligence," proposing the 
Turing test, which laid the foundation for AI research. 
The term "artificial intelligence" was formally proposed 
by John McCarthy and other scientists at the Dartmouth 
Conference in 1956 [10] (Fig. 1, Appendix 8).

From the late twentieth century to the early twenty-
first century, AI research experienced multiple peaks and 
valleys. The rise of expert systems in the 1980s marked 
the first peak, but it fell into a trough due to knowledge 
acquisition bottlenecks and robustness issues. Since 
the twenty-first century, thanks to improved computa-
tional capabilities and the accumulation of massive data, 
machine learning (ML) and deep learning (DL) have 
driven the revival of AI. In 2006, Hinton et al. proposed 
deep belief networks, initiating a wave of deep learning 
research. In 2012, marked by Krizhevsky et  al.’s break-
through in the ImageNet competition, deep convolu-
tional neural networks (CNN) demonstrated excellent 
image classification performance through the AlexNet 
model [11]. Deep learning algorithms extract high-level 
features through multi-layer non-linear transformations. 
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This breakthrough greatly enhanced AI’s performance in 
perception and cognition, opening up new possibilities 
for solving complex tasks [12–15].

In the field of computer vision, convolutional neural 
networks (CNNs) have become a typical application of 
deep learning (Appendix  8) [16–20]. CNNs effectively 

capture image features using convolutional layers and 
pooling layers by simulating the human visual system. 
Their local connectivity and weight sharing character-
istics make them more efficient when processing large 
numbers of images, significantly improving the accu-
racy of image recognition and classification. In recent 

1950 - Alan Turing publishes "Compu�ng Machinery and Intelligence," introducing the Turing test and opening the door to AI research.

1951 - Marvin Minsky and Dean Edmonds develop the first ar�ficial neural network, SNARC.

1956 - John McCarthy and others coin the term "ar�ficial intelligence" at a workshop.

1958 - Frank Rosenbla� develops the perceptron, laying the founda�on for modern neural networks.

1964 - Daniel Bobrow develops STUDENT, an early natural language processing program.

1959 - Arthur Samuel first uses the term "machine learning."

1968 - Terry Winograd creates SHRDLU, the first mul�modal AI.

1965 - Edward Feigenbaum and others develop Dendral, the first expert system.

1980 - Symbolics Lisp machines are commercialized, marking an AI renaissance.

1969 - Arthur Bryson and Yu-Chi Ho describe the backpropaga�on learning algorithm.

1985 - Judea Pearl introduces Bayesian networks for causal analysis.

1981 - Danny Hillis designs parallel computers for AI.

1997 - Sepp Hochreiter and Jürgen Schmidhuber propose Long Short-Term Memory (LSTM) networks.

1989 - Yann LeCun and others demonstrate the use of convolu�onal neural networks (CNNs) in handwri�en character recogni�on.

2000 - University of Montreal researchers publish a paper on neural probabilis�c language models.

2006 - Fei-Fei Li begins work on the ImageNet visual database.

2011 - Jürgen Schmidhuber and others develop the first CNN to achieve "superhuman" performance.

2013 - DeepMind introduces deep reinforcement learning.

2012 - Geoffrey Hinton and others propose a deep CNN architecture, winning the ImageNet challenge.

2017 - Stanford researchers publish work on diffusion models.

2014 - Ian Goodfellow and others invent genera�ve adversarial networks (GANs).

- Google researchers introduce the concept of transformers in a paper.

2019 - Microso¡ launches the Turing Natural Language Genera�on model.

2018 - OpenAI releases the GPT language model.

2020 - OpenAI releases GPT-3 language model.

- DeepMind's AlphaFold system wins the protein structure predic�on contest.

2022 - OpenAI releases ChatGPT in November.

2021 - OpenAI introduces the mul�modal AI system Dall-E.

2023 - OpenAI announces the mul�modal language model GPT-4.

The history of ar�ficial intelligence:  �meline

Fig. 1  Timeline of major developments in artificial intelligence. This figure illustrates the historical timeline of artificial intelligence development 
from 1950 to 2023, highlighting key milestones including the introduction of fundamental concepts, breakthrough technologies, and significant 
achievements in AI research and applications. Notable events include the establishment of AI as a field in 1956, the development of neural 
networks, the emergence of deep learning, and recent advances in large language models
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years, other visual algorithms such as generative adver-
sarial networks (GAN) have also made progress in medi-
cal image synthesis and data augmentation. In the field 
of natural language processing (NLP), the emergence of 
large language models (LLMs) marks a breakthrough in 
AI’s language understanding and generation capabili-
ties (Appendix 8). These models (such as ChatGPT [21], 
Claude [22], and the Llama series [23, 24]) learn rich 
language and world knowledge through self-supervised 
learning on massive text data, enabling them to under-
stand and generate natural language and perform tasks 
such as question-answering, translation, and summariza-
tion. The emergence of LLMs has advanced the develop-
ment of natural language processing technology, bringing 
new tools for medical text data analysis and clinical deci-
sion support.

In summary, these advances in artificial intelligence 
technology have brought revolutionary changes to vari-
ous industries, particularly significant in the medical and 
health fields. The accumulation of massive medical big 
data has laid a solid foundation for the application of AI 
technology in the medical field. Through deep learning 
algorithms and large language models analyzing medical 
data, AI can assist in the entire process of disease preven-
tion, diagnosis, treatment, and management. It has the 
potential to break through the limitations of traditional 
medical models and address challenges in current clini-
cal practice such as standardization, precision, and intel-
ligence [25–27].

Recent progress of AI applications in the medical field
With powerful data processing and analytical capabili-
ties, AI shows enormous application potential in vari-
ous aspects of healthcare and is expected to drive the 
transformation of medical practice toward precision 
medicine. Currently, the main applications of AI in the 
medical field include: (1) Medical image analysis: Deep 
learning-based image segmentation, classification, and 
detection algorithms can automatically identify organs 
and pathological structures in medical images, assisting 
in diagnosis and efficacy evaluation. In radiology, AI can 
be used for screening and diagnosing diseases such as 
nodules and tumors; in pathology, AI can achieve auto-
matic analysis and diagnosis of tissue pathology slides. 
(2) Clinical decision support: Machine learning algo-
rithms can extract features from massive clinical data 
such as electronic medical records, physician orders, 
and laboratory reports to establish disease diagnosis and 
prognosis prediction models, assisting clinical decision-
making. For example, based on NLP technology, AI can 
automatically structure medical record information and 
intelligently recommend examination and medication 
plans [28–30]. (3) Drug development: AI can be applied 

to drug molecule screening, virtual drug screening, drug 
repositioning, etc., accelerating the new drug develop-
ment process. For example, deep learning algorithms 
can screen lead compounds with activity from massive 
molecular libraries; AI can predict drug toxicity, reducing 
the risk of clinical trial failure [31–35]. (4) Individualized 
treatment: Machine learning based on multi-omics data 
can perform molecular typing of patients, predict specific 
treatment responses, and optimize individualized plans 
[36–40]. For example, in tumor treatment, AI integrates 
multi-omics data such as genomics, transcriptomics, and 
proteomics to construct prognosis and efficacy predic-
tion models, guiding precision therapy [41, 42]. (5) Intel-
ligent health management: Wearable devices and mobile 
healthcare generate large amounts of health data, and AI 
can assess individual health status, enabling early disease 
warning and health management. For example, intelli-
gent wearable ECG monitoring devices analyze ECG data 
in real-time, providing early warning of cardiovascular 
diseases such as arrhythmia [43, 44].

Although medical AI has made significant progress, its 
application in clinical practice still faces many challenges, 
including data standardization and sharing, algorithm 
interpretability and robustness, ethics, and legal issues. 
Future research and application of medical AI requires 
integration of multiple disciplines such as medicine, 
information, and management, establishment of industry 
standards and application specifications, and the estab-
lishment of a sound clinical validation and evaluation 
system to ensure that AI technology benefits patients 
safely and effectively.

Applications of artificial intelligence 
in the diagnosis and treatment of malignant 
digestive tract tumors
AI‑assisted endoscopic diagnosis
Endoscopic examination is an important method for 
diagnosing malignant digestive tract tumors, but the 
identification of early lesions under endoscopy requires 
doctors to have high experience and technical expertise, 
with a miss rate as high as 10–20%. In recent years, artifi-
cial intelligence technology represented by deep learning 
has been widely applied in the field of endoscopy, which 
is expected to overcome the limitations of human eye 
recognition and improve the detection rate and diagnos-
tic accuracy of digestive tract tumors.

Upper Digestive Tract Tumors: Upper digestive tract 
tumors mainly include esophageal cancer and gastric 
cancer. Under traditional endoscopy, these early lesions 
present atypically and are easily overlooked. AI-assisted 
diagnostic systems based on endoscopic images and 
videos can achieve automated, real-time detection and 
recognition of lesions, compensating for the deficiency 
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of insufficient physician experience. Horie Y et al. devel-
oped a deep learning-based esophageal cancer screening 
system that automatically detects esophageal squamous 
cell carcinoma and adenocarcinoma by intelligently ana-
lyzing endoscopic images, with a sensitivity as high as 
98% [45]. Additionally, Tang D et  al. constructed an in-
situ diagnostic model for early esophageal squamous cell 
carcinoma based on real-time deep convolutional neural 
networks, which can accurately classify lesions under 

endoscopy with an accuracy of 95.4% [46]. For gastric 
cancer, Horiuchi Y et al. developed an AI detection sys-
tem for early gastric cancer and atrophic gastritis, which 
can determine the presence of lesions within 0.02  s by 
analyzing each frame of gastroscopy videos, with diag-
nostic accuracy and sensitivity of 85.3% and 95.4%, 
respectively [47]. Besides detecting early lesions, AI can 
also assist in determining the invasion depth of gastric 
cancer, providing references for surgical planning. Nagao 

Fig. 2  Network meta-analysis comparing the effectiveness of computer-aided detection (CADe) with other endoscopic techniques. Results 
from a systematic review including 50 randomized controlled trials with 34,445 participants. The analysis demonstrates CADe’s superior 
performance in adenoma detection rate (7.4% higher than HD white-light endoscopy), large adenoma detection (OR 1.69), and serrated 
lesion detection. Comparative analysis shows CADe significantly outperforming both increased mucosal visualization systems (OR 1.54) 
and chromoendoscopy (OR 1.45)
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et  al. used convolutional neural networks combined 
with transfer learning to train on endoscopic images and 
developed a diagnostic model for gastric cancer invasion 
depth, achieving accuracy and sensitivity of 94.5% and 
84.4%, respectively [48].

Lower Digestive Tract Tumors: Lower digestive tract 
tumors are mainly colorectal cancer. Colonoscopy is 
the gold standard for screening and diagnosing colorec-
tal cancer, but due to factors such as multiple colonic 
mucosal folds and narrow lumen, the miss rate can be 
as high as 22%. AI technology can fully utilize the infor-
mation from each frame of colonoscopy videos, scan 
the intestine from all angles, identify small lesions easily 
overlooked by the human eye, and reduce missed diagno-
ses. Wallace MB et al. applied deep learning to construct 
a computer-aided diagnostic system for colonoscopy, 
showing that AI can reduce the miss rate of colorectal 
tumors by approximately twofold [49]. To achieve real-
time prompting of lesions, Misawa M et al. developed a 
real-time detection system for colorectal polyps that can 
automatically mark suspicious polyp areas by analyzing 
colonoscopy video images, with a sensitivity of 90.0% 
[50]. Urban G et al. used convolutional neural networks 
for computer-aided analysis of colonoscopy images, con-
firming that AI can significantly improve adenoma detec-
tion rates with a detection accuracy as high as 96.4% 
[51]. Furthermore, AI can be combined with new endo-
scopic technologies to achieve more precise diagnosis. 
The AI model EndoBRAIN developed by Kudo SE et al. 
efficiently distinguishes between neoplastic and non-
neoplastic colorectal lesions by analyzing endoscopic 
cytological staining images and Narrow-Band Imaging 
(NBI) images, with an accuracy of [52], providing a new 
approach for "optical biopsy."

With the emergence of the above AI technology 
achievements, some AI systems have begun to enter 
clinical practice in the field of endoscopy. For example, 
GI Genius is the first real-time AI-assisted detection 
device approved by regulators for colonoscopy, which 
has proven to improve the detection rate of colorectal 
polyps in actual applications [53]. Spadaccini et al. con-
ducted a network meta-analysis to evaluate the rela-
tive effectiveness of computer-aided detection (CADe) 
compared to other advanced endoscopic technologies 
in colorectal tumor detection [54]. The study included 
50 randomized controlled trials involving 34,445 partici-
pants, using a frequentist framework and random effects 
model for systematic review (Fig. 2). The results showed 
that CADe significantly outperformed other technologies 
in adenoma detection rate and large adenoma (≥ 10 mm) 
identification: compared to high-definition white-light 
endoscopy, the adenoma detection rate increased by 
7.4%, and was also significantly better than enhanced 

mucosal visualization (such as NBI) systems and chro-
moendoscopy. In the detection of serrated lesions, 
although CADe showed a trend of superiority over other 
strategies, the advantage did not reach statistical sig-
nificance. This study is the first systematic review that 
directly compares the effectiveness of CADe with other 
advanced endoscopic technologies through network 
meta-analysis, providing strong empirical support for the 
application of CADe in clinical practice.

The core algorithms currently used for AI-assisted 
endoscopic diagnosis are mostly based on convolutional 
neural networks (CNN), such as ResNet, VGG, YOLO, 
or Faster R-CNN. These models are typically pre-trained 
on large endoscopic image datasets and then undergo 
transfer learning for specific lesions (such as colorectal 
polyps, early gastric cancer). In feature engineering, early 
methods relied on manually extracting image features 
such as texture and edges, while the current mainstream 
approach is to adopt end-to-end automatic feature 
extraction through deep learning, using multiple convo-
lutional kernels to refine information on lesion patterns, 
mucosal textures, and color differences. In real-time 
detection scenarios, models often adopt lightweight net-
works combined with attention mechanisms (Attention 
Module) or real-time object detection frameworks such 
as SSD/YOLO to ensure a balance between inference 
speed and recognition accuracy.

Endoscopic AI models commonly use metrics such as 
Sensitivity, Specificity, Positive Predictive Value (PPV), 
Negative Predictive Value (NPV), and Area Under the 
ROC Curve (AUC) to quantify performance. In actual 
screening, more attention is paid to changes in miss rates 
and Adenoma Detection Rate (ADR). To improve clinical 
feasibility, some studies additionally monitor false posi-
tive prompt rates to evaluate the operational burden on 
physicians. Although positive results have been achieved 
in single-center or small-scale multi-center studies, the 
cross-institutional generalizability of algorithms still 
needs further validation through large-scale, multi-geo-
graphic region clinical trials. Additionally, data bias and 
algorithmic inequality issues have gradually received 
attention, and validation across multi-center multi-ethnic 
populations will help reduce inconsistent algorithm per-
formance across different populations.

We note that there is currently a lack of specific data 
on adverse consequences caused by errors or failures of 
AI endoscopy systems in the diagnosis and treatment 
of digestive tract tumors (Appendix  9). Understand-
ing the potential risks of AI systems is crucial for their 
safe and effective application. Despite limited direct data 
on adverse impacts, some research results are incon-
sistent with the mainstream view that "AI is definitely 
beneficial." The latest meta-analysis by Patel HK et  al. 
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(Fig.  3) included 8 non-randomized controlled studies 
(9,782 patients in total), comparing the CADe-assisted 
group (n = 4569) with the standard colonoscopy group 
(n = 5213). The results showed that in retrospective stud-
ies, the use of CADe did not significantly improve the 
detection rate of colorectal tumors, nor did it increase 
the burden of colonoscopy operation. There was no sta-
tistically significant difference between the two groups 
in indicators such as Adenoma Detection Rate (ADR), 
Advanced Adenoma Detection Rate (AADR), Adenomas 

Per Colonoscopy (APC), examination time, and Non-
Neoplastic Lesions Per Colonoscopy (NNLPC) [55]. 
However, this conclusion may be too conservative. The 
analysis has limitations such as limited sample size and 
uneven technical levels. Meanwhile, the learning curve 
effect of CADe, its potential advantages in high-risk 
populations, and its contribution to improving diag-
nostic consistency and reducing human errors have 
not been fully evaluated. It should be emphasized that 
CADe should be viewed as a supplement to physicians’ 

Fig. 3  Comparative analysis of CADe effectiveness in non-randomized studies. Meta-analysis results from 8 non-randomized controlled studies 
involving 9,782 patients, comparing outcomes between CADe-assisted (n = 4,569) and standard colonoscopy (n = 5,213). The analysis found 
no significant differences in adenoma detection rate (ADR), advanced adenoma detection rate (AADR), mean adenomas per colonoscopy (APC), 
inspection time, and non-neoplastic lesions per colonoscopy (NNLPC) in retrospective studies
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expertise, and its performance is expected to continu-
ously improve with data accumulation and algorithm 
optimization.

Although artificial intelligence has shown significant 
potential in endoscopic diagnosis of malignant diges-
tive tract tumors, its true value in clinical practice still 
needs further validation. Current limitations are mainly 
reflected in: (1) Most studies are still retrospective analy-
ses, and data from single centers limit the generalizability 
of models; (2) There is a lack of prospective large-scale 
study evidence, and the effectiveness and safety of AI 
diagnostic models need to be further validated through 
multi-center randomized controlled trials; (3) The lack of 
unified standards for endoscopic image acquisition and 
processing affects the accuracy and reproducibility of AI 
diagnosis. To fully leverage the role of AI in improving 
colorectal cancer screening and diagnosis while mini-
mizing potential risks, future research should focus on: 
(1) Conducting more large-scale, long-term randomized 
controlled trials to comprehensively evaluate the effec-
tiveness and safety of CADe in real clinical environments; 
(2) Establishing industry standards for endoscopic image 
acquisition and use, constructing a medical endoscopic 
image knowledge base to provide high-quality data sup-
port for AI algorithm development; (3) Formulating qual-
ity control standards and ethical regulatory frameworks 
for endoscopic AI products, clarifying the responsibil-
ity boundaries between endoscopists and AI systems, 
ensuring the reliability of AI-assisted diagnosis and trust 
between doctors and patients.

AI‑assisted pathological diagnosis
Pathological examination, as the gold standard for diag-
nosing malignant digestive tract tumors, has long played 
a crucial role in clinical practice. However, traditional 
pathological diagnosis is highly dependent on the sub-
jective experience of pathologists, inevitably leading to 
problems such as low diagnostic efficiency, poor accu-
racy, and large inter-observer variations, which are not 
conducive to timely and accurate identification of malig-
nant tumors. With the rapid development of artificial 
intelligence (AI) technology, its application in the field of 
pathological diagnosis has provided new possibilities for 
solving these problems. Through objective quantitative 
analysis of pathological images, AI technology can not 
only assist in pathological diagnosis, improving diagnos-
tic efficiency and accuracy, but also significantly reduce 
doctors’ workload.

The development of AI-assisted pathological diagnosis 
for digestive tract tumors has evolved from basic image 
analysis to vision-language fusion, and then to multi-
modal interaction. Basic Image Analysis Stage: Research 
mainly focused on classification, segmentation, and 

grading tasks of pathological images. Iizuka et al. devel-
oped an AI diagnostic system for colorectal cancer path-
ological images that can automatically identify normal 
tissue, adenoma, and adenocarcinoma, providing a pow-
erful tool for rapid screening of suspicious cases [56]. The 
automated feature global delivery connection network 
(FGDC-net) proposed by Shi P et al. achieved significant 
results in the nuclear segmentation task of H&E stained 
images, providing a basis for nuclear atypia analysis [57]. 
The AI classification and grading method for colorectal 
cancer developed by Awan R et  al. uses deep convolu-
tional neural networks and achieved 97% binary classifi-
cation accuracy (normal tissue vs. cancer tissue) and 91% 
three-category classification accuracy (normal, low-grade 
neoplasia, high-grade neoplasia) in histological grading 
tasks, providing an important basis for precision treat-
ment [58].

Vision-Language Fusion Stage: As research deepened, 
large-scale vision-language pre-trained foundation mod-
els gradually became a new direction for pathological 
AI. The emergence of the CONCH (CONtrastive learn-
ing from Captions for Histopathology) model marked 
the entry of pathological AI into a new stage of vision-
language fusion (Fig.  4) [59]. This model obtained rich 
visual-language representations through contrastive 
learning pre-training on more than 1.17 million pairs 
of pathological image-text pairs, enabling better under-
standing and utilization of language information in 
pathology reports. CONCH performed excellently in 
various downstream tasks, including zero-shot classifica-
tion (classifying unseen categories of pathological images 
without additional training), cross-modal retrieval (using 
text to search for related images or images to search for 
descriptive text), image segmentation, and image descrip-
tion. Especially in the diagnosis of rare diseases, CONCH 
combined with weakly supervised learning showed sig-
nificant potential, providing new ideas for addressing dis-
eases with scarce data.

Multimodal Interaction Stage: The latest research 
progress has introduced more advanced multimodal 
generative AI pathology assistants, such as PathChat 
(Fig. 5) [60]. These systems not only analyze pathological 
images but also understand and generate relevant natu-
ral language, answering pathological diagnostic questions 
conversationally, achieving truly interactive diagnostic 
assistance. PathChat was constructed by combining a 
specially trained pathological image visual encoder [61] 
with a pre-trained large language model (such as Llama 
2), and fine-tuned on over 450,000 diverse image-text 
instructions (containing 999,202 rounds of Q&A). Evalu-
ations showed that PathChat performed excellently com-
pared to other multimodal models: in multiple-choice 
diagnostic tasks with pathological images, PathChat 
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achieved an accuracy of 78.1%, significantly higher than 
the comparative models LLaVA 1.5 (51.3%), LLaVA-Med 
(55.3%), and ChatGPT-4 (24.3%); when both images and 
clinical background information were provided, Path-
Chat’s accuracy increased to 89.5%, 39.0%, 60.9%, and 
26.9% higher than the above models, respectively. In 
open-ended Q&A tasks, PathChat’s answers were more 
favored by pathologists, with an accuracy of 78.7%, about 
48% higher than LLaVA1.5 and LLaVA-Med, and 26.4% 
higher than ChatGPT-4. Particularly in "microscopic 

examination" and "diagnostic" type questions that require 
careful examination of histological images, PathChat’s 
performance was outstanding, with its answers consid-
ered more accurate and helpful by experts. This type of 
multimodal interactive AI system provides strong techni-
cal support for the "AI + pathologist" collaborative diag-
nostic model, allowing pathologists to engage in multiple 
rounds of dialogue with AI, clarify doubts, obtain more 
information, and ultimately make more accurate diagno-
ses. PathChat demonstrated high flexibility, effectively 

Fig. 4  Overview of CONCH (CONtrastive learning from Captions for Histopathology). Illustration of the CONCH model architecture and dataset 
composition, comprising approximately 1.17 million image-text pairs, including 457,373 H&E staining pairs and 713,595 IHC and special staining 
pairs. The figure shows the data processing pipeline, including object detection, caption splitting, and image-text matching, along with key 
performance metrics in zero-shot classification and cross-modal retrieval tasks
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combining visual features and clinical context informa-
tion to provide diagnostic advice, and supporting judg-
ment adjustments based on new information. In complex 
diagnostic processes (for example, when facing tumors 
of unknown primary origin requiring multiple rounds 
of immunohistochemical testing), this interactive, multi-
round reasoning capability is particularly valuable.

Fine-grained Feature Extraction and Interpretabil-
ity: Pathological AI commonly uses architectures based 
on fully convolutional networks (FCN), U-Net, or Swin 

Transformer to extract slice-level or patch-level features 
from digital slides. These models can extract fine-grained 
features such as nuclear morphology, staining inten-
sity, and tissue structure patterns in stages, and output 
specific diagnostic results in classification or segmenta-
tion heads. To enhance interpretability, some studies 
introduce visualization attention maps or class activa-
tion mapping (CAM) within the model, directly marking 
the areas of most concern to the model on pathological 
images to help pathologists understand the basis of AI 

Fig. 5  Architecture and performance of PathChat, a multimodal AI pathology assistant. Detailed representation of PathChat’s architecture, 
combining a UNI visual-language pretrained model with Llama 2 LLM, fine-tuned on 456,916 instructions. The figure highlights PathChat’s superior 
performance in multiple-choice diagnostic questions (78.1–89.5% accuracy) and open-ended question answering (78.7% accuracy), significantly 
outperforming other models like LLaVA 1.5, LLaVA-Med, and ChatGPT-4
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decisions. For example, in the diagnosis of submucosal 
invasion of gastric cancer, the model can mark the loca-
tion of suspicious submucosal infiltration bands, indicat-
ing high-risk areas.

Validation Metrics and Evidence-based Medical Evi-
dence: The evaluation of pathological AI typically 
includes multiple levels: in segmentation tasks, overlap 
is quantified using the Dice coefficient and Intersec-
tion over Union (IoU); in classification or grading tasks, 
diagnostic consistency is evaluated using metrics such 
as accuracy, F1 score, and AUC. There are differences in 
the setting of the "gold standard" across different stud-
ies, with some using the consensus of senior pathology 
experts as a reference, while others refer to molecular 
diagnosis or long-term prognosis. Most existing literature 
is retrospective in design, lacking large-scale prospec-
tive, multi-center clinical trials. To provide pathological 
AI with a more solid evidence-based medical foundation, 
embedded validation in real clinical workflows is needed, 
observing its impact on diagnostic efficiency, miss rates, 
and clinical decision-making accuracy.

Although AI-assisted pathological diagnosis has made 
significant technological progress, its clinical translation 
and application still face many challenges. The primary 
issue is data quality and standardization: the consistency 
of pathological slice quality and staining directly affects 
AI diagnostic accuracy, and differences in slice prepara-
tion and diagnostic standards between different hos-
pitals and regions require the inclusion of multi-center, 
multi-source data when building AI models to improve 
model generalizability. Secondly, model interpretability 
still needs to be strengthened: clinical physicians need 
to understand the basis of AI diagnoses to increase trust 
and adoption. Next, knowledge update mechanisms: 
medical knowledge and diagnostic standards are con-
stantly evolving, and AI models need to have the ability to 
continuously learn and update to adapt to emerging diag-
nostic standards and treatment methods. Additionally, 
clinical validation and quality control are also key: pro-
spective studies are needed to validate the actual benefits 
of AI pathological diagnosis, and corresponding quality 
control and responsibility tracing mechanisms need to be 
established to ensure that AI systems are applied to clini-
cal practice in a long-term, safe, and reliable manner.

Looking to the future, AI-assisted pathological diagnos-
tic systems are expected to further integrate multimodal 
data, including whole-slide digital pathological images, 
multi-omics data such as genomics and transcriptomics, 
and patient clinical information, achieving more compre-
hensive and precise diagnoses. The deep integration of AI 
systems with clinical tools such as digital pathology slide 
scanners and electronic medical record systems will pro-
vide pathologists with a seamless intelligent assistance 

experience. This integration will not only improve the 
accuracy and efficiency of diagnosis but also promote the 
development of personalized treatment plans, opening 
new prospects for the precise diagnosis and treatment of 
malignant digestive tract tumors.

Problems and challenges in clinical applications
Data quality and standardization
The introduction of artificial intelligence technology 
into the diagnosis and treatment of malignant digestive 
tract tumors requires high-quality data resources as a 
foundation. However, there is currently a lack of unified 
standards in the collection, storage, and annotation of 
tumor big data, which seriously affects data quality and 
constrains the development and application of intelligent 
models.

First, data collection lacks standardization: information 
systems across different medical institutions vary greatly, 
with inconsistent data recording formats and terminol-
ogy. Non-structured data such as imaging and pathology 
lack unified collection specifications, and data quality 
obtained under different equipment and parameters var-
ies significantly. There is also a lack of mechanisms for 
collecting long-term follow-up data on patients, result-
ing in short time spans and incomplete information. Sec-
ond, data annotation lacks standardization: medical data 
annotation requires professional knowledge and experi-
ence, and the varying levels of different annotators can 
easily lead to bias and errors. Especially for non-struc-
tured data, there is a lack of unified annotation guide-
lines and quality control processes, resulting in strong 
subjectivity in annotation and difficulty in ensuring 
consistency. The manual annotation of massive medical 
data is labor-intensive and inefficient, becoming a bot-
tleneck for AI development. Additionally, the integration 
of multi-omics data faces challenges such as complex 
non-linear interactions, data imbalance, batch effects, 
and dimensionality disaster [62, 63]. The lack of effective 
standardization methods for omics data seriously affects 
the development of AI models based on multi-omics big 
data. Duan R et  al. evaluated the accuracy, robustness, 
and computational efficiency of ten integration meth-
ods in cancer molecular subtype classification based on 
multi-omics data from nine cancers in the TCGA data-
base, and discussed the impact of different omics data 
types and their combinations on classification results 
[64]. Furthermore, the lack of data sharing platforms 
between medical institutions makes cross-institutional 
data aggregation difficult, with small sample sizes from 
single centers limiting large-scale validation of AI mod-
els. The so-called "data silos" phenomenon seriously hin-
ders the research progress and translational application 
of AI in the medical field. At the same time, medical data 
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involves patient privacy, and the lack of clear data privacy 
protection policies and secure sharing mechanisms also 
limits data circulation.

To address these issues, there is an urgent need to 
establish a unified system of standards for the collection, 
storage, and access of medical big data, standardizing the 
acquisition processes and quality control measures for 
medical records, imaging, pathology, omics, and other 
data. Natural language processing and other technologies 
should be integrated to establish efficient professional 
annotation platforms and collaborative teams, improv-
ing the efficiency and quality of data annotation. Intel-
ligent omics data preprocessing and analysis workflows 
should be developed to achieve standardized integration 
and deep mining of omics data. National medical big data 
sharing platforms should be built, promoting cross-insti-
tutional data sharing and cooperation under the premise 
of ensuring patient privacy and data security, provid-
ing large-scale, high-quality data support for AI model 
development.

Interpretability and reliability of algorithm models
The application of AI in the diagnosis and treatment 
of malignant digestive tract tumors requires not only 
that models have high-precision predictive capabilities 
but also that clinicians can understand and trust their 
decision-making basis [65, 66]. However, current AI 
algorithms still face many challenges in terms of inter-
pretability and reliability. First, the model "black box" 
problem is prominent [67]. Mainstream deep learning 
models have complex structures and massive param-
eters, making their decision-making processes difficult 
to explain in an intuitive way. This lack of transparency 
makes it difficult for physicians to understand the diag-
noses and predictions given by AI, thereby affecting trust 
and acceptance of AI systems [68–71]. Second, the gen-
eralization ability of models needs improvement. Most 
AI models are trained on specific datasets with insuf-
ficient sample representativeness and diversity, limiting 
the applicability of models to real-world data from dif-
ferent populations and different hospitals. How to ensure 
that models can work reliably across different popula-
tions, regions, and time periods is an urgent problem to 
be solved. In addition, insufficient model robustness is 
also a challenge. Medical data often contains noise, anno-
tation errors, and missing values, and current AI mod-
els are relatively sensitive to these data problems, prone 
to overfitting, and thus performing unstably in practi-
cal applications. The lack of model update and iteration 
mechanisms is also a significant problem. Changes in dis-
ease spectra, new diagnostic guidelines, and new drugs 

all require AI models to continuously learn and update. 
However, there is currently a lack of effective mecha-
nisms for continuous learning and updating of models, 
making it difficult for AI to adapt to the rapid iteration of 
medical knowledge; when attempting continuous learn-
ing, phenomena such as "catastrophic forgetting" and 
"knowledge hallucination" may be encountered [72, 73].

To improve the interpretability and reliability of AI 
models, a multi-pronged approach is needed. First, 
strengthen research on explainable AI technologies and 
develop models that can provide explanations for deci-
sion-making bases. For example, use inherently inter-
pretable models (such as decision trees [74] or linear 
models [75]), apply post-hoc explanation methods (such 
as LIME or SHAP [76, 77]), introduce attention mecha-
nisms to highlight key areas of model focus [78], com-
bine multimodal data to provide richer explanations, 
and distill knowledge from complex models into simpler 
ones through knowledge distillation. Second, establish a 
model quality management and evaluation system cover-
ing the entire process from data acquisition and preproc-
essing to model training, testing, and deployment, and 
assess models from multiple dimensions such as statisti-
cal performance, clinical effectiveness, and ethical impact 
to ensure that AI systems are safely and reliably applied 
to patients. Third, fully utilize multi-center data and 
advanced privacy-preserving learning technologies such 
as federated learning [79] and transfer learning (Appen-
dix 8) [80] to achieve cross-center collaborative training 
without directly sharing raw data, increasing training 
data diversity and improving model generalization capa-
bilities. At the same time, combine active learning and 
incremental learning strategies to establish mechanisms 
for continuous learning and updating of models, timely 
incorporation of new diagnostic and treatment knowl-
edge, and maintaining the advanced nature of model 
predictions. Some algorithms that can effectively miti-
gate catastrophic forgetting (such as Elastic Weight Con-
solidation EWC [81] and experience replay [82, 83] can 
be introduced to ensure that models do not forget old 
knowledge while continuously learning new knowledge.

Taking pathology AI assistants like PathChat as exam-
ples, the following new methods can be adopted to 
improve their interpretability: 1) Attention visualization 
techniques that directly highlight model focus areas on 
pathological images; 2) Concept extraction, mapping 
features learned by the model to histological concepts 
familiar to pathologists; 3) Counterfactual explanations, 
exploring which changes in input would alter model out-
put [84, 85]; 4) Language-vision alignment techniques, 
ensuring one-to-one correspondence between model 
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visual features and professional medical terminology 
[86]; 5) Knowledge graph integration, making model rea-
soning processes traceable to existing medical knowledge 
systems [87, 88]; 6) Multimodal explanation generation, 
simultaneously utilizing images, text, and other clinical 
data to provide comprehensive diagnostic bases [89]; 7) 
Interactive explanation systems, allowing users to engage 
in multiple rounds of interaction with the model to 
explore decision-making bases [90, 91]; 8) Case-compar-
ative learning, explaining model diagnoses by comparing 
current cases with historical ones [92]; 9) Uncertainty 
quantification, clearly indicating the confidence level of 
model diagnoses and explaining sources of uncertainty 
[93]; 10) Model distillation, transferring knowledge from 
complex models to simple ones to improve interpret-
ability [94]; 11) Neural-symbolic fusion, combining the 
representational capabilities of neural networks with 
the interpretability of symbolic systems [95]. In sum-
mary, improving the interpretability and transparency 
of AI models is a complex challenge requiring multidis-
ciplinary collaboration across algorithms, medicine, and 
ethics. The development of these new technologies will 
help enhance the interpretability of medical AI systems 
and strengthen the trust of physicians and patients in AI-
assisted diagnosis.

Ethics, safety, and regulations
In the process of promoting the clinical translation of 
AI technology, ethical, safety, and regulatory factors are 
equally crucial. The application of AI in healthcare may 
raise ethical issues such as patient privacy breaches, 
unfair healthcare due to algorithmic bias, and attribu-
tion of responsibility for AI decisions, which need to be 
fully considered in technology development and applica-
tion. Clear patient privacy protection policies should be 
established, using techniques such as data de-identifica-
tion and federated learning to reduce privacy risks, and 
ensuring that algorithmic decisions do not systemati-
cally discriminate against certain groups due to training 
data bias. In terms of safety, rigorous testing of AI sys-
tems’ ability to handle extreme situations is necessary to 
prevent dangerous outputs under abnormal inputs, and 
contingency plans for AI system failures should be for-
mulated. On the regulatory front, regulatory bodies in 
various countries are gradually developing assessment 
and approval guidelines for medical AI. For instance, 
the U.S. Food and Drug Administration (FDA) has 
already approved the marketing of multiple AI diagnos-
tic software products, and China is also exploring tiered 
management and admission standards for medical AI 
products. Establishing clear regulatory frameworks and 
industry standards helps regulate the development of AI 

medical products and promotes their safe and effective 
entry into clinical use.

Algorithm bias and unfair healthcare
Although AI shows potential in assisting diagnosis and 
treatment decisions, performance differences of AI mod-
els across different populations and environments have 
been widely observed. This bias may stem from imbal-
anced training data, implicit human biases in the data, 
and selection bias in the model development process. 
If not corrected promptly, algorithmic bias will lead to 
unfair treatment of certain patient groups, potentially 
further exacerbating existing health inequality issues. 
Taking pathology and endoscopy as examples, differ-
ent equipment, staining methods, and operational tech-
niques all introduce domain shift, making it difficult 
for AI systems to adapt to samples outside the training 
set. To ensure the fairness of AI clinical applications, 
researchers recommend introducing debiasing algo-
rithms and strict bias detection mechanisms throughout 
the model development process [96]. In the future, data 
quality control and standardization processes should 
be further improved, cross-institutional joint research 
strengthened, diverse datasets collected, and bias issues 
effectively mitigated through statistical correction meth-
ods and improved model interpretability, allowing AI 
technology to benefit all patient groups more fairly.

Insufficient clinical applicability validation
Like traditional medical devices, AI models also need to 
undergo thorough and rigorous clinical validation before 
they can truly enter clinical pathways. At the current 
stage, many AI studies achieve good results on retrospec-
tive datasets, but once transferred to real clinical scenar-
ios (such as intraoperative real-time detection, dynamic 
pathological workflows), their performance often fluctu-
ates due to factors such as on-site environment, operating 
habits, and individual patient differences. Most studies 
also lack direct observation of patient endpoints (such as 
survival time, complication rates), remaining only at the 
level of diagnostic accuracy. To truly assess the impact 
of AI on patient prognosis and medical resource alloca-
tion, longitudinal data needs to be collected through pro-
spective, multi-center clinical trials or real-world studies 
(RWS) to test its robustness and generalizability in differ-
ent scenarios.

Clinical validation and evidence‑based support
The true value of AI systems ultimately needs to be dem-
onstrated through clinical validation. Like traditional 
drugs and devices, AI algorithms should undergo thor-
ough prospective validation before clinical application 
to assess their actual impact on clinical decisions and 
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patient outcomes. However, most AI research currently 
remains at the stage of comparing technical performance 
indicators, lacking assessment of key clinical endpoints 
such as patient survival and quality of life, especially 
with a serious deficiency of prospective randomized 
controlled trials (RCTs), making it difficult to deter-
mine the effectiveness of AI algorithms in real clinical 
environments. As of 2022, approximately 43% of medi-
cal AI devices approved by the FDA had not published 
clinical validation data, and less than 5% had been vali-
dated through RCTs [97, 98], a situation that has drawn 
attention from regulatory authorities. In the future, to 
promote widespread clinical acceptance of AI technol-
ogy, embedded clinical trials should be actively designed 
and conducted, incorporating AI-assisted diagnosis and 
treatment into actual clinical pathways for comprehen-
sive assessment of its real efficacy. Meanwhile, data sci-
ence education for healthcare professionals should be 
strengthened to enhance their understanding of the role 
and limitations of AI; patient communication should be 
enhanced to clearly explain the advantages and potential 
risks of AI technology, increasing patient acceptance and 
trust. Additionally, medical journals and academic con-
ferences should encourage the publication of negative 
research results to reduce publication bias, and regula-
tory authorities should consider making prospective clin-
ical validation of key AI algorithms a necessary condition 
for approval or reimbursement. Only when the effective-
ness and safety of AI are fully proven by high-quality 
clinical evidence can its widespread application in the 
medical field truly be realized.

Research gaps
Reviewing current literature, the following systematic 
research gaps still exist in AI for diagnosis and treatment 
of malignant digestive tract tumors: First, there is a lack 
of large-scale clinical trials to validate model generaliz-
ability across real-world multi-center, multi-ethnic data, 
which is insufficient to support universally applicable 
conclusions for populations in different regions; Second, 
research on algorithmic interpretability mostly remains 
at the technical level, lacking comprehensive assessment 
of social factors such as actual application feedback from 
clinical physicians, doctor-patient communication, and 
responsibility determination; Third, research on multi-
modal AI based on multi-omics (genomics, transcrip-
tomics, proteomics, etc.) is still not systematic, making 
it difficult to comprehensively explore the relationship 
between molecular typing and treatment plan selection; 
Fourth, standardized evaluation systems remain incom-
plete, particularly lacking longitudinal follow-up on 
patients’ long-term survival outcomes, quality of life, and 
cost-effectiveness analysis.

In summary, although AI shows broad prospects in 
the diagnosis and treatment of malignant digestive 
tract tumors, to achieve the leap from research to clini-
cal practice, the above challenges must be recognized 
and addressed.

It is worth noting that, according to the latest research 
statistics, less than 2% of models in the medical AI field 
actually surpass the prototype stage and enter routine 
clinical use [99]. In other words, the vast majority of AI 
systems still remain at the prototype development and 
validation stage, with very few being able to be applied 
in real clinical environments. In response to this situ-
ation, we have conducted Technology Readiness Level 
(TRL) assessments for each of the AI applications dis-
cussed in Appendix  10, to quantify the translational 
maturity of each technology and clarify its current 
stage. This will help identify which technologies are 
approaching clinical readiness (e.g., endoscopic AI has 
reached the TRL 8–9 stage) and which are still in early 
research and development (e.g., most prognostic pre-
diction models are around TRL 4–5), thus providing 
reference for future research and resource investment.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12967-​025-​06428-z.

Additional file 1.

Acknowledgements
We express our gratitude to all individuals and organizations that contributed 
to the preparation and writing of this review article.

Author contributions
Yinhu Gao: Conceptualization, literature review, writing—original draft. Peiz-
hen Wen: Conceptualization, study design, writing—original draft. Yuan Liu: 
Literature search and analysis, writing—original draft. Yahuang Sun: Literature 
search and analysis, writing—original draft. Hui Qian: Literature analysis, con-
tent review. Xin Zhang: Figure preparation, content review. Huan Peng: Figure 
preparation, content review. Yanli Gao: Data analysis, editing and polishing. 
Cuiyu Li: Data analysis, editing and polishing. Zhangyuan Gu: Data analysis, 
editing and polishing. Huajin Zeng: Data analysis, editing and polishing. Zhijun 
Hong: Data analysis, editing and polishing. Weijun Wang: Project administra-
tion, supervision, final version approval. Ronglin Yan: Project administration, 
supervision, final version approval. Zunqi Hu: Project administration, supervi-
sion, final version approval. Hongbing Fu: Project conception and design, 
supervision, final version approval. All authors have read and approved the 
final version of this manuscript for publication.

Funding
This work was supported by the Key Research and Development Program 
of Shaanxi Province (No. 2023-YBSF-053), and the National Natural Science 
Foundation of China (Nos. 82070620, 82400774).

Data availability
This review did not generate any new original data. All data analyzed in this 
article are from published literature and can be accessed through the citations 
provided in the reference list. The analysis results and figures are based on 
the summary and synthesis of these published literature. For specific analysis 
processes or more detailed information, please contact the corresponding 
authors.

https://doi.org/10.1186/s12967-025-06428-z
https://doi.org/10.1186/s12967-025-06428-z


Page 17 of 18Gao et al. Journal of Translational Medicine          (2025) 23:412 	

Declarations

Consent for publication
All authors consent to the publication of this manuscript. This manuscript 
does not contain data from any individual person; therefore, additional con-
sent for publication is not required.

Competing interests
All authors declare that they have no competing interests related to this work. 
The conduct, writing, and publication of this research were not influenced by 
any commercial or financial interests.

Author details
1 Department of Gastroenterology, Shaanxi Province Rehabilitation Hospital, 
Xi’an, Shaanxi, China. 2 Department of General Surgery, Changzheng Hospital, 
Navy Medical University, 415 Fengyang Road, Shanghai 200003, China. 
3 Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao 
Tong University School of Medicine, Shanghai, China. 4 Division of Colorectal 
Surgery, Changzheng Hospital, Navy Medical University, 415 Fengyang Road, 
Shanghai 200003, China. 5 Department of Gastroenterology, Changzheng 
Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, 
China. 6 Department of Gastrointestinal Surgery, Changzheng Hospital, Navy 
Medical University, 415 Fengyang Road, Shanghai 200003, China. 7 Infection 
Control Office, Shaanxi Province Rehabilitation Hospital, Xi’an, Shaanxi, China. 
8 Department of Radiology, The First Hospital of Nanchang, the Third Affiliated 
Hospital of Nanchang University, Nanchang 330008, Jiangxi, China. 9 Tongji 
University School of Medicine, Tongji University, Shanghai 200092, People’s 
Republic of China. 

Received: 20 November 2024   Accepted: 25 March 2025

References
	1.	 Sung H, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of 

Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA 
Cancer J Clin. 2021;71(3):209–49.

	2.	 Chen W, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 
2016;66(2):115–32.

	3.	 Dekker E, et al. Colorectal cancer. Lancet. 2019;394(10207):1467–80.
	4.	 Garcia-Buitrago M, Montgomery EA. Current concepts in gastrointestinal 

pathology. Pathology. 2022;54(2):145–6.
	5.	 Wang H, et al. Immune-based combination therapy for esophageal 

cancer. Front Immunol. 2022;13:1020290.
	6.	 Kelly RJ. Emerging multimodality approaches to treat localized esopha-

geal cancer. J Natl Compr Canc Netw. 2019;17(8):1009–14.
	7.	 Zhou C, Zhang J. Immunotherapy-based combination strategies for 

treatment of gastrointestinal cancers: current status and future prospects. 
Front Med. 2019;13(1):12–23.

	8.	 Hamet, P. and J. Tremblay, Artificial intelligence in medicine. Metabolism, 
2017. 69s: S36-s40.

	9.	 Wang H, et al. Scientific discovery in the age of artificial intelligence. 
Nature. 2023;620(7972):47–60.

	10.	 Cordeschi R. AI turns fifty: revisiting its origins. Appl Artif Intell. 
2007;21(4–5):259–79.

	11.	 Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep 
convolutional neural networks. Commun ACM. 2017;60(6):84–90.

	12.	 Jiang Y, et al. Emerging role of deep learning-based artificial intelligence 
in tumor pathology. Cancer Commun (Lond). 2020;40(4):154–66.

	13.	 Stahlschmidt SR, Ulfenborg B, Synnergren J. Multimodal deep learning for 
biomedical data fusion: a review. Brief Bioinform. 2022;23:2.

	14.	 Wu S, et al. Deep learning in clinical natural language processing: a 
methodical review. J Am Med Inform Assoc. 2020;27(3):457–70.

	15.	 Routhier E, Mozziconacci J. Genomics enters the deep learning era. PeerJ. 
2022;10: e13613.

	16.	 Yadav SS, Jadhav SM. Deep convolutional neural network based 
medical image classification for disease diagnosis. Journal of Big Data. 
2019;6(1):113.

	17.	 Karimi D, Salcudean SE. Reducing the Hausdorff distance in medical 
image segmentation with convolutional neural networks. IEEE Trans 
Med Imaging. 2020;39(2):499–513.

	18.	 Kshatri SS, Singh D. Convolutional neural network in medical image 
analysis: a review. Arch Comput Methods Eng. 2023;30(4):2793–810.

	19.	 Kumar A, et al. An ensemble of fine-tuned convolutional neural 
networks for medical image classification. IEEE J Biomed Health Inform. 
2017;21(1):31–40.

	20.	 Abut S, Okut H, Kallail KJ. Paradigm shift from Artificial Neural Networks 
(ANNs) to deep Convolutional Neural Networks (DCNNs) in the field of 
medical image processing. Expert Syst Appl. 2024;244: 122983.

	21.	 OpenAI, et al. GPT-4 Technical Report. 2023. arXiv:​2303.​08774 https://​
doi.​org/​10.​48550/​arXiv.​2303.​08774.

	22.	 The Claude 3 Model Family: Opus, Sonnet, Haiku.
	23.	 Touvron, H., et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. 

2023. arXiv:​2307.​09288 https://​doi.​org/​10.​48550/​arXiv.​2307.​09288.
	24.	 Grattafiori, A., et al. The Llama 3 Herd of Models. 2024. arXiv:​2407.​21783 

https://​doi.​org/​10.​48550/​arXiv.​2407.​21783.
	25.	 Topol EJ. High-performance medicine: the convergence of human and 

artificial intelligence. Nat Med. 2019;25(1):44–56.
	26.	 Bhinder B, et al. Artificial intelligence in cancer research and precision 

medicine. Cancer Discov. 2021;11(4):900–15.
	27.	 Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 

2020;111(5):1452–60.
	28.	 Hossain E, et al. Natural language processing in electronic health 

records in relation to healthcare decision-making: a systematic review. 
Comput Biol Med. 2023;155: 106649.

	29.	 Levis M, et al. Leveraging unstructured electronic medical record 
notes to derive population-specific suicide risk models. Psychiatry Res. 
2022;315: 114703.

	30.	 Zhu E, et al. A unified framework of medical information annotation 
and extraction for Chinese clinical text. Artif Intell Med. 2023;142: 
102573.

	31.	 Gupta R, et al. Artificial intelligence to deep learning: machine intel-
ligence approach for drug discovery. Mol Divers. 2021;25(3):1315–60.

	32.	 You Y, et al. Artificial intelligence in cancer target identification and 
drug discovery. Signal Transduct Target Ther. 2022;7(1):156.

	33.	 Jiménez-Luna J, et al. Artificial intelligence in drug discovery: 
recent advances and future perspectives. Expert Opin Drug Discov. 
2021;16(9):949–59.

	34.	 Zhu H. Big Data and Artificial Intelligence Modeling for Drug Discovery. 
Annu Rev Pharmacol Toxicol. 2020;60:573–89.

	35.	 Ji S, et al. Pharmaco-proteogenomic characterization of liver cancer 
organoids for precision oncology. Sci Transl Med. 2023;15(706):3358.

	36.	 Liu Z, et al. Gene interaction perturbation network deciphers a high-
resolution taxonomy in colorectal cancer. Elife. 2022;11:1.

	37.	 Liu Z, et al. Machine learning-based integration develops an immune-
derived lncRNA signature for improving outcomes in colorectal cancer. 
Nat Commun. 2022;13(1):816.

	38.	 Wang L, et al. Comprehensive machine-learning survival framework 
develops a consensus model in large-scale multicenter cohorts for 
pancreatic cancer. Elife. 2022;11:1.

	39.	 Liu Z, et al. Integrative analysis from multi-center studies identities a 
consensus machine learning-derived lncRNA signature for stage II/III 
colorectal cancer. EBioMedicine. 2022;75: 103750.

	40.	 Xu H, et al. Artificial intelligence-driven consensus gene signatures for 
improving bladder cancer clinical outcomes identified by multi-center 
integration analysis. Mol Oncol. 2022;16(22):4023–42.

	41.	 Argelaguet R, et al. Multi-Omics Factor Analysis-a framework for unsu-
pervised integration of multi-omics data sets. Mol Syst Biol. 2018;14(6): 
e8124.

	42.	 Argelaguet R, et al. MOFA+: a statistical framework for compre-
hensive integration of multi-modal single-cell data. Genome Biol. 
2020;21(1):111.

	43.	 Majumder S, et al. Noncontact wearable wireless ECG systems for long-
term monitoring. IEEE Rev Biomed Eng. 2018;11:306–21.

	44.	 Wang N, et al. Energy-efficient intelligent ECG monitoring for wearable 
devices. IEEE Trans Biomed Circuits Syst. 2019;13(5):1112–21.

	45.	 Horie Y, et al. Diagnostic outcomes of esophageal cancer by artificial 
intelligence using convolutional neural networks. Gastrointest Endosc. 
2019;89(1):25–32.

http://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
http://arxiv.org/abs/2307.09288
https://doi.org/10.48550/arXiv.2307.09288
http://arxiv.org/abs/2407.21783
https://doi.org/10.48550/arXiv.2407.21783


Page 18 of 18Gao et al. Journal of Translational Medicine          (2025) 23:412 

	46.	 Tang D, et al. A novel deep learning system for diagnosing early esopha-
geal squamous cell carcinoma: a multicenter diagnostic study. Clin Transl 
Gastroenterol. 2021;12(8): e00393.

	47.	 Horiuchi Y, et al. Convolutional neural network for differentiating gastric 
cancer from gastritis using magnified endoscopy with narrow band 
imaging. Dig Dis Sci. 2020;65(5):1355–63.

	48.	 Nagao S, et al. Highly accurate artificial intelligence systems to predict 
the invasion depth of gastric cancer: efficacy of conventional white-light 
imaging, nonmagnifying narrow-band imaging, and indigo-carmine dye 
contrast imaging. Gastrointest Endosc. 2020;92(4):866-873.e1.

	49.	 Wallace MB, et al. Impact of artificial intelligence on miss rate of colorec-
tal neoplasia. Gastroenterology. 2022;163(1):295-304.e5.

	50.	 Misawa M, et al. Artificial intelligence-assisted polyp detection for colo-
noscopy: initial experience. Gastroenterology. 2018;154(8):2027-2029.e3.

	51.	 Urban G, et al. Deep learning localizes and identifies polyps in real 
time with 96% accuracy in screening colonoscopy. Gastroenterology. 
2018;155(4):1069-1078.e8.

	52.	 Kudo SE, et al. Artificial Intelligence-assisted System Improves Endoscopic 
Identification of Colorectal Neoplasms. Clin Gastroenterol Hepatol. 
2020;18(8):1874-1881.e2.

	53.	 Cherubini A, Dinh NN. A review of the technology, training, and assess-
ment methods for the first real-time ai-enhanced medical device for 
endoscopy. Bioengineering (Basel). 2023;10:4.

	54.	 Spadaccini M, et al. Computer-aided detection versus advanced imaging 
for detection of colorectal neoplasia: a systematic review and network 
meta-analysis. Lancet Gastroenterol Hepatol. 2021;6(10):793–802.

	55.	 Patel HK, et al. Lack of Effectiveness of computer aided detection for 
colorectal neoplasia: a systematic review and meta-analysis of nonrand-
omized studies. Clin Gastroenterol Hepatol. 2024;22(5):971-980.e15.

	56.	 Iizuka O, et al. Deep learning models for histopathological classification of 
gastric and colonic epithelial tumours. Sci Rep. 2020;10(1):1504.

	57.	 Shi P, et al. Nuclei segmentation of HE stained histopathological images 
based on feature global delivery connection network. PLoS ONE. 
2022;17(9): e0273682.

	58.	 Awan R, et al. Glandular morphometrics for objective grading of colorec-
tal adenocarcinoma histology images. Sci Rep. 2017;7(1):16852.

	59.	 Lu MY, et al. A visual-language foundation model for computational 
pathology. Nat Med. 2024;30(3):863–74.

	60.	 Lu MY, et al. A multimodal generative AI copilot for human pathology. 
Nature. 2024;634(8033):466–73.

	61.	 Chen RJ, et al. Towards a general-purpose foundation model for compu-
tational pathology. Nat Med. 2024;30(3):850–62.

	62.	 Athieniti E, Spyrou GM. A guide to multi-omics data collection and 
integration for translational medicine. Comput Struct Biotechnol J. 
2023;21:134–49.

	63.	 Pinu FR, et al. Systems biology and multi-omics integration: viewpoints 
from the metabolomics research community. Metabolites. 2019;9:4.

	64.	 Duan R, et al. Evaluation and comparison of multi-omics data integration 
methods for cancer subtyping. PLoS Comput Biol. 2021;17(8): e1009224.

	65.	 Markus AF, Kors JA, Rijnbeek PR. The role of explainability in creating 
trustworthy artificial intelligence for health care: a comprehensive survey 
of the terminology, design choices, and evaluation strategies. J Biomed 
Inform. 2021;113: 103655.

	66.	 Hatherley J, Sparrow R, Howard M. The virtues of interpretable medical AI. 
Camb Q Healthc Ethics. 2024;33(3):323–32.

	67.	 Kalmykov, V.L. and L.V. Kalmykov XXAI: Towards eXplicitly eXplainable Arti-
ficial Intelligence. 2024. arXiv:​2401.​03093 https://​doi.​org/​10.​48550/​arXiv.​
2401.​03093.

	68.	 Durán, J.M. and K.R. Jongsma, Who is afraid of black box algorithms? On the 
epistemological and ethical basis of trust in medical AI. J Med Ethics, 2021.

	69.	 Rudin C. Stop explaining black box machine learning models for high 
stakes decisions and use interpretable models instead. Nat Mach Intell. 
2019;1(5):206–15.

	70.	 Sidak D, et al. Interpretable machine learning methods for predictions in 
systems biology from omics data. Front Mol Biosci. 2022;9: 926623.

	71.	 Gimeno, M., K. Sada DR, and A. Rubio, Precision oncology: a review to assess 
interpretability in several explainable methods. Brief Bioinform, 2023. 24: 4.

	72.	 Hasselmo ME. Avoiding Catastrophic Forgetting. Trends Cogn Sci. 
2017;21(6):407–8.

	73.	 Kirkpatrick J, et al. Overcoming catastrophic forgetting in neural net-
works. Proc Natl Acad Sci U S A. 2017;114(13):3521–6.

	74.	 Podgorelec V, et al. Decision trees: an overview and their use in medicine. 
J Med Syst. 2002;26(5):445–63.

	75.	 Wallisch C, et al. Review of guidance papers on regression modeling in 
statistical series of medical journals. PLoS ONE. 2022;17(1): e0262918.

	76.	 Raptis S, Ilioudis C, Theodorou K. From pixels to prognosis: unveiling radi-
omics models with SHAP and LIME for enhanced interpretability. Biomed 
Phys Eng Express. 2024;10:3.

	77.	 Sathyan A, Weinberg AI, Cohen K. Interpretable AI for bio-medical appli-
cations. Complex Eng Syst. 2022;2:4.

	78.	 Cao R, et al. CFANet: context feature fusion and attention mechanism 
based network for small target segmentation in medical images. Sensors 
(Basel). 2023;23:21.

	79.	 Ray NK, Puthal D, Ghai D. Federated Learning. IEEE Consumer Electronics 
Magazine. 2021;10(6):106–7.

	80.	 Weiss K, Khoshgoftaar TM, Wang D. A survey of transfer learning. J Big 
Data. 2016;3(1):9.

	81.	 Ovsianas, A., et al. Elastic Weight Consolidation Improves the Robustness of 
Self-Supervised Learning Methods under Transfer. 2022. arXiv:​2210.​16365 
https://​doi.​org/​10.​48550/​arXiv.​2210.​16365.

	82.	 Li C, et al. SLER: Self-generated long-term experience replay for continual 
reinforcement learning. Appl Intell. 2021;51(1):185–201.

	83.	 Lan, Q., et al. Memory-efficient Reinforcement Learning with Value-based 
Knowledge Consolidation. 2022. arXiv:​2205.​10868 https://​doi.​org/​10.​
48550/​arXiv.​2205.​10868.

	84.	 Xu, A. and T. Wu Generally-Occurring Model Change for Robust Counterfac-
tual Explanations. 2024. arXiv:​2407.​11426 https://​doi.​org/​10.​48550/​arXiv.​
2407.​11426.

	85.	 Cottin A, et al. MS-CPFI: a model-agnostic counterfactual perturbation 
feature importance algorithm for interpreting black-box multi-state 
models. Artif Intell Med. 2024;147: 102741.

	86.	 Liu, J., et al. Enhancing Vision-Language Model with Unmasked Token Align-
ment. 2024. arXiv:​2405.​19009 https://​doi.​org/​10.​48550/​arXiv.​2405.​19009.

	87.	 Varshney D, et al. Knowledge graph assisted end-to-end medical dialog 
generation. Artif Intell Med. 2023;139: 102535.

	88.	 Lan Y, et al. Path-based knowledge reasoning with textual semantic 
information for medical knowledge graph completion. BMC Med Inform 
Decis Mak. 2021;21(9):335.

	89.	 Sun, Z., et al., A scoping review on multimodal deep learning in biomedical 
images and texts. ArXiv, 2023.

	90.	 Pfeuffer N, et al. Explanatory Interactive Machine Learning. Bus Inf Syst 
Eng. 2023;65(6):677–701.

	91.	 Beauxis-Aussalet E, et al. The role of interactive visualization in fostering 
trust in AI. IEEE Comput Graph Appl. 2021;41(6):7–12.

	92.	 Ying H, et al. CoRTEx: contrastive learning for representing terms via 
explanations with applications on constructing biomedical knowledge 
graphs. J Am Med Inform Assoc. 2024;31(9):1912–20.

	93.	 Caldeira J, Nord B. Deeply uncertain: comparing methods of uncertainty 
quantification in deep learning algorithms. Mach Learn. 2021;2(1): 
015002.

	94.	 Song Y, et al. Medical image classification: Knowledge transfer via residual 
U-Net and vision transformer-based teacher-student model with knowl-
edge distillation. J Vis Comun Image Represent. 2024;102:10.

	95.	 Kim S, et al. Integration of neural network-based symbolic regression in 
deep learning for scientific discovery. IEEE Trans Neural Netw Learn Syst. 
2021;32(9):4166–77.

	96.	 Cross JL, Choma MA, Onofrey JA. Bias in medical AI: Implications for clini-
cal decision-making. PLOS Digit Health. 2024;3(11): e0000651.

	97.	 Chouffani-El-Fassi S, et al. Not all AI health tools with regulatory authori-
zation are clinically validated. Nat Med. 2024;30(10):2718–20.

	98.	 Chouffani-El-Fassi S, et al. Author Correction: Not all AI health tools 
with regulatory authorization are clinically validated. Nat Med. 
2024;30(11):3381.

	99.	 Schouten JS, et al. From bytes to bedside: a systematic review on the 
use and readiness of artificial intelligence in the neonatal and pediatric 
intensive care unit. Intensive Care Med. 2024;50(11):1767–77.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/2401.03093
https://doi.org/10.48550/arXiv.2401.03093
https://doi.org/10.48550/arXiv.2401.03093
http://arxiv.org/abs/2210.16365
https://doi.org/10.48550/arXiv.2210.16365
http://arxiv.org/abs/2205.10868
https://doi.org/10.48550/arXiv.2205.10868
https://doi.org/10.48550/arXiv.2205.10868
http://arxiv.org/abs/2407.11426
https://doi.org/10.48550/arXiv.2407.11426
https://doi.org/10.48550/arXiv.2407.11426
http://arxiv.org/abs/2405.19009
https://doi.org/10.48550/arXiv.2405.19009

	Application of artificial intelligence in the diagnosis of malignant digestive tract tumors: focusing on opportunities and challenges in endoscopy and pathology
	Abstract 
	Background 
	Objective 
	Methods 
	Results 
	Conclusion 

	Highlights 
	Introduction
	Epidemiology and current clinical status of malignant digestive tract tumors
	Overview of artificial intelligence technology development
	Recent progress of AI applications in the medical field

	Applications of artificial intelligence in the diagnosis and treatment of malignant digestive tract tumors
	AI-assisted endoscopic diagnosis

	AI-assisted pathological diagnosis
	Problems and challenges in clinical applications
	Data quality and standardization

	Interpretability and reliability of algorithm models
	Ethics, safety, and regulations
	Algorithm bias and unfair healthcare
	Insufficient clinical applicability validation
	Clinical validation and evidence-based support
	Research gaps
	Acknowledgements
	References


