
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4374  | https://doi.org/10.1038/s41598-022-08356-0

www.nature.com/scientificreports

Quantifying the contribution 
of transcription factor activity, 
mutations and microRNAs 
to CD274 expression in cancer 
patients
Imke B. Bruns & Joost B. Beltman*

Immune checkpoint inhibitors targeting the programmed cell death protein 1 (PD-1)/programmed cell 
death protein ligand 1 (PD-L1) axis have been remarkably successful in inducing tumor remissions in 
several human cancers, yet a substantial number of patients do not respond to treatment. Because 
this may be partially due to the mechanisms giving rise to high PD-L1 expression within a patient, 
it is highly relevant to fully understand these mechanisms. In this study, we conduct a bioinformatic 
analysis to quantify the relative importance of transcription factor (TF) activity, microRNAs (miRNAs) 
and mutations in determining PD-L1 (CD274) expression at mRNA level based on data from the 
Cancer Genome Atlas. To predict individual CD274 levels based on TF activity, we developed multiple 
linear regression models by taking the expression of target genes of the TFs known to directly 
target PD-L1 as independent variables. This analysis showed that IRF1, STAT1, NFKB and BRD4 are 
the most important regulators of CD274 expression, explaining its mRNA levels in 90–98% of the 
patients. Because the remaining patients had high CD274 levels independent of these TFs, we next 
investigated whether mutations associated with increased CD274 mRNA levels, and low levels of 
miRNAs associated with negative regulation of CD274 expression could cause high CD274 levels in 
these patients. We found that mutations or miRNAs offered an explanation for high CD274 levels in 
81–100% of the underpredicted patients. Thus, CD274 expression is largely explained by TF activity, 
and the remaining unexplained cases can largely be explained by mutations or low miRNA abundance.

Abbreviations
ICI	� Immune checkpoint inhibitors
PD-1	� Programmed cell death protein 1
PD-L1	� Programmed cell death protein ligand 1
TF	� Transcription factor
miRNA	� MicroRNA
BRCA​	� Breast invasive adenocarcinoma
LUAD	� Lung adenocarcinoma
SKCM	� Skin cutaneous melanoma
TCGA​	� The Cancer Genome Atlas
MAbs	� Monoclonal antibodies
MLR	� Multiple linear regression
t-SNE	� T-distributed stochastic neighbor embedding

Our immune system is a complex network of cell types and molecular components that protect the human body 
from exogenous invaders such as viruses, bacteria, fungi, and toxins. Immune responses in healthy individu-
als are also tightly regulated to prevent conditions such as allergies or auto-immune diseases1. Such regulation 
is mediated in part by immune checkpoints, which act as gatekeepers of immune responses, and consist of 
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co-stimulatory immune receptors that stimulate immune reactions when interacting with their ligand, and co-
inhibitory immune receptors, which inhibit immune reactions2,3.

Numerous inhibitory immunoreceptors have been identified as playing a role in cancer, including, but not 
limited to CTLA-4, LAG3, and BTLA4,5. A highly important co-inhibitory immune checkpoint is programmed 
cell death protein (PD-1), which interacts with its main ligand, programmed cell death ligand 1 (PD-L1), also 
known by its gene name CD2746. PD-1 is highly expressed on the surface of activated CD8 + T cells, while PD-L1 
is mainly expressed on antigen-presenting cells, such as macrophages and dendritic cells, and tumor cells7. When 
PD-L1 binds to its receptor PD-1, PD-1 forms clusters with T cell receptors, becomes phosphorylated, and binds 
to the Src homology (SH2) domains of SH2-containing phosphatase 2 (SHP2). SHP2 dephosphorylates the 
CD3 complex, which is responsible for the activation of both CD4+ and CD8+ T cells8. As a consequence, the 
interaction of PD-1 and its ligand PD-L1 results in the inhibition of T cell activation, proliferation, and secretion 
of cytotoxic granules, which thus limits anti-tumor responses9,10. This has resulted in an enormous interest in 
targeting the PD-1/PD-L1 pathway to develop new cancer treatments11.

Inhibiting the interaction between PD-1 and PD-L1 prevents SHP2 related dephosphorylation of the CD3 
complex, resulting in an enhanced T cell function and anti-tumor activity6,12,13 (Fig. 1a). Monoclonal antibodies 
(MAbs) targeting PD-1 and PD-L1 have been remarkably successful in inducing remissions in various tumors. To 
date, 6 MAbs against human PD-1 or PD-L1 have been approved by the Food and Drug Administration (FDA) 
for cancer immunotherapy: Pembrolizumab, Nivolumab, and Cemiplimab targeting PD-1, and Atezolizumab, 
Durvalumab, and Avelumab targeting PD-L1. However, despite the clinical benefits, a significant number of 
patients do not respond or do not show long-lasting remission after treatment14. Individual environmental 
factors such as smoking or food intake and intratumoral heterogeneity create a unique therapeutic landscape, 
which causes differences in response between patients receiving PD-1/PD-L1 blockade therapy15. The overall 
response rate to PD-1/PD-L1 blockade differs between cancer types, and ranges from 13% in head and neck 
carcinoma to 45% in melanoma16,17.

Considering that immune checkpoint inhibitors (ICIs) are expensive and may cause immune-associated 
adverse events, it is of high importance to define biomarkers identifying a subset of patients suitable for PD-1/
PD-L1 blockade therapy18,19. Despite some limitations, the assessment of PD-L1 levels via immunohistochem-
istry (IHC) staining in formalin-fixed paraffin-embedded tumor tissue samples is currently the only biomarker 
approved for clinical use, and is fully integrated into routine clinical practice20,21. To identify additional biomark-
ers for classification of responsive tumors, it is important to understand the complicated regulation of PD-L1 
expression. This expression is controlled at mRNA and protein level, including the amount at the cell membrane22. 
First, the pathways JAK/STAT, PI3K/Akt/mTOR, ERK-MAPK and EML4-ALK, and the associated TFs Myc, 
HIF1A/2A, c-Jun, IRF1, STAT1, STAT3, NFKB, BRD4, and NRF2 lead to altered PD-L1 transcription23–25 
(Fig. 1b). However, the relative importance of these TFs in determining PD-L1 expression is currently unknown. 
A second factor affecting PD-L1 expression is post-transcriptional regulation by microRNAs (miRNAs), which 
can bind to the 3’ untranslated region (3’UTR) of target mRNAs, thereby inducing mRNA degradation and 
translational repression26. Thus, low levels of specific miRNAs downregulation PD-L1 expression, such as miR-
200, miR-197, and miR-3427, could explain elevated PD-L1 expression. Indeed, particular miRNAs were lower 
expressed in PD-1/PD-L1 blockade therapy responders compared to non-responders28. A third factor affecting 
PD-L1 expression involves genetic alterations within tumors. For example, epidermal growth factor receptor 
(EGFR) mutations are associated with upregulated PD-L1 expression29,30, and consequently the overall response 
rate (ORR) to the PD-L1 inhibitor Atezolizumab in EGFR-mutant patients is higher (31%) compared to the EGFR 
wild-type subgroup (22%)31. Similarly, patient subgroups with TP53 and KRAS mutations have an increased 
PD-L1 expression and a prolonged progression-free survival (PFS) after PD-1 inhibitor therapy32.

Here, we quantify the relative importance of CD274 regulation at mRNA level by TF activity, miRNA regula-
tion, and mutations using a bioinformatic analysis based on data from The Cancer Genome Atlas (TCGA). First, 
we singled out the most important TFs regulating CD274 using multiple linear regression (MLR) models. This 
analysis indicated that IRF1, STAT1, NFKB, and BRD4 are the most important regulators of CD274 expression, 
leading to its correct prediction in ~ 90–98% of the patients. Second, we aimed to identify factors capable of 
explaining the high CD274 levels in patients with underpredicted CD274 expression based on the MLR mod-
els. We identified 36, 44, and 81 genetic alterations, and 29, 89, and 81 miRNAs that are associated with CD274 
upregulation in breast invasive carcinoma (BRCA), lung adenocarcinoma (LUAD), and skin cutaneous melanoma 
(SKCM), respectively. Mutations in those critical genes, and low expression levels of those critical miRNAs could 
explain 81%, 83%, and 100% of the underpredicted patients.

Results
TF activity based on target gene expression corresponds with PD‑L1 expression in breast can-
cer patients.  Multiple TFs are known to contribute to regulation of PD-L1 expression23–25 (Fig. 1b), yet it is 
unclear what their relative importance is in determining PD-L1 expression in cancer patients, and how variable 
this is amongst human cancers. We therefore set out to quantify to what extent the PD-L1 mRNA level (CD274) 
in cancer patients can be predicted by activity of the relevant TFs MYC, HIF1A/2A, JUN, IRF1, STAT1/3, NFKB, 
and NRF2. To this purpose, we investigated mRNA expression in BRCA patients in TCGA data. Because the 
activity of many TFs depends on the nuclear presence of these proteins, their expression at mRNA level is not 
always representative for their activity. Therefore, we instead used sets of known target genes as proxies for TF 
activity, with target genes based on DoRothEA33 (note that for BRD4 no information was available in DoRo-
thEA, hence we based BRD4 target genes on a recent review34). We subsequently removed target genes that 
overlapped between TFs (including CD274 itself; for resulting genes see Supplementary file 2, Sheet1) to ensure 
that TF activity is estimated on the basis of target genes as specific as possible. As expected, the average expres-
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sion of the selected target genes correlated reasonably well with the mRNA abundance for a subset of TFs. For 
example, for IRF1 this is expected because IRF1 transcription and translation both increase in response to IFN-γ 
signaling35 (Supplementary file 1, Fig. S1). For other TFs such as NRF2 the correlation was much less clear, likely 
because NRF2 activity depends on translocation of NRF2 protein to the nucleus rather than on its own transcript 
levels. In some cases (e.g., STAT3, NFKB)), the correlation between TF activity as estimated from target gene 
expression and CD274 expression improved substantially compared to using the mRNA expression of the TF 
directly (Supplementary file 1, Fig. S2), suggesting that our approach to estimate TF activity is valid. In most 
other cases the resulting correlations from the two approaches remained similar (e.g., IRF1).

Subsequently, we used an unsupervised t-SNE analysis to investigate potential patterns in the activity of TFs 
(as estimated by target gene expression) known to target PD-L1. Although there were no clear t-SNE clusters, 
some of the TFs, including IRF1, STAT1, and NFKB, exhibited an increased expression in the upper left corner 

Figure 1.   Relationship between transcription factor activity and CD274 expression. (a,b) Schematic 
representations of binding and consequences (red crosses) of PD-1/PD-L1 inhibition (a) and of transcriptional 
and post-transcriptional regulation of PD-L1 (b). Both schemes created with BioRender.com. (c–l) t-SNE plots 
based on TCGA data from 960 BRCA patients, taking the activity of the indicated transcription factor estimated 
by target gene expression as a basis to develop the t-SNE. Color indicates transcription factor activity. (m) 
CD274 expression in the t-SNE plot (note that the t-SNE was developed on the basis of TF activity and not on 
CD274 expression). (n) CD274 expression per k-means cluster (clusters based on the t-SNE plot in (m)).
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(Fig. 1c–l). Interestingly, the expression of PD-L1 followed a similar pattern (Fig. 1m), while its expression data 
were not used in the generation of the t-SNE plots. Indeed, CD274 expression levels were substantially different 
between clusters created by K-means clustering on the basis of the two t-SNE variables, with the highest CD274 
expression in cluster 1 and the lowest in cluster 4 (Fig. 1n). This analysis indicates that there is a clear relationship 
between the activity of some of the TFs and the expression of PD-L1.

Multiple linear regression models identify cancer‑specific CD274 regulation.  To explore the 
relationships between TFs known to regulate PD-L1, and CD274 expression in a quantitative manner, we con-
structed multiple linear regression (MLR) models. We extended our analysis to include three human cancer 
types (BRCA, LUAD and SKCM) for which large patient numbers were available in TCGA. As before, we used 
TF activities estimated on the basis of average target gene expression as input for the MLR analysis. Using a 
bounded variable least squares (BVLS) solver, we selected only the TFs with a positive effect on PD-L1. We 
accepted negative coefficients solely for BRD4, since this TF may inhibit CD274 expression (note that reports are 
conflicting)23–25. TFs with non-zero values and a significant (p < 0.001) effect on PD-L1 expression were included 
in the final MLR model. As a side note, although we utilized only fully independent target genes in our estimates 
of TF activity, potential multicollinearity of the involved genes might still weaken the model’s generalization 
ability36. However, multicollinearity analysis by calculation of the Variation Inflation Factor (VIF) values of the 
model’s independent variables resulted in VIFs lower than 4, indicating that the selected descriptors were not 
highly correlated (Supplementary file 1, Table S1).

The final model was highly significant (p = 2.2e−16), and for all three cancer types IRF1 was identified as a 
significant explanatory variable for CD274 expression (Table 1, left 3 columns). Interestingly, the contribution of 
IRF1 to CD274 expression relative to that of other significant TFs differed amongst cancer types (15% [SD: 1.4] 
in BRCA, 26% [SD: 2.1] in LUAD, and 56% [SD: 3.9] in SKCM). Other significant explanatory variables included 
STAT1 in BRCA (relative contribution of 51% [SD: 1.9]) and LUAD (relative contribution of 60% [SD: 2.6]), 
and NFKB in BRCA (relative contribution of 34% [SD: 1.7]) and SKCM (relative contribution of 44% [SD: 3.9]). 
Only in LUAD patients, the analysis identified HIF1A (relative contribution of 52% [SD: 3.7]) as a variable with a 
positive effect, and BRD4 (negative contribution of -39% [SD: 3.7]) as a variable with a negative effect on CD274 
expression. The finding that HIF1A is an important factor in CD274 expression for LUAD patients is consistent 
with earlier published findings that in both small cell and non-small cell lung cancers HIF1A levels are typically 
high37. This could in part be due to cigarette smoking which is linked to HIF1A activation38,39. However, within 
the TCGA LUAD cohort there was no significant difference in HIF1A expression (p = 0.077; Supplementary 
file S1, Fig. S3A), or in HIF1A activity as estimated by target gene expression (p = 0.812; Supplementary file S1, 
Fig. S3B) between smokers and non-smokers. Note that this absence of a significant difference could be due to the 
small size of the subsets of patients identified as smokers and non-smokers, which also precluded a meaningful 
separate MLR analysis on these subpopulations.

We used the final MLR models to predict CD274 expression for each individual patient and compared this to 
the actually observed CD274 expression in the 3 cancer types (Fig. 2a–c). In the large majority of patients, predic-
tions were highly accurate, (observations within the blue lines implies that the prediction deviates by maximally 
two-fold), indicating that the identified small subset of TFs could quantitatively explain the observed CD274 
expression. There was a small group of patients in whom CD274 expression was more than two-fold under-
predicted, which we hereafter refer to as the ‘underpredicted group’. There was also a very small ‘overpredicted 
group’, yet in the following we solely focus on the underpredicted group. This underpredicted group consists of 
2.2%, 9.6%, and 4.9% of all patients in BRCA, LUAD, and SKCM, respectively. In conclusion, we found IRF1 to 
be a general predictor for CD274 expression in all three studied cancer types, and STAT1, NFKB, HIF1A and 
BRD4 to be predictors for some of these cancer types. Based on this small set of TFs, CD274 expression could be 

Table 1.   Fitted coefficients and p-values of linear regression model per cancer type. A missing regression 
coefficient (i.e., a dash) indicates that the given transcription factor was not included in the model.

BRCA​ LUAD SKCM Generalized

Reg. coef p-value Reg. coef p-value Reg. coef p-value Reg. coef p-value

(Intercept) − 4.0473 2e−16 − 6.5966 2e−16 − 2.9561 2e−16 − 2.8544 2e−16

MYC – – – – – – – –

HIF1A – – 1.3564 2.18e−13 – – – –

HIF2A – – – – – – – –

JUN – – – – – – – –

IRF1 0.2768 7.79e−8 0.7081 1.95e−8 0.8639 2e−16 0.6488 2e−16

STAT1 1.0254 2e−16 1.9765 2.12e−10 – 0.5501 3.95e−6

STAT3 – – – – – – – –

NFKB 0.7122 2e−16 – – 0.8186 2.66e−11 0.8478 2e−16

NRF2 – – – – – – – –

BRD4 – – − 1.0808 2.69e−7 – – − 0.4198 4.85e−5

R2 0.5987 2.2e−16 0.5115 2.2e−16 0.5666 2.2e−16 0.5431 2.2e−16
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explained in ~ 90–98% of patients, indicating that activity of these TFs is by far the most important determinant 
of CD274 expression.

A generalized multiple linear regression model predicting CD274 expression extrapolates to 
other cancers.  The MLR models developed so far were based on hundreds of patients per cancer type, 
which allowed us to identify differences in the importance of CD274-regulating TFs. For other cancer types typi-
cally much less patient data is available because these cancers are less common and possibly also studied less fre-
quently. Therefore we asked whether a generalized MLR model based on the large number of patients amongst 
the three cancer types (in total 1907 patients) studied so far could be extrapolated to accurately predict PD-L1 
expression in patients with other cancer types, thereby identifying patients with a high CD274 expression that 
cannot be explained by TF activity. We thus combined the BRCA, LUAD, and SKCM data, and randomly divided 
it into a training set of 1525 patients (80%), and a test set of 382 patients (20%). We repeated this procedure 
with different training sets of the same size to compare the statistics and coefficients of the final models. In all 
cases, the MLR models were of high significance (p = 2.2e−16) and presented exactly the same independent vari-
ables (IRF1, STAT1, NFKB, BRD4) as significant predictors for CD274 expression (Table 1, rightmost column). 
Overall, the prediction of CD274 expression gave similar results in cancer-specific models and the generalized 
model (Fig. 2d). Only 1.5% of the patients was predicted in the underpredicted group with the general model, 
while they were predicted in the accurately predicted group with the specific model, providing confidence in the 
potential for extrapolation to other human cancers.

Figure 2.   Multiple linear regression models correctly predict CD274 expression based on transcription factor 
activity in various human cancers. (a–f) Comparison of CD274 expression predicted by MLR (vertical axes) 
and observed CD274 expression (horizontal axes) for BRCA (a), LUAD (b) and SKCM (c) patients, and for a 
generalized MLR based on a training set of combined BRCA, LUAD and SKCM data applied to a test set of these 
combined data (d), or applied to CHOL (e) and READ (f) patients. In (d), differences compared to the specific 
models from (a–c) are indicated by symbol and color.
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To test whether the generalized MLR is able to predict CD274 levels in cancer types other than BRCA, LUAD, 
or SKCM, we used data from a total of 36 patients with cholangiocarcinoma (CHOL), and 165 patients with 
rectum adenocarcinoma (READ) (Supplementary file S1, Table S3). For these cancers, overall CD274 expression 
was much lower than in BRCA, LUAD and SKCM patients. Nevertheless, the generalized MLR model correctly 
predicted CD274 expression within a two-fold deviation from expectation for 94% of the CHOL patients and 
98% of the READ patients (Fig. 2e,f). In conclusion, a generalized model developed by using combined data of 
common cancers demonstrated superior MLR extrapolation capacity and can thus be used to predict CD274 
expression in other cancer types and to identify patients in whom expression is high relative to the observed 
TF activity.

Mutations partially explain high CD274 expression.  For patients in the underpredicted patient 
groups, the observed CD274 expression cannot be explained using only TFs as explanatory variables. This could 
be due to specific characteristics of the patients’ tumors, a primary candidate involving the genetic make-up of 
tumors. Therefore, we investigated whether mutations associated with increased CD274 levels could explain the 
underpredicted CD274 levels in those patients.

On average, 77, 251, and 485 mutational events per patient were observed in BRCA, LUAD, and SKCM respec-
tively. To identify which of these mutations could be relevant for increasing CD274 expression in the underpre-
dicted group, we first tested which of the mutations were statistically associated with increased CD274, aiming 
to subsequently ask whether these mutations occur more frequently in the underpredicted than in the correctly 
predicted patient group. Since CD274 expression in the underpredicted group is on average higher compared 
to the accurately predicted group (Fig. 3a–c), we started by conducting the initial analysis to identify mutations 
associated with increased CD274 expression based on solely the accurately predicted group. We reasoned that 
residual variation in CD274 expression in this already well-predicted group, unexplained by TF activity, might 
be due to mutations, and that these specific mutations might occur more frequently in the underpredicted group. 
Mutations in 22, 9, and 33 genes were associated with significantly increased CD274 expression in BRCA, LUAD, 
and SKCM, respectively (p < 0.01, FC > 1.5) (Supplementary file 2, Sheet 3). Patients in the underpredicted group 
had an average of 0.6, 0.3, and 1.3 mutations in these critical genes in BRCA, LUAD, and SKCM, respectively, 
while the average in the accurately predicted group was 0.3, 0.1 and 0.9 mutations (Fig. 3d–f), i.e., only mod-
erately different.

To investigate whether mutations identified based on the entire patient population could be more important 
determinants of CD274 expression than those based on just the accurately predicted group, we reiterated the 
analysis with the underpredicted patients included. Note that detecting potentially relevant mutations on the 
basis of solely the underpredicted group is precluded by the small patient number within this group. In this case, 
we found 36, 44, and 110 mutations in BRCA, LUAD, and SKCM, respectively (Supplementary file 2, Sheet 4 and 
Supplementary file S1, Fig. S4). In BRCA, mutations in WDR87 (p = 1.46e−5, FC = 1.82) and ABCB4 (p = 2.32e−4, 
FC = 1.98) showed the strongest relationship with elevated PD-L1 expression (Fig. 3g). In LUAD this was the 
case for GALNTL6 (p = 1.45e−4, FC = 1.63) and NUDCD1 (p = 5.41e−4, FC = 1.77) (Fig. 3h), and in SKCM for 
DCTN1 (p = 9.32e−5, FC = 2.04) and CRYBG3 (p = 4.47e−4, FC = 2.21) (Fig. 3i). Patients in the underpredicted 
group had an average of 2.6, 3.6, and 15.1 mutations in these critical genes, while this was only 0.5, 0.6, and 3.1 
in the accurately predicted group (Fig. 3j–l), i.e., a substantial difference in abundance which was highly signifi-
cant (BRCA: p = 2.2e−5, LUAD: p = 2.2e−16, and SKCM: p = 2.2e−9). In conclusion, mutations associated with 
increased PD-L1 levels occur more often in the underpredicted group, and we observed the strongest difference 
in abundance on the basis of selecting mutations for the entire patient group. This indicates that the mutations 
based on the underpredicted group are likely the most important ones with regard to elevated PD-L1 levels, and 
may have large effect.

Low‑abundant miRNAs partially explain high CD274 expression.  In addition to the role for muta-
tions associated with increased CD274 expression, we investigated whether low levels of miRNAs known to 
target CD274, could provide an explanation for high CD274 levels in the underpredicted patients. To identify 
miRNAs associated with negative regulation of PD-L1 expression, we analyzed the expression levels of 1881 
miRNAs. As before, we started this analysis based on only the accurately predicted group. Although the cor-
relations were weak, we classified 24, 87, and 52 miRNAs as negative regulators of CD274 in BRCA, LUAD and 
SKCM, respectively (Supplementary file 2, Sheet 5). Approximately 29%, 15%, and 12% of the critical miRNAs in 
these cancer types also negatively regulated CD274 expression in at least one of the other cancer types. miRNAs 
from the let-7, mir-10, mir-1276, mir-17, mir-196, and mir-203 families were found to be negative regulators of 
CD274 in all three cancer types. As a test to see whether these miRNAs indeed play a role in the observed CD274 
expression, we developed an MLR model including only the average expression of these miRNAs (Fig. 4a–c). 
The miRNAs clearly had predictive value for CD274 expression (BRCA, p = 2.2e−16; LUAD, p = 2.2e−16; SKCM, 
p = 1.6e−12), although the residual variation was much higher prediction was much worse than that based on TF 
activity (R2 values for MLR based on miRNA expression versus based on TF activity: BRCA, 0.09 vs. 0.60; LUAD, 
0.20 vs. 0.51; SKCM, 0.11 vs. 0.57).

To visualize the miRNA expression amongst patients, the patient population was divided into quantiles based 
on the average expression of the critical miRNAs per cancer type (BRCA, low: < 3.68, lower midrange: = 3.68–3.89, 
upper midrange: 3.89–4.14, high: ≥ 4.14; LUAD, low: < 2.23, lower midrange: 2.23–2.40, upper midrange: 
2.40–2.60, high: ≥ 2.60; SKCM, low: < 3.03, lower midrange: 3.03–3.23, upper midrange: 3.23–3.44, high: ≥ 3.44). 
In the underpredicted group, 19%, 56%, and 45% of the patients were classified in the lowest quantile, against 
25%, 22%, and 24% in the accurately predicted group for BRCA, LUAD, and SKCM, respectively. Thus, a subset 
of critical miRNAs may contribute to high CD274 expression in LUAD and SKCM (Fig. 4d–f).
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To investigate whether we could identify additional important miRNAs when basing the analysis on the whole 
patient population, we included the underpredicted patients in the first step and reiterated the analysis. In this 
case, we identified 29, 89, and 81 miRNAs as negative regulators of PD-L1 (Supplementary file 2, Sheet 6). We 
again divided the population into quantiles where we classified 48%, 63%, and 59% of the underpredicted patients 
in the lowest quantile, against 25%, 21%, and 23% of the accurately predicted group, a substantial difference 
(Fig. 4g–i; BRCA: p = 0.01, LUAD: p = 1.28e−6, SKCM: p = 0.0002). In conclusion, the expression of miRNAs asso-
ciated with downregulation of PD-L1 was clearly lower in the underpredicted group, thus providing a potential 
explanation for a part of the patients within the underpredicted group. The finding that miRNAs that are selected 
on the basis of the accurately predicted group already show a clear effect suggests that the residual variability in 
CD274 expression within the accurately predicted group could also partially be due to these miRNAs.

Figure 3.   Mutations partially explain patients with high CD274 expression. (a–c) Violin plot comparing CD274 
expression between accurately predicted and underpredicted patient groups. (d–f) Total mutation count in 
individual patients for earlier established critical genes that are based on only the accurately predicted group. 
(g–i) Examples of mutations leading to elevated CD274 expression based on the total patient population. (j–l) 
Total mutation count in individual patients for critical genes that are based on the total patient population. Both 
dot size and color indicates the log2 of the total number of mutations in critical genes. In all panels the cancer 
type is indicated above the panel.
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Mutations and low‑abundant miRNAs jointly explain high CD274 expression.  Finally, to sum-
marize which underpredicted patients could be explained by mutations and/or miRNAs, we developed an MLR 
model based on TF activity, the number of mutations, and the average miRNA expression. All factors were 
significant (p < 0.01), and improved the prediction of CD274, especially for LUAD (Fig. 5a–c). However, the 
predictive value of mutations and miRNAs within the MLR might not be optimal due to their possibly large 
effect, i.e., potential non-linearities not taken into account by an MLR approach. We therefore took the MLR 
predictions on the basis of TF activity as a basis and colored for individual underpredicted patients whether their 
CD274 expression could be explained by mutations and/or miRNAs (Fig. 5d–f). Mutations in a critical gene or 
low levels of critical miRNAs could be an explanation for the high CD274 levels in the majority of the patients 
in the underpredicted group. Specifically, in only 14% (BRCA), 8% (LUAD), and 0% (SKCM) of the patients in 
the underpredicted group, neither mutations nor miRNA can provide an explanation for the low CD274 expres-
sion, which is 0–1% of the total patient population in all three cancer types (Fig. 5g–i). Finally, we investigated 

Figure 4.   miRNAs partially explain patients with high CD274 expression. (a–c) MLR model based on the 
average expression of miRNAs associated with a negative regulation of CD274. (d–i) Patients were divided into 
quantiles based on the average expression of miRNAs identified as negative regulators of CD274 based on only 
the accurately predicted group (d–f), or based on the total patient population (g–i). Color indicates the quantile 
associated with a patient. In all panels the cancer type is indicated above the panel.



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4374  | https://doi.org/10.1038/s41598-022-08356-0

www.nature.com/scientificreports/

whether the mutations and miRNAs identified from BRCA, LUAD and SKCM could provide an explanation for 
CHOL and READ patients (Fig. S5). Although the number of underpredicted patients with these cancers was 
too low for robust conclusions, indeed some of the mutations occurred within the identified genes. Overall, we 
conclude that CD274 expression can in the far majority of patients be predicted accurately by the activity of a 
small set of TFs. Moreover, the patients in whom the observed CD274 expression is clearly higher than expected 
based on TF activity, critical mutations and low expression levels of critical miRNAs can in most cases explain 
these high CD274 levels.

Discussion
Prior research has indicated that multiple factors, ranging from TF activity within various pathways, muta-
tions in critical genes, and low abundance of specific miRNAs influence PD-L1 expression24, but a quantitative 
picture was lacking. Therefore, we investigated to what extent TFs that are known to directly target the CD274 

Figure 5.   miRNAs, mutations and TF activity together explain CD274 expression in cancer patients. (a–c) 
MLR model based on TF activity, mutations, and miRNAs. Color indicates whether an individual patient 
was underpredicted in the MLR based on only TFs. (d–f) Results of MLR models with the patients colored 
according to how their CD274 expression can be explained. (g–i) Pie charts indicating the percentage of patients 
that can be explained by a specific factor. Significantly contributing TFs per cancer type are indicated within the 
grey regions. In all panels the cancer type is indicated above the panel.
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promotor can predict individual CD274 levels and whether there are dominant TFs. Our findings (summarized 
in Fig. 5g–i) illustrates that tumors have diverse pathways primarily involved in the regulation of PD-L1, and 
are consistent with prior findings40. Moreover, we found IRF1 to be a dominant inducer of CD274 expression 
in all three cancer types we studied, which is consistent with IFN-γ being a dominant cytokine driving PD-L1 
expression in tumors41, because it primarily signals through the canonical type II interferon pathway, activating 
the TF IRF142–44.

Amongst the differences in CD274-regulating TFs between cancer types, especially lung cancer stands out. 
Our finding that HIF1A induces CD274 expression in LUAD, but not in BRCA or SKCM, is in line with observed 
high HIF1A levels in both small cell and non-small cell lung cancers37. Additionally, cigarette smoking is linked to 
about 80–90% of lung cancer deaths, and proinvasive nicotine involves stabilization and activation of HIF1A38,39. 
Overexpression of HIF1A caused by smoking, could therefore potentially explain its dominant role in PD-L1 
expression in LUAD patients, although the indisputable smoker/non-smoker group sizes were too small to 
confirm this (Supplementary file S1, Fig. S3). PD-1/PD-L1 inhibition therapies are more effective in smokers 
compared to non-smokers45, which has been linked to a higher tumor mutation burden (TMB) in smokers46. 
However, smoking-induced overexpression of HIF1A which leads to increased CD274 expression offers an 
alternative or additional explanation on why these therapies are more effective in smokers.

Besides being associated with high HIF1A expression, in lung cancer patients EGFR is a frequently mutated 
gene, causing increased levels of IκBα47. Consistently, PD-L1 expression is stronger in EGFR mutant NSCLC 
cells compared to wild-type EGFR NSCLC cells, and this is associated with increased expression levels of IκBα48. 
IκBα is a major IκB protein, which binds to NFKB dimers and sterically blocks the function of their nuclear 
localization sequence, causing their cytoplasmic retention and decreasing transcriptional activity of NFKB49. 
This could render NFKB a less important TF for PD-L1 expression in LUAD compared to BRCA or SKCM, as 
we found in our analysis. In contrast, BRD4 expression is frequently upregulated in non-small cell lung cancer 
(NSCLC) tissues50, which could lead to its increased importance in the regulation of CD274 in LUAD patients.

It is well established that IFN-γ signals through the JAK/STAT pathway, and targets the TFs IRF1 and STAT1. 
However, in melanoma cell lines IFN-y can also induce expression via the NF-kB pathway rather than via activity 
of STAT factors51. This potentially explains why STAT1 did not emerge from our analysis as a significant regulator 
of CD274 expression in SKCM. Although this discussion on dominance of TFs highlights that our approach cor-
rectly identified differential CD274 regulation between cancer types, our generalized model based on an ensemble 
of patients with different cancer types was also good at predicting CD274 expression. The excellent extrapolation 
of this generalized model to other cancer types for which fewer data are available provides confidence that the 
TFs IRF1, STAT1, NFKB, and BRD4 are in general dominant regulators of CD274 expression.

Importantly, the expression levels of the studied TFs gave a suitable prediction for CD274 expression in the 
far majority of patients, but not for a minority of ~ 2–10% of the patients. Genetic alterations within tumors 
may modulate the expression of immune markers, including PD-L152. The small sample size of underpredicted 
patients precluded discovery of such mutations from this group alone, thus limiting our analysis. Nevertheless, 
based on the entire patient population we were able to identify several mutations that were statistically associated 
with elevated CD274 expression. For instance, LUAD tumors with high PD-L1 expression levels are frequently 
mutated in NUDCD1, which is involved in cell proliferation, migration, and invasion53. It exerts oncogenic func-
tions via regulating the IGF1R-ERK pathway in NSCLC cells54. IGF1R activation mediates the activation of PI3K 
signaling, which regulates PD-L1 expression by either transcriptional or post-transcriptional mechanisms55,56. 
Activating mutations in the NUDCD1 gene could thus lead to an increased activation of this downstream 
pathway, causing an escalating expression of PD-L1. This example demonstrates that our identified mutations 
indeed may affect PD-L1 expression. Identification of these mutations provides groundwork for future studies to 
uncover functional implications of critical mutations in the regulation of PD-L1. Importantly, TCGA mutation 
data are restricted to coding regions, so we might have missed important mutations in non-coding DNA that 
are involved in the upregulation of CD274 expression. Future studies using whole genome sequencing data are 
thus needed to identify relevant mutations in non-coding regions.

Besides mutations in critical genes providing a potential explanation for high CD274 levels independent of 
TF activity, we also identified dozens of miRNAs as negative regulators of CD274 expression providing such 
an explanation. Out of the identified miRNAs, indeed some are known to negatively affect CD274 expression. 
For instance, the miRNA let-7 suppresses CD274 expression post-transcriptionally57. Furthermore, miR-203 
binds the FGF2 protein, which normally promotes expression of PD-L1, leading indirectly to an inhibition of 
PD-L158,59. Interestingly, we found that the miR-200 family, which is frequently mentioned as a direct regulator 
of PD-L160,61, negatively regulated CD274 only in BRCA. Finally, consistent with a role of the PD-L1 3-UTR 
region to which miRNAs bind, structural variations in this region plays an important role in PD-L1 overexpres-
sion in tumor cells62.

In total, we found that mutations in critical genes, or low expression levels of critical miRNAs can provide 
an explanation for high CD274 levels in 80–100% of the patients in whom CD274 expression was not solely 
dependent on the expression levels of TFs. Factors that might mediate the high CD274 expression in the remain-
ing unexplained patients include transcript stabilizers. Recently, it was found that EGFR signaling can rapidly 
stabilize PD-L1 mRNA via reduced activity of such stabilizers30. Thus, high EGFR levels or alternative means of 
increasing EGFR signaling might offer an explanation for the high CD274 levels in our underpredicted group. 
However, given that in the far majority of our studied patient group CD274 expression is already explained, we 
expect only a limited overall role of mRNA stabilizers for CD274 expression.

Knowing the underlying causes for high PD-L1 expression in a patient may in the future assist selection of 
patients suitable for PD-1/PD-L1 blockade. In this light, our underpredicted patient group is particularly interest-
ing: the low TF activity relative to the CD274 expression in such patients could indicate absence of an ongoing 
(or suppressed) immune response which can be re-invigorated by therapy. These patients might therefore not 
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be suitable for PD-1/PD-L1 monotherapy. However, our research was conducted only on mRNA level, which 
is not necessarily representative for the amount of PD-L1 on the membrane63. Thus, it is of high importance to 
extend our analysis in future to understand the dynamic relation between PD-L1 mRNA and protein. Approaches 
examining the dynamics of PD-L1 at both mRNA and protein level and of its regulators within single cells rather 
than using bulk data, will likely provide further insight into cell type specific effects25. Finally, further research is 
needed to identify the effect of treatment on our underpredicted patient group compared to accurately predicted 
patients. Such efforts may in the future contribute to the shaping of clear patient selection criteria for immune 
checkpoint therapy.

Methods
Analysis of The Cancer Genome Atlas (TCGA).  Data were retrieved and analyzed from the TCGA 
repository (http://​cance​rgeno​me.​nih.​gov/) using R (version 4.0.2.). We employed the package TCGAbiolinks 
(version 2.16.4)64 to download and prepare level 3 RNA-seq and miRNA data for BRCA, LUAD, SKCM, CHOL, 
and READ patients. The human TCGA data that we reanalyzed were previously published as part of various 
studies, and in all cases this was done in accordance with relevant guidelines and regulations, including the 
obtainment of informed consent from all study participants and/or their legal guardians65–71.

The mRNA data represents expression levels in fragments per kilobase million (FPKM) normalized by gene 
length and total read count, and the miRNA data represents expression levels in reads per million (RPM), nor-
malized by total read count. Each measurement in the resulting dataset was log2 transformed after adding the 
value 1 (to retain expression levels of zero). We used the package miRBaseConverter (version 1.12.0) to retrieve 
family information from the miRNA data. Mutational data was downloaded from cBioPortal and prepared by 
the package maftools (version 2.4.12)72, based on the mutect2 somatic variant caller. We only included patients in 
our study for which both mutation spectrum and RNA-seq data were available, which led to a total of 970, 521, 
445, 36, and 165 individual cases for BRCA, LUAD, SKCM, CHOL, and READ respectively. To characterize the 
patients used for our analysis, we also downloaded clinical data such as age, gender, therapy and outcome from 
the TCGA data portal using TCGAbiolinks64. For LUAD, CHOL, and READ approximately 90% of the patients 
were 50 years or older, with a median age of 66 years in all three groups. For BRCA and SKCM approximately 
70% of the enrolled subjects were 50 years or older, with a median age of 58 in both groups. Most LUAD and 
CHOL patients were diagnosed in clinical stage I and most BRCA patients in clinical stage II, while this was 
more variable for SKCM, and READ patients. The average follow-up time was 39, 28, 59, 28, and 24 months in 
BRCA, LUAD, SKCM, CHOL, and READ, respectively, and 136, 188, 215, 18, and 27 patients died during this 
period (Supplementary file 1, Tables S2 and S3). Tumor samples were taken both before and during therapy and 
we do not distinguish between these options in our analysis. Moreover, we did not take into account the potential 
influence of factors such as age and sex on CD274 expression, because if such differences exist it seems likely 
that the influence would act through the investigated factors that we do already take into account (TF activity, 
mutations, miRNA expression). To test the difference in HIF1A expression and HIF1A TF activity between smok-
ers and non-smokers in LUAD patients we compared the patients classified as current smokers, and life-time 
non-smokers using a two-sided t-test. Note that we did not consider patients falling in other categories because 
it was ambiguous what HIF1A levels should be expected for these subpopulations.

Discriminant regulation expression analysis (DoRothEA) of target genes.  The package DoRo-
thEA (version 1.0.1)73 was used to find target genes of the TFs Myc, HIF1A/2A, c-Jun, IRF1, STAT1, STAT, and 
NFKB. Each TF regulates a set of genes, which is known as a regulon. DoRothEA has obtained these regulons 
from different types of evidence and they are accompanied by an empirical confidence level, ranging from A 
(most confident) to E (least confident)74. For our analysis, only target genes with the highest confidence were 
selected. Additionally, only the target genes which were unique amongst the considered TFs were used for fur-
ther analysis (Supplementary file 2, Sheet 1). Note that target genes for BRD4 were not available in DoRothEA, 
hence we adopted genes put forward in a recent review34 (Supplementary file 2, Sheet 2).

T‑distributed stochastic neighbor embedding (t‑SNE).  To investigate patterns in the activity of TFs 
which are known to target the PD-L1 promotor, we used t-SNE, which constructs a low dimensional embedding 
of high-dimensional data75. The t-SNE plots were computed using the R package Rtsne using the expression 
levels of the independent target genes as a proxy for activity of TFs targeting the PD-L1 promotor, but exclud-
ing PD-L1 itself, as input data76. The perplexity was set to 30, and 3000 iterations were performed. We applied 
k-means clustering to the estimated TF activity to divide the patient population into four clusters, for which 
CD274 expression was subsequently visualized.

Multiple linear regression analysis.  To quantitatively describe the relationship between CD274 expres-
sion and the activity of its TFs, we employed multiple linear regression (MLR) models. The mean expression of 
the genes targeted by the TFs that potentially regulate PD-L1 expression were used as explanatory variables. The 
mean was calculated based on the normalized log2 transformed data (after addition of 1). The used MLR models 
have the general form:

Here, γi corresponds to the dependent variable CD274. Each xi corresponds to the value of an explanatory 
variable (e.g., the average expression of IRF1 target genes), while βi (with i ∈ {1, 2, . . . , n} ) represents the cor-
responding regression coefficient, which is estimated by fitting the equation to the data using a least-squares 

(1)γi = β0 + β1xi1 + β2xi2 + · · · + βnxin + ε

http://cancergenome.nih.gov/
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approach. The intercept in the equation is described by β0 , and ε is the model’s error term (residuals). We sub-
sequently translated the regression coefficients to contributions (C) CD274 expression per TF (relative to that 
of other TFs) using the following formula:

This equation was applied per individual patient within a group, and from the distribution of relative contribu-
tions for all patients we determined the mean and standard deviation. Since the TFs that we included in our MLR, 
except for BRD4, are thought to increase PD-L1 expression, we used a bounded variable least squares (BVLS) 
solver to select TFs with a positive effect on CD274 expression. Thus, we set the lower bounds for all coefficients 
to zero, except for BRD4 and the intercept, and included only TFs with non-zero values, and a significance of 
p < 0.001 in our final model.

Patients in whom PD-L1 was predicted with a more than two-fold difference from the observed value were 
classified as part of the ‘underpredicted group’, i.e., for patients in this group the MLR model cannot predict 
CD274 expression using only TF activity. Similarly, patients in whom CD274 expression was predicted with a 
more than two-fold difference from the observed value form an ‘overpredicted group’. However, this group did 
not occur in BRCA, and was very small in LUAD and SKCM. Therefore, for the subsequent miRNA and muta-
tion analysis we solely focus on the CD274 levels in the underpredicted group. Note that changing the threshold 
for the underpredicted group to a 1.5-fold (instead of two-fold) difference between predicted and observed 
values led to slightly altered lists of critical mutations and miRNAs, yet this did not change the conclusions with 
respect to presence of these mutations and miRNAs in the underpredicted group relative to their presence in 
the well-predicted group (not shown).

Collinearity diagnostic test.  Multicollinearity refers to the situation where two or more independent 
variables in a regression model are correlated, which may cause unreliability of the model parameter estimates 
and should therefore be avoided77. Multicollinearity in our final regression model was diagnosed using the Vari-
ance Inflation Factors (VIF) diagnostic test. In particular, the VIF for the predictor is:

where Ri represents the R2-value obtained by regressing the ith independent variable on the remaining predic-
tors. When VIF is equal to 1, the ith independent variable is not correlated to the other predictors, which implies 
that there is no multicollinearity in the regression model. Generally, a VIF above 4 indicates that coefficient 
estimation is problematic, whereas for a VIF higher than 10 there is substantial multicollinearity which needs 
to be corrected78,79.

Model development for extrapolation.  To create a general linear regression model which can be used 
for extrapolation to other cancer types, the BRCA, LUAD, and SKCM datasets were combined, and subsequently 
divided into a training set (80%) and a test set (20%) by randomly selecting patients independent of the cancer 
type of origin. The estimated coefficients associated with all TFs having a non-zero regression coefficient and a 
significant effect (p < 0.001) on CD274 expression were included in the final model as based on the training set. 
We subsequently used these coefficients both for evaluation on the test set and for extrapolation to other cancer 
types (CHOL and READ).

Statistical tests.  To explain the high CD274 expression in the patient group with underpredicted CD274 
expression, we identified mutations associated with elevated CD274 levels based on the TCGA data. These muta-
tions were selected by comparing CD274 expression per mutational status (wild-type or mutated) of each gene. 
We first performed this analysis for the patients with accurately predicted CD274 expression (based on TF 
activity), and subsequently reiterated this for the total patient population. We did not distinguish mutations 
based on their exact location or type, and cases where multiple mutations occurred in the same gene within a 
single patient were considered as one mutational event. We only considered mutations with a prevalence of over 
1% and leading to a CD274 fold change (FC) of > 1.5 and p < 0.01 (based on a two-sided nonparametric Mann–
Whitney U test). Subsequently, we studied whether the prevalence of these selected mutations was different 
between the underpredicted group and the accurately predicted group using a Mann–Whitney U test.

To consider the potential role of post-transcriptional regulation of CD274 by miRNAs, we identified miRNAs 
associated with CD274 downregulation in a similar manner as for the approach based on mutations described 
above. The correlation between individual miRNAs and PD-L1 expression was evaluated using a two-sided 
Pearson product-moment correlation test. As for the mutations, this analysis was first performed for the accu-
rately predicted subgroup only (based on TF activity), and subsequently reiterated for all patients. All miRNAs 
with negative coefficients and a statistical significance of p < 0.01 were accepted as down-regulators of CD274. 
Subsequently we conducted a Mann–Whitney U test to compare the expression of miRNAs between the under-
predicted group and the accurately predicted group.

Data availability
The datasets analyzed during the current study are available in The Cancer Genome Atlas repository, http://​
cance​rgeno​me.​nih.​gov/.
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