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An unmanned aerial vehicle (UAV) is a small, fast aircraft with many useful features. It is widely used in military
reconnaissance, aerial photography, searches, and other fields; it also has very good practical-application and
development prospects. Since the UAV's flight orientation is easily changeable, its orientation and flight path are
difficult to control, leading to its high damage rate. Therefore, UAV flight-control technology has become the focus
of attention. This study focuses on simulating a UAV's flight and orientation control, and detecting collisions
between a UAV and objects in a complex virtual environment. The proportional-integral-derivative control
algorithm is used to control the orientation and position of the UAV in a virtual environment. A version of the
bounding-box method that combines a grid with a k-dimensional tree is adopted in this paper, to improve the
system performance and accelerate the collision-detection process. This provides a practical method for future
studies on UAV flight position and orientation control, collision detection, etc.
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Background
An unmanned aerial vehicle (UAV), commonly
known as a drone, is an aircraft without a human
pilot aboard. It can climb, fall, hover, yaw, etc. UAVs
are relatively small and convenient to use. UAVs have
broad application prospects in military and civilian
areas, including intelligence access, target tracking,
monitoring, etc. The UAV is an underactuated sys-
tem [1] that has six degrees-of-freedom (position and
orientation) and multiple control inputs (e.g., rotor
speed). It also has multivariable, non-linear, and
strong coupling characteristics, all of which make its
flight-control design very difficult. In UAV simulation
systems, the interaction between a UAV and its
possibly-complex surrounding environment must be
considered; hence, accurate collision detection is an-
other focus. Accurate collision detection can improve
the authenticity and reliability of the UAV simulation
system, giving the user a better sense of immersion.
In recent years, with the continuous development and
improvement of UAV control theory, applying better
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control algorithms to flight-control systems has become
one of the key problems studied by flight-control
researchers. Many different control methods have been
presented, e.g., backstepping control [2] and
chattering-free sliding-mode altitude control [3], which
were applied to UAV flight control and achieved good
results. Because the backstepping control method had a
certain degree of dependence on the model, Farrell et al.
[4] first used neural networks to eliminate dynamic
modeling errors. Then, they used a backstepping control
method to design a four-rotor controller, and achieved
better simulation results. In addition, special tools, e.g.,
MATLAB/Simulink [5], have also contributed much to
this field.

Scholars in the collision-detection field have con-
ducted extensive research and presented efficient de-
tection methods in recent years. These methods can
be divided into two phases: spatial-decomposition
methods and hierarchical bounding-box methods,
they are used as much as possible to reduce the
number of collision tests. Spatial decomposition pro-
vides broad-phase processing by dividing space into
regions, and testing whether objects overlap the
same region. It mainly includes three types of spatial
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Fig. 1 Proportional-integral-derivative control schematic diagram

partitioning: grids, trees [6], and spatial sorting. The
problem with spatial partitioning is determining
when to stop dividing the space cells and setting the
cell sizes. Turk et al. [7] first proposed using spatial
hash tables with uniform partitions to improve the
query speed. However, this method is more suitable
for cases where the objects’ positions are dispersed.
In the worst case, i.e., the objects’ positions are con-
centrated, it has an O(n?) time complexity. The basic
idea of the hierarchical bounding-box method is to
use simple geometry to progressively break up the
surrounding model. Intersection tests are then used
to quickly eliminate disjoint areas, thereby reducing
the overall number of tests. Many bounding-box
algorithms have been presented: Sphere [8], axis-
aligned bounding boxes [9], and oriented bounding
boxes [10].

But these methods mentioned above do not have
special optimizations for certain scenarios. In this
paper, we proposed a hybrid method combining
spatial decomposition method with hierarchical
method to detect collision. As a result, we can catch
small details with high speed.

Methods

UAV orientation and position control

Orientation control is the premise for realizing many
complex UAV functions; i.e,, it is the core of UAV control.

Fig. 2 Meshing in a virtual simulation system

This study adopts the proportional-integral-derivative
(PID) control method to control the UAV because of
the feasibility and superiority of its attitude control
algorithm. Fig. 1 shows a block diagram of the PID
control method. The expected angle is the angle of
the remote control that controls the UAV. The
current angle is measured by the UAV simulation sys-
tem, where the angle refers to the Euler angle (pitch,
yaw, and rotation angles). In the PID control-
calculation process, these three angles are independ-
ent of each other. It’'s calculation process can be
simplified as follows:

(1) Calculate the axial deviation (deviation = target
desired angle - measured angle);

(2) Calculate the proportional term (ratio coefficient P
* deviation), integral term (integral coefficient I *
angular rate), and differential term (differential
coefficient D * angular rate);

(3) Sum the resulting outputs (total direction control =
proportional item output + micrometer output +
integral item output).

The position control guides the UAV along the spe-
cified trajectory or in accordance with the designated
location hover. The position control in this study is
divided into vertical and horizontal position controls.
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The vertical control calculates the difference between
the desired height and the actual height as the de-
sired climb rate, and then uses the PID control
algorithm to obtain the UAV’s height. The
horizontal-position PID control uses the difference
between the expected position and the actual location
as the required distance to calculate the desired
speed, and then uses the PID control algorithm to
obtain the UAV’s position.

Spatial partition using a grid and a k-dimensional tree

The UAV’s collisions with objects (e.g., trees, ground,
and towers) should be considered when it is flying in
a simulated natural environment. We divided the col-
liders into two categories, static and dynamic. Gener-
ally speaking, dynamic colliders are much rarer than
static ones, so they can be filtered individually ac-
cording to their distance from the UAV. Thus, this
paper mainly discusses collisions between UAVs and
static colliders. In general, complex environments
have a large number of colliders. If we check for col-
lisions with all of the colliders, the algorithm will
have a high time cost, and its real-time performance
cannot be guaranteed. For a UAV flying in a virtual
simulation environment with a large number of trees,

grass, etc., it is important to organize the objects that
may collide with the UAV. Because we know before-
hand the positions of all possible colliders, we can
use uniform-grid technology to divide the simulated
natural environment into a number of equal-sized re-
gions or grid cells (Fig. 2). The whole process can be
summarized as the following steps:

(1) For the area where the UAV is located, select the
area size (all areas cover all virtual objects);

(2) The area obtained in the first step is divided into
grid cells of appropriate size by the equalization
grid technique;

(3) The objects in each grid cell are organized into a k-
d tree, and each grid cell holds the root node
pointer of the k-dimensional tree (k-d tree) it owns.

At last, we can get the objects in every grid cell are
organized by k-d tree structure (Fig. 3). Combining
grid technology and k-d tree technology, we trans-
form the problem of detecting a collision between the
UAV and a surrounding object (e.g., tree or tower)
into finding a possible collision object located on the
k-d tree pointed to in the grid at the UAV’s current
location. We then find the possible collision object

Fig. 5 Hierarchical box tree with different levels (number of layers on the left is 3, on the right is 5)
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that is nearest the UAV. This is similar to the k-d
tree’s nearest neighbor search problem. Many efficient
algorithms have been presented for finding the node
closest to the UAV’s location in a given k-d tree
structure. Precise collision detection is very time-
consuming. Through a combination of grid technol-
ogy and a k-d tree, we only need to accurately detect
a collision between the UAV and a predetermined col-
lision object. This greatly reduces the time required
for collision detection.

Collision detection

First, we should address the problem of creating a
hierarchical bounding box. There are three primary
construction-method categories: top-down, bottom-up,
and insertion. Among them, top-down methods parti-
tion the input into two or more subsets, bound them
in the chosen bounding volume, and then recurse
over the bounded subsets. Top-down methods are by
far the most popular, owing to their ease of imple-
mentation. Insertion methods build the hierarchical
bounding box incrementally by inserting objects one
at a time into the tree. Bottom-up (or agglomerative)
methods start with the leaves of the tree as the input
set, and then group two or more of them to form a
new (internal) node. Bottom-up methods take longer
to construct than top-down methods, but usually pro-
duce better trees [11].

In this study, we chose an improved bottom-up
method to create the hierarchical bounding box. Con-
ventional bottom-up methods for finding which two
nodes to merge involve examining all possible pairs,
computing their bounding volume, and selecting the pair
with the smallest bounding volume. This requires O(n?)
time. Moreover, it must be repeated n-1 times to form
a full tree; thus, the total construction time becomes
O(n®). We can sort the leaf nodes according to the
bounding box’s volume, and then use a priority-queue
structure to store them. It is similar to creating a
Huffman tree structure, and the total construction
time is reduced to O(n? log n). The process of creat-
ing the hierarchical bounding box is depicted in Fig. 4.
By adopting this method, we can define the maximum
depth of the collision tree, which is equivalent to the
number of layers in the bounding box. Fig. 5 shows
the bounding-box levels for a tree model; green indi-
cates a coarse bounding box, and red indicates a fine
bounding box. After constructing the hierarchical
bounding boxes for the UAV and the possible collider,
we can execute the collision-detection algorithm. The
hierarchical bounding-box collision-detection algo-
rithm is described as follows, where a&&b indicates a
precise collision detected between hierarchical bound-
ing boxes a and b.

(2019) 2:5
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Algorithm 1 Collision detection
INPUT: Hierarchical bounding boxes a and b

OUTPUT: Collision detection result. If a collision exists, return true; else, return false.

(1) function DetectCollision(a, b)

2) if a&&b == false then /I no precise collision is detected

3) return false

4  endif

%) if a.level < b.level then // a has fewer levels

(6) for all child of a do // detect collision for each child
7 if DetectCollision(child, b) then return true;

8) end if

) end for

(10) return false;

(11) else if b.level < MAX_LEVEL and b.level <=a.level then // b has fewer levels

(12) for all child of b do // detect collision for each child

(13) if DetectCollision(child, a) then return true;
(14) end if

(15) end for

(16) return false;

(17) else

(18) return a&&b;

(19) end if

(20) end function

Results
The PID parameter values selected in this paper are
shown in Table 1. We used MATLAB software to
simulate the PID control algorithm used in this paper,
to verify its feasibility. The simulation results show
the UAV’s roll angle (Fig. 6a), pitch angle (Fig. 6b),
and yaw angle (Fig. 6¢), which are initially located at
—-1rad; it eventually reaches a hover effect in the
simulation curve. The hover simulation results indi-
cate that the pitch and yaw angles reached Orad in a
short period of time, and the roll angle reached 0rad
after 4 seconds. The yaw angle had an obvious fluctu-
ation, and the other two angles had very small fluctu-
ation ranges. Similarly, we can see in Fig. 6d that the
UAV’s height reached about 20m in 5 seconds and
keep stable, starting from an initial value of about 10
m. The simulation results show that the PID control
algorithm adopted in this paper performed well.

We tested our algorithm on a personal computer with
a 3.20 GHz Core™ i5-4570 CPU, an NVIDIA GeForce
GTX 1060 graphics card, and 8 GB of memory. Fig. 7a

Table 1 Proportional-integral-derivative parameter

Gesture of unmanned Proportional P Integral | Differential D
aerial vehicle

Pitch angle 2.7 0.03 0.75

Roll angle 28 0.04 0.80

Yaw angle 44 0.06 1.50

Height 3.0 0.08 1.25
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shows the results of a traditional hierarchical
bounding-box technique without partitioning technol-
ogy, used to detect collisions between a UAV and objects
in a complex virtual environment. Fig. 7b shows the re-
sults of our method. Our algorithm only calculates the
hierarchical bounding boxes of the UAV and its nearest
possible collider.

The UAV model adopted in this paper contains
about 15000 triangles. We chose a complex simu-
lated environment containing 100, 500, 1000, 1800,
and 3000 models of trees, houses, etc., in turn. Fig. 8

shows the frame-rate results of a simulation system
adopting our algorithm and one using an
un-optimized algorithm. As seen in the Fig. 9, the
traditional collision-detection algorithm must main-
tain the hierarchical bounding-box construction for
all possible colliders located near the UAV in every
frame of the simulation. This wastes time and re-
duces the system performance. Our algorithm only
needs to maintain the hierarchical bounding-box
construction of the UAV and its nearest possible col-
lider. From Fig. 7a, we can observe that, as the

Fig. 7 The structures of possible colliders. a Results adopted by traditional collision detection; b Results adopted by our algorithm
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Fig. 8 The frame rate of our algorithm compared with un-optimized algorithm
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number of possible colliders in the virtual environ-
ment increases, our algorithm becomes increasingly
superior to the un-optimized algorithm, in terms of
the frame rate of the UAV simulation system. Fig. 9
shows the time needed to detect a collision between
the UAV and different colliders. The results show
that, by optimizing the construction of the hierarch-
ical bounding-box tree, and choosing appropriate
collision-tree layers, our algorithm is more efficient
than the un-optimized algorithm. Our algorithm will
be even more efficient when the possible collider has
more patches.

Discussion and conclusions

We used MATLAB simulation experiments to verify the
PID  algorithm for the UAV’s attitude and
position-control effectiveness. Using the PID control al-
gorithm and collision-detection algorithm described in
this paper, we created a simulation system that can con-
trol the position and orientation of a UAV. For example,
it can make the UAV fly along an established trajectory,
or along a path consisting of two rings, as shown in
Fig. 10. In this paper, we proposed a method to improve
the accuracy of the bounding-box method by combining
grid technology with a k-d tree. This was applied to our
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Fig. 9 The time of collision detection of our algorithm compared with un-optimized algorithm
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Fig. 10 Unmanned aerial vehicle flying around the rings
A J

UAV simulation system to increase the system perform-
ance and reduce the time required for collision detec-
tion. We can effectively detect collisions that occur
between the UAV and objects, e.g., trees, towers, and the
ground, in the virtual environment (Fig. 11).

Although we used the classical PID control algorithm
in our flight-control system, PID is not robust in terms
of parameter uncertainties, and it is difficult to tune its
parameters for unstable systems. Recent studies have
shown that we can build a stable and precise
flight-control system by combining it with a linear quad-
ratic regulator [12]. As future work, we plan to further
improve the control-system software functions and
increase the flight-control system autonomy, e.g., auto-
matic obstacle avoidance, automatic following, and inde-
pendent completion of scheduled complex functions.

Fig. 11 Unmanned aerial vehicle collides with the tower
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