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ABSTRACT
Clostridium difficile ribotype (RT) 017 is an important toxigenic C. difficile RT which, due to a deletion in the repetitive region
of the tcdA gene, only produces functional toxin B. Strains belonging to this RT were initially dismissed as nonpathogenic
and circulated largely undetected for almost two decades until they rose to prominence following a series of outbreaks in
the early 2000s. Despite lacking a functional toxin A, C. difficile RT 017 strains have been shown subsequently to be
capable of causing disease as severe as that caused by strains producing both toxins A and B. While C. difficile RT 017
strains can be found in almost every continent today, epidemiological studies suggest that the RT is endemic in Asia
and that the global spread of this MLST clade 4 lineage member is a relatively recent event. C. difficile RT 017
transmission appears to be mostly from human to human with only a handful of reports of isolations from animals. An
important feature of C. difficile RT 017 strains is their resistance to several antimicrobials and this has been
documented as a possible factor driving multiple outbreaks in different parts of the world. This review summarizes
what is currently known regarding the emergence and evolution of strains belonging to C. difficile RT 017 as well as
features that have allowed it to become an RT of global importance.
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Introduction

Clostridium difficile is an important cause of antimicro-
bial-associated diarrhoea (AAD) in both humans and
animals [1]. In humans, the disease can progress
from watery diarrhoea to life-threatening pseudomem-
branous colitis (PMC) and toxic megacolon [2].
C. difficile infection (CDI) is a toxin-mediated disease
and major virulence factors include toxin A (TcdA,
308 kDa) and toxin B (TcdB, 270 kDa) [3]. An
additional binary toxin (C. difficile transferase, CDT)
is produced by some strains only. CDT-producing
strains of C. difficile account for an increasing pro-
portion of human infections in some parts of the
world (currently ca. 20% of CDI cases in non-outbreak
situations) but are common in animals [4,5]. C. difficile
can be classified into different PCR ribotypes (RTs)
using banding patterns of the amplified intergenic
spacer region between the 16S and 23S rRNA genes
[6]. Currently, over 600 RTs exist in the United King-
dom-based C. difficile Ribotyping Network (CDRN)
database [7].

C. difficile RT 017 ranks among the most successful
RTs of C. difficile. A toxigenic strain that produces only
TcdB [8], RT 017 causes disease as severe as other toxi-
genic strains [9–12]. Although C. difficile RT 017
appears to have originated in Asia, it has spread glob-
ally and been responsible for multiple outbreaks
around the world [13–23]. Few studies have been con-
ducted to identify factors that may have contributed to
the success of RT 017 [16,18]. This review summarizes
what is known about C. difficile RT 017 regarding its
history, characteristics, evolution, emergence and glo-
bal dissemination.

Brief history of C. difficile infection and the
emergence of C. difficile RT 017

C. difficile (then named Bacillus difficilis) was first
described in 1935 as part of neonatal gut flora. It pro-
duced a potent cytotoxin that caused tissue oedema,
convolution and death when injected subcutaneously
into guinea pigs and rabbits [24]. However, there

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

CONTACT Thomas V. Riley thomas.riley@uwa.edu.au PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands 6009, Western
Australia, Australia

Supplemental data for this article can be accessed at https://doi.org/10.1080/22221751.2019.1621670

Emerging Microbes & Infections
2019, VOL. 8
https://doi.org/10.1080/22221751.2019.1621670

http://crossmark.crossref.org/dialog/?doi=10.1080/22221751.2019.1621670&domain=pdf&date_stamp=2019-05-27
http://orcid.org/0000-0002-2538-9775
http://orcid.org/0000-0002-9480-4733
http://orcid.org/0000-0001-6754-9290
http://orcid.org/0000-0001-9789-4239
http://orcid.org/0000-0002-1351-3740
http://creativecommons.org/licenses/by/4.0/
mailto:thomas.riley@uwa.edu.au
https://doi.org/10.1080/22221751.2019.1621670
http://www.iom3.org/
http://www.tandfonline.com


were no reports of human gastrointestinal infections
associated with C. difficile until 1978 when, after a
period of intense trans-Atlantic competition between
researchers, C. difficile was identified in faecal speci-
mens from patients with PMC [25].

Not all strains of C. difficile produce toxins and
cause disease. Initially, it was thought that all toxigenic
strains of C. difficile produced both major toxins [26].
For two decades after the association between
C. difficile and PMC was shown, it was believed that
TcdA was required to cause initial damage to the intes-
tinal mucosa before TcdB could exert its potent cyto-
toxic effect [27], and the significance of TcdA-
negative, TcdB-positive (A-B+) stains was not apparent
[17]. To further support this belief, the first few strains
of C. difficile isolated with an A-B+ phenotype were
associated only with asymptomatic carriage [28].
During this same period, there was a move away
from using the faecal TcdB cytotoxicity assay and/or
culture of C. difficile for diagnostic purposes due to
the time and expense involved in maintaining and
using cell lines, and the long turnaround time of cul-
ture. Concomitantly, there was an emphasis on devel-
oping rapid immunoassays for the detection of TcdA
[29]. TcdA was chosen because of the continued mista-
ken belief that C. difficile produced either both TcdA
and TcdB, or no toxins, because it was easier to manu-
facture antibodies against TcdA, and because detection
of TcdA had greater sensitivity compared to detection
of TcdB [30]. These tools made the detection of
C. difficile easier, but with far less overall sensitivity,
and further obscured the significance of A-B+
C. difficile strains.

The importance of A-B+ strains of C. difficile was
finally appreciated at the end of the twentieth century
when 16 patients in a Canadian tertiary-care hospital
developed PMC with an A-B+ strain. Stool samples
from these patients tested negative for C. difficile
TcdA but were later shown via a cytotoxin assay to
contain C. difficile that produced a functional TcdB
only [17]. Similar findings were published from other
countries [13,16] and further studies confirmed these
strains as A-B+ C. difficile RT 017 [8]. At the same

time, a study reported that not only could TcdB exert
its cytotoxic effect in the absence of TcdA, but also
that human intestinal mucosa was around 10 times
more sensitive to TcdB than TcdA [31]. This was the
first time that the clinical significance of A-B+
C. difficile became evident [32]. Over the last 20
years, C. difficile RT 017 has been isolated from many
parts of the world, however, it is likely that C. difficile
RT 017 originated from a single geographical region
and its global dispersal has been a relatively recent
event [33].

Characteristics of C. difficile RT 017

Epidemiological typing of C. difficile RT 017

Currently, PCR ribotyping is a method of typing
C. difficile that is widely used in many parts of the
world due to its relative simplicity and high discrimina-
tory power [34]. However, ribotyping requires com-
parison of banding patterns with those of standard
strains present in a library of patterns that was estab-
lished in 1999 [6]. Thus, reports of C. difficile before
or around that time classified C. difficile by various
other methods [17,35]. Table 1 summarizes these
different methods used when referring to C. difficile
RT 017. Early ribotyping studies in Japan used their
own nomenclature and assigned “fr” to RT 017 [36].

Before genotype-based methods, C. difficile was
classified using phenotypic methods that, in general,
had poor reproducibility, low typeability, and lacked
sufficient discriminatory power to be applied to epide-
miological studies [42]. However, serogrouping was
widely used early and showed a good correlation with
toxigenicity [43]. Serogrouping classified C. difficile
RT 017 as either serogroup F or X [37].

Many genotypic methods, including ribotyping, use
unique banding patterns of different PCR products to
classify C. difficile strains. Toxinotyping detects differ-
ences in the Pathogenicity Locus (PaLoc) and classifies
C. difficile RT 017 as toxinotype VIII [38]. Pulsed-field
gel electrophoresis is more commonly used in North
America and classifies C. difficile RT 017 as North
American pulsed-field gel electrophoresis type 9
(NAP 9) [39]. Restriction endonuclease analysis
(REA) typing has greater discriminatory power than
ribotyping and divides C. difficile RT 017 into several
REA types which are grouped as REA groups CF and
CG [37].

Multi-locus sequence typing (MLST) is another gen-
otype-based method involving 7 housekeeping genes.
However, it is not based on banding patterns but rather
the unique sequences of these genes and thus has been
used mainly in evolutionary studies. This method clas-
sifies C. difficile RT 017 as sequence type (ST) 37
belonging to evolutionary clade 4 [40]. MLST has
good discriminatory power, however, it is relatively

Table 1. C. difficile RT 017 categorized by other classification
methods.
Classification Method Type(s) Reference

Serogrouping F, X [37]
Toxinotyping VIII [38]
NAP typing NAP 9 [39]
REA grouping CF1, CF2, CF3, CF4, CF5,CF6,

CG1, CG3
[37]

MLST ST 37, ST 45* [40]
Ribotyping (internal
nomenclature)

RT fr [36]

Note: NAP; North American pulsed-field gel electrophoresis, REA; restriction
endonuclease analysis, MLST; multilocus sequence typing, ST; sequence
type, * a study in Thailand [41] performed MLST using a different data-
base and classified RT 017 as ST 45.
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more complicated to perform [34]. The advent of next-
generation sequencing makes in silicoMLST now more
accessible [44].

A recent study in China reported that RT 017 can
also be identified using matrix-assisted laser desorption
ionization time-of-flight mass spectrometry (MALDI-
TOF MS) with high sensitivity and specificity [45].
However, this study did not include other C. difficile
strains from clade 4 and another Chinese study
suggested that different clade 4 strains may not be dis-
tinguishable by this method [46].

C. difficile RT 017 toxin

C. difficile RT 017 is classified as A-B+ C. difficile as it
produces only a functional TcdB [8]. Its TcdB also
gives a different cytopathic effect (CPE) in cell cyto-
toxin assays using various cell lines compared to
other strains that is often referred to as a variant CPE
[16,47]. Studies on the tcdA gene of C. difficile RT
017 revealed a 1.8 kb deletion in the repeating region
(3′ end) (Figure 1) and a point mutation in the
5′ end which results in a premature stop codon
[49,50]. The 1.8 kb deletion corresponds to a deletion
of the carboxy repetitive oligopeptide (CROP) region
of TcdA, which is the recognition site of many TcdA
enzyme immunoassays (EIAs), making the toxin
undetectable by these EIAs [47]. The nonsense
mutation at 5′ end corresponds with a loss of catalytic
action of the TcdA, thus making the toxin non-func-
tional [47,49].

Notably, despite lacking a functional TcdA, most of
the tcdA gene in C. difficile RT 017 remains intact and
can be detected by PCR if primers specific to the non-
repeating region of the tcdA gene are used. In such
cases, C. difficile RT 017 could be incorrectly detected
as both tcdA- and tcdB-positive C. difficile [51].

While these primers are efficient for detection of toxi-
genic strains in clinical practice, the results may appear
confusing in an epidemiological study. An additional
primer set is needed to identify the deletion in the
repeating region of tcdA gene and differentiate
C. difficile RT 017 from true A+B+ C. difficile strains
[28,52].

Interestingly, the TcdB of RT 017 (TcdB-F) is differ-
ent from the TcdB commonly found in most C. difficile
strains. TcdB-F behaves as a “functional hybrid,” com-
bining characteristics of both TcdB and the Clostridium
sordellii lethal toxin, TclS. While TcdB-F binds to the
same cellular receptors as TcdB, the two proteins dis-
play differences in their target specificity, with TcdB
primarily glucosylating Rho, Rac and Cdc42 targets,
and TcdB-F glucosylating Rac and Ras targets
(Figure 2) [48]. The difference in cellular targets is
thought to be responsible for the different CPE
observed for the two toxins [50].

Infection due to C. difficile RT 017

Despite producing toxin B only, several studies suggest
that C. difficile RT 017 causes clinical disease that is
indistinguishable from that caused by other
C. difficile RTs [9,12]. In addition, C. difficile RT 017
causes disease as severe as that caused by “hyperviru-
lent” C. difficile RT 027 [10]. In an outbreak setting,
mortality due to C. difficile RT 017 can be as high as
37.5% [47], but this high mortality rate may have
been due to the exclusion of mild cases. There have
been no clinical studies of C. difficile RT 017 infection
in South East Asia, where there is a high prevalence of
RT 017 [41,53,54]. Given that CDI in this region was,
in general, associated with low mortality and recur-
rence [55], it will be interesting to see whether the
less severe CDI in this region is specifically associated
with C. difficile RT 017 or if there are other unknown
protective factors in the population or region, such as
a high prevalence of carriage of non-toxigenic strains,
which may occupy the same niche and competitively
exclude toxigenic strains from the gut [53,56,57].

Evolution and transmission of C. difficile RT
017

Based on MLST and Bayesian evolutionary model
analysis (Figure 3), C. difficile has evolved into at
least five clades and three cryptic clades. This clade
divergence occurred more than a million years ago
[34]. C. difficile RT 017 (ST 37; red arrowhead in
Figure 3) is a member of C. difficile clade 4 along
with many non-toxigenic, and some similar toxigenic,
strains [46,58–61]. Despite limited data, it is clear
that both A-B+CDT- and non-toxigenic strains of
C. difficile (orange and green, respectively, in Figure 3)
are equally distributed throughout clade 4, indicating

Figure 1. Comparative analysis of the PaLoc from C. difficile RT
017 and A + B + C. difficile strains. Arrows indicate open read-
ing frames (ORFs) and the direction of transcription. The differ-
ent enzymatic domain of the tcdB gene is responsible for the
different CPE [48]. The nonsense mutation near the 5′ terminal
of the tcdA gene is responsible for the loss of function of TcdA
[49]. The 1.8 kb deletion near the 3′ terminal of the tcdA gene
makes TcdA undetectable by many toxin EIAs [47].
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that the clade 4 ancestor could either be a toxigenic (A-
B+CDT-) or non-toxigenic strain. A recent study
analyzed time-scaled core-genome phylogenies and
suggested that the clade 4 ancestor was a non-
toxigenic strain of C. difficile, and that acquisition of
the PaLoc in C. difficile RT 017 occurred around 500
years ago [59].

To date, the genomes of twoC. difficileRT017 strains
(CF5, isolated in Belgium in 1995, and M68, isolated in
Ireland in 2006) have been completely sequenced, pro-
viding important reference chromosomes for whole
genome sequencing (WGS) studies of this lineage
[62]. Figure 4 shows the genome of C. difficile strain
M68. Using WGS, Cairns et al. showed that 23 of 24
of C. difficile RT 017 strains from one hospital were clo-
sely related and formed a single cluster. The only unre-
latedC. difficileRT017 strainwas isolated fromapatient
with community-acquired CDI and this belonged to a
cluster from outer London hospitals. These findings
suggested thatC. difficileRT017wasmostly transmitted
betweenpatients in the sameward and betweenwards in
the samehospital. The study further found that environ-
mental contamination with clinical isolates was possible
and that RT 017 could withstand decontamination with
hydrogen peroxide vapour [22].

Another WGS study of 277 different C. difficile RT
017 strains isolated from around the world, including
24 from animals (cattle, dogs, and horses) showed
that C. difficile RT 017 could be transmitted between
humans and animals, and also reported that deletions
and insertions found in RT 017 genomes were distrib-
uted throughout all geographical areas [33]. The
finding of little genetic diversity implies that
C. difficile RT 017 originated in a single geographical

area and that global spread occurred relatively recently,
however, it remained unclear where that single geo-
graphical area was. Cairns et al. [33] concluded that
C. difficile RT 017 originated in North America and
then spread to Europe, Asia and other parts of the
world [33]. This conclusion contradicts many epide-
miological studies (see below) that, taken collectively,
suggest that the origin of C. difficile RT 017 is in Asia.
The Cairns et al. study included only a limited number
of historic C. difficile RT 017 isolates from Asia (2
strains from Korea and 1 strain from Japan, all isolated
in 1995) and a greater number of C. difficile RT 017
strains from North America (9 strains from the United
States isolated from 1990 to 1996).

Global dissemination of C. difficile RT 017

Despite producing only one toxin, C. difficile RT 017
has successfully spread throughout the world with evi-
dence of human infection in North America
[17,39,47,63–66], Europe [8,13,16,20,22,23,67,68],
Asia [9,14,15,19,69–76], South America [18], Africa
[77], and Australia [78–81]. Figure 5 summarizes
chronologically the major events surrounding the
detection of C. difficile RT 017 from around the
world, comparing studies of prevalence during out-
breaks to studies in non-outbreak settings.

Reports on C. difficile RT 017 infection started in the
late 1990s with a series of outbreaks in Poland [13],
Japan [14,15], the Netherlands [16], Canada [17], and
Argentina [18]. During the early 2000s, there were out-
breaks of so-called “hypervirulent” C. difficile RT 027
in Europe and North America [82], and the number
of RT 017 reports appeared to subside

Figure 2. The cytotoxic effect of TcdB and TcdB-F on VERO cells. VERO cells were treated with the supernatant of 72-hour-old cul-
tures of C. difficile strain 2149 (RT 014/020 which produces TcdB), C. difficile strain 1470 (RT 017 which produce TcdB-F), and
C. difficile ATCC 700057 (RT 038 which is non-toxigenic) and incubated at 37°C for 24 hours before inspection under a light micro-
scope. TcdB glycosylates Rho, Rac, and Cdc42 targets resulting in arborization of cells while TcdB-F glycosylates Rac and Ras targets
resulting in rounding of cells without arborization.
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[39,63,67,68,83–85]. Still, there were further outbreaks
of RT 017 infection in Ireland and Taiwan during 2003
and 2004 [19–21], and in Sweden in 2008 [23]. The
most recent documented outbreak of RT 017 infection
started in 2009 in England and persisted for at least 3
years [22].

Among these C. difficile RT 017 outbreaks, clinical
characteristics of the patients were described only in
reports from the outbreak in Canada, with 18.8% (3/
16) of cases having PMC, 31.3% (5/16) of cases being
recurrent and a 37.5% (6/16) mortality rate [17,47].
Outbreaks of C. difficile RT 017 infection have been

Figure 3. Sequence type diversity in evolutionary clade 4. Maximum-likelihood MLST phylogeny. Sequences were aligned using
MUSCLE and tree was generated in MEGA7 with evolutionary distances calculated using the Tajima-Nei model. The scale shows
the number of nucleotide substitution per site, based on concatenated MLST allele sequences (7 loci, 3501 bp). The tree is mid-
point rooted and supported by 500 bootstrap replicates (only values >50 are shown). For global phylogenetic context, well-charac-
terised representatives of MLST clade 1 (ST 54), 2 (ST 1), 3 (ST 22), 5 (ST 11), C1 (ST 181), C2 (ST 200), and C3 (ST 204) are also shown
(*). Branches for clade 4 are shown in blue. Known toxin profiles of clade 4 strains are indicated by orange (A-B+CDT-) and green (A-
B-CDT-) colour. RT 017 (ST 37) is indicated with a red arrowhead.
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linked to the use of clindamycin [16] and fluoroquino-
lones [21]. In both outbreaks, discontinuation of the
offending agent resulted in a rapid decline in the num-
ber of CDI cases due to C. difficile RT 017 [16,21]. This
suggests that these outbreaks were associated with the
use of specific antimicrobials and that antimicrobial
stewardship helped to control spread.

Besides many outbreaks, there have also been non-
outbreak reports of C. difficile RT 017 throughout the
world. The majority of these reports with high preva-
lence figures were from Asia, while reports from non-
Asian countries mostly recorded low prevalence
figures. Data summarizing the prevalence of C. difficile
RT 017 in Asia and non-Asian countries can be found
in Tables S1 and S2 in the supplementary document.

C. difficile RT 017 in Asia

It is likely that C. difficile RT 017 is endemic in Asia and
has been resident in this region for a long time, for

three different reasons. First, in contrast to non-Asian
countries, RT 017 appeared mainly in non-outbreak-
related prevalence studies [41,53,54,69,71–75,86–88].
Second, there have been reports of A-B+CDT-
C. difficile RTs in the region other than C. difficile RT
017 with similar deletions in the tcdA gene, some of
which have also been classified in MLST clade 4
[46,58,60,61,71,89]. Third, the earliest Asian isolates
of RT 017 in humans can be dated back to 1993 in
Indonesia, where five strains of RT 017 were isolated
from healthy infants [15]. The high prevalence and
diversity of A-B+CDT- C. difficile in Asia and the evi-
dence of old C. difficile RT 017 isolates suggest that the
origin of this RT is in Asia. While Asia is a very large
continent, current information suggests that
C. difficile RT 017 is endemic in at least two different
regions of the continent: parts of East Asia, and
South East Asia [90].

East Asia
East Asia can be geographically divided into Japan and
the mainland section which consists of China (includ-
ing Hong Kong), North and South Korea, and the
island of Taiwan. The prevalence of different
C. difficile RTs in these two areas varies with RT 017
being a predominant strain only in the mainland sec-
tion plus Taiwan [9,19,69–75]. Historically, RT 017
has been responsible for ca. 15–40% of patients with
CDI in South Korea [9,69–71], China [72–74], and Tai-
wan [19,75]. In Taiwan, there was an increase in the
prevalence of C. difficile RT 017 that resembled an out-
break in 2004 (73.3%; 11/15), but the prevalence even-
tually decreased to an endemic rate of 23.9% (11/46) in
2007 [19].

In contrast to these reports, Japan saw an outbreak
of C. difficile RT 017 infection in 1996 [14,15], perhaps
coincidentally, around the same time as RT 017 out-
breaks in Poland, the Netherlands and Canada
[13,16,17,67]. However, there have been no major
reports of C. difficile RT 017 infection in Japan since.
Interestingly, in 2001, there was an outbreak of CDI
caused by an A-B+ strain of C. difficile with an RT pat-
tern resembled C. difficile RT 017 [91]. This strain was
later identified as the novel C. difficile RT 369, a strain
that is closely related to C. difficile RT 017 [36], and
that was recently identified in China as ST 81, a single
loci variant of ST 37 [92]. To date, RT 369 remains
among the most common toxigenic strains isolated in
Japan while only a small number of C. difficile strains
belonging to RT 017 have been detected [93].

South East Asia
Most epidemiological studies in South East Asia have
been conducted in Thailand [41,53,89] with additional
reports from Indonesia [54], Laos [86], Malaysia
[56,87] and Singapore [88]. Although the information
is limited, based on these publications, and some

Figure 4. A. Circular representation of the genome of
C. difficile strain M68 (RT 017, ST 37, GenBank accession num-
ber NC017175.1). From outside to inside, the concentric circles
represent (1) and (2) all coding sequences (CDS) transcribed in
clockwise and counter-clockwise, (3) all rRNA, (4) all tRNA, (5)
transposons (Tn6194 containing ermB gene represented in
red and Tn6190 containing tetM gene represented in purple)
and prophages (counterclockwise from top; ΦCDHM19
[58,163 bp, GC% = 31.34%], ΦCDHM13 [39,325 bp, GC% =
29.34%], and ΦMMP01 [55,106 bp, GC% = 28.87%]), and (6)
GC content. B. Key characteristics of the genome.
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publications from Thailand that detected a high preva-
lence of A-B+ C. difficile [94–96], it is likely that RT 017
is endemic throughout this region.

Despite isolating C. difficile RT 017 strains as early
as 1993 [15], there were no epidemiological studies in
the region until 2006 [41]. All studies thereafter
reported similar results. In Thailand, three studies
confirmed that C. difficile RT 017 ranks among the
most common toxigenic strains present (ca. 30.8% –
41.5%) [41,53,89]. In Indonesia, C. difficile RT 017
was the most prevalent RT isolated from patients
[54]. C. difficile RT 017 has been isolated in Laos
[86], although only five patients were included in this
report. The most recent report from South East Asia
came from Malaysia where the prevalence of
C. difficile RT 017 was 20.0% [56]. In contrast to
other South East Asian countries, a study in Singapore
reported a low prevalence of RT 017 of 4.9% (3/61),
and an RT distribution more like European countries.
The comment was made that this possibly reflected
the international population of Singapore, both resi-
dent and passing through [88].

C. difficile RT 017 in non-Asian countries

Outside Asia, C. difficile RT 017 is mostly associated
with outbreaks. The first group of outbreaks was
reported from 1995 to 1998 in Poland [13], the Nether-
lands [16] and Canada [17]. These outbreaks occurred

during the same time-frame as the Japanese outbreak
[14,15]. Since 2000, there have been four outbreaks of
C. difficile RT 017 infection outside Asia [18,20–23].
Even though there have been non-outbreak reports of
RT 017 in some parts of the world, the prevalence is
low in most areas (≤10%) when compared to Asia
[8,13,16,20,22,39,63,67,68,78–81].

North America
After 2002, C. difficile RT 017 was rapidly oversha-
dowed by the emergence of the “hyper-virulent”
C. difficile RT 027 in this region [82]. The prevalence
of C. difficile RT 017 in Canada decreased from 5.4%
(58/1,080) during 2004–2006 [63] to 1.3% (17/1,310)
during 2013–2015 [83]. The prevalence of C. difficile
RT 017 in the United States was ca. 2–3% during
2010–2012 [64–66]. In 2011, the overall prevalence of
RT 017 in North America was reported at 4.3% (15/
350) of toxigenic strains [39].

Europe
Apart from obvious outbreaks, reports of RT 017 in
Europe were scarce. During the late 1990s, the preva-
lence of RT 017 was 2.5% (9/364) in France [67].
During 2008–2009, RT 017 was responsible for 4.9%
(2/41) of severe CDI cases in Germany [84]. In 2012,
only one out of 171 (0.6%) C. difficile isolates from
Austria was classified as C. difficile RT 017 [68]. A
pan-European study reported an overall prevalence of

Figure 5. Timeline of C. difficile RT 017 reports around the world. Outbreaks refer to an increase in the regional prevalence of RT
017, which is confirmed either to be clonal or with evidence suggesting that isolates came from the same source. Endemic presence
refers to prevalence reports that were not associated with outbreaks.
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C. difficile RT 017 during 2011–2014 of 1.8% (16/866)
[85]. Portugal was the only European country to report
a prevalence of C. difficile RT 017 higher than 10% [97].

Australia
Several epidemiological studies conducted in various
regions of Australia with C. difficile RT 017 being
found at a much lower prevalence compared to Asia.
The prevalence of C. difficile RT 017 infection was ca.
3% [78–81] suggesting that those cases are are more
likely to be imported rather than caused by endemic
strains.

Africa
The number of studies on CDI in Africa is very lim-
ited. To date, the only country with reported
C. difficile RT 017 infection is South Africa, where a
very high prevalence of RT 017 among diarrhoeal
patients in tuberculosis hospitals was seen
[77,98,99]. Historically, Cape Town in South Africa
has been an important port city where ships coming
from and going to Asia, Australia and Europe
stopped during their voyages. The introduction of
C. difficile RT 017 may merely reflect travel between
these regions, however, it appears that C. difficile
RT 017 has now become established within the hos-
pital system in South Africa. Patients testing positive
for C. difficile are at high risk of mortality, and tuber-
culosis is an additional risk factor for CDI in popu-
lations with HIV [100].

C. difficile RT 017 in animals

Recently, many C. difficile strains associated with CDI
in humans have also been isolated from animals or ani-
mal products suggesting that CDI may be transmitted
from animals [101]. Despite its high prevalence in
the Asian human population [102], there have never
been any reports of C. difficile RT 017 in animals in
this region [103,104], and it has rarely been reported
in animals elsewhere. C. difficile RT 017 has been iso-
lated from calves in Canada [105] and rabbits in Italy
[106]. The WGS study undertaken in the United King-
dom by Cairns et al. involving 277 C. difficile RT 017
strains only included 24 strains of animal origin [33].
The reasons why RT 017 is apparently not prevalent
in animals have not been elucidated.

Role of antimicrobial resistance in the
outbreaks of C. difficile RT 017

AMR plays an important role in the dissemination of
many C. difficile RTs. Being resistant to antimicrobials
while the intestinal microbiota is disrupted allows
C. difficile to survive, produce toxins and eventually
cause disease [2]. Furthermore, being intrinsically
resistant to alcohol and desiccation, C. difficile as a

spore can survive within the hospital environment
and spread to patients. Antimicrobial resistance has
been associated with CDI outbreaks in the past; in par-
ticular, the outbreaks of “epidemic” C. difficile RT 027
in North America and Europe were associated with
fluoroquinolone and rifampicin resistance.

Outbreaks of infection with C. difficile RT 017 have
been linked with clindamycin- and fluoroquinolone-
resistant strains [13,16,18,21]. Besides these antimi-
crobials, C. difficile RT 017 also has higher rates of
resistance to tetracyclines and rifaximin [107–109].
Tetracycline resistance was associated with an out-
break of C. difficile RT 078 [110,111]. Rifaximin is a
derivative of rifampicin which was also associated
with the outbreak of C. difficile RT 027 [112,113].
There is no doubt that misuse of these antimicrobials
may lead to the future outbreaks of C. difficile RT
017, given that it is endemic in East and South East
Asia, where tetracycline and rifampicin are commonly
prescribed for many tropical infections and tubercu-
losis, respectively.

Conclusions

C. difficile RT 017 is one of the most successful RTs of
C. difficile in the world. It was the first A-B+ C. difficile
shown to cause CDI following several outbreaks. This
discovery led to a better understanding of the patho-
genesis of CDI in general, together with the roles of
TcdA and TcdB, and eventually lead to changes in
the way the laboratory diagnosis of CDI was made.
The high rate of resistance to many antimicrobial
agents provides hints as to how C. difficile RT 017
spread throughout the globe. It also gives us a warning
that antimicrobial stewardship is needed to prevent
further outbreaks.

The ancestral home of C. difficile RT 017 remains
controversial, however, the weight of epidemiological
evidence suggests that this strain originated in Asia
and spread to other regions of the world long before
the much-publicised spread of RT 027. Particular clini-
cal characteristics of C. difficile RT 017 infection have
yet to be determined. Why C. difficile RT 017 is not
found more commonly in animals despite successful
human spread also remains unclear, however, this
may just reflect a lack of animal studies in Asia. Also,
there has been no study comparing phenotypic charac-
teristics of C. difficile RT 017, such as sporulation, ger-
mination and motility, with other epidemic strains.
Since these properties are related to the spread of
C. difficile, such studies may uncover important factors
that help in the control of C. difficile RT 017 spread and
prevent further outbreaks.
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