
Exploring Key Genes with Diagnostic Value for Nonalcoholic
Steatohepatitis Based on Bioinformatics Analysis
Wenchun Zeng, Xiangwei Xu, Fang Xu, Fang Zhu, Yuecui Li,* and Ji Ma*

Cite This: ACS Omega 2023, 8, 20959−20967 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: We aimed to screen specific genes in liver tissue
samples of patients with nonalcoholic steatohepatitis (NASH) with
clinical diagnostic value based on bioinformatics analysis. The
datasets of liver tissue samples from healthy individuals and NASH
patients were retrieved for consistency cluster analysis to obtain the
NASH sample typing, followed by verification of the diagnostic
value of sample genotyping-specific genes. All samples were
subjected to logistic regression analysis, followed by the establish-
ment of the risk model, and then, the diagnostic value was
determined by receiver operating characteristic curve analysis.
NASH samples could be divided into cluster 1, cluster 2, and
cluster 3, which could predict the nonalcoholic fatty liver disease activity score of patients. A total of 162 sample genotyping-specific
genes were extracted from patient clinical parameters, and the top 20 core genes in the protein interaction network were obtained for
logistic regression analysis. Five sample genotyping-specific genes (WD repeat and HMG-box DNA-binding protein 1 [WDHD1],
GINS complex subunit 2 [GINS2], replication factor C subunit 3 (RFC3), secreted phosphoprotein 1 [SPP1], and spleen tyrosine
kinase [SYK]) were extracted to construct the risk models with high diagnostic value in NASH. Compared with the low-risk group,
the high-risk group of the model showed increased lipoproduction and decreased lipolysis and lipid β oxidation. The risk models
based on WDHD1, GINS2, RFC3, SPP1, and SYK have high diagnostic value in NASH, and this risk model is closely related to lipid
metabolism pathways.

1. INTRODUCTION
Nonalcoholic steatohepatitis (NASH), a manifestation of
nonalcoholic fatty liver disease (NAFLD), is diagnosed based
on the extent of steatosis, hepatocyte ballooning, lobular
inflammation, and degree of fibrosis.1,2 NASH is related to
dysregulated lipid metabolism and hepatic inflammation.3 Due
to the rising prevalence of NAFLD, NASH may become the
most common cause of cirrhosis and end-stage liver disease in
the coming decades.4 Moreover, the treatment effect of current
drug therapies on NASH is limited, and no drug is approved by
the Food and Drug Administration (FDA).5 Thus, exploring a
novel target biomarker for treating NASH is urgently needed.

In recent years, multiple bioinformatic analyses have been
adopted to uncover the crucial genes involved in the
progression of NASH.6 WD repeat and HMG-box DNA-
binding protein 1 (WDHD1), also known as AND-1, CHTF4,
CTF4, and AND1, is the mammalian orthologue of budding
yeast (Saccharomyces cerevisiae) CTF4, and WDHD1 ex-
pression is increased in lung cancer tissues (relative to adjacent
tissues), which is negatively correlated with patient prognosis.7

Besides, highly expressed WDHD1 is also detected in
cholangiocarcinoma.8 GINS complex subunit 2 (GINS2) is
identified as a potential hub gene in NASH, which shares a
correlation with patients’ prognosis.9 Replication factor C
subunit 3 (RFC3) is distinctly upregulated in hepatocellular

carcinoma (HCC) tissues and cells, and its downregulation is
capable of suppressing HCC progression.10 A recent study has
also indicated that seven hub genes, including secreted
phosphoprotein 1 (SPP1), are correlated with fibrosis
progression in NASH.11 SPP1, known as osteopontin
(OPN), is implicated in inflammation and liver fibrosis in
NAFLD.12 Another study has also validated that the SPP1
expression is elevated in NASH liver tissues.4 In the liver,
spleen tyrosine kinase (SYK) expression has been detected in
both parenchymal (hepatocytes) and non-parenchymal cells
(hepatic stellate cells and Kupffer cells) and shares a positive
correlation with the disease severity.13

Herein, in the present study, we analyzed the Gene
Expression Omnibus (GEO) database to identify differentially
expressed genes (DEGs). Then, weighted gene coexpression
network analysis (WGCNA) and protein−protein interaction
(PPI) networks were characterized to explore the impact of
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DEGs on NASH. This study aimed at screening potential
genes for establishing the risk model with diagnostic value for
NASH.

2. MATERIALS AND METHODS
2.1. NASH-Related Transcriptome Sequencing Data.

The microarray dataset GSE48452 of liver tissue samples from
NASH cases and healthy individuals was downloaded through
the Gene Expression Omnibus (GEO) database. After the
removal of the samples after bariatric surgery, 28 normal
control samples (control, n = 11, healthy obese, n = 17), 9 liver
fat deposition samples, and liver tissue samples from 17 NASH

patients were retained. As these data were obtained from
publicly available databases, ethics committee approval was not
required.

2.2. Screening of DEGs. Genes with significantly elevated
expressions were selected using the R language “limma”
package based on liver tissue sample data from 11 healthy
individuals and 17 NASH patients with p < 0.05 as the
screening condition.

2.3. Consistency Cluster Analysis. Consistency cluster-
ing analysis, the unsupervised clustering method, uses the
resampling method to extract a dataset of certain samples,
specify the number of clusters k, and calculate the rationality

Figure 1. Sample typing of NASH patients based on the GSE48452 dataset. (A) Volcano map of differential analysis of the GSE48452 dataset. The
red dots indicate upregulated genes, green dots indicate downregulated genes, and black dots indicate genes without significant expression (control,
n = 11; NASH, n = 17). (B) Consistency clustering matrix of k = 2. (C) Consistency clustering matrix of k = 3. (D) Consensus cumulative
distribution map. Consensus cluster CDF from k = 2 to k = 10. (E) Delta area plot from k = 2 to k = 10. Relative change of the area under the CDF
curve. (F) Cluster−consensus plot from k = 2 to k = 10. (G) Comparison of the fibrosis index and NAS between sample typing; cluster 1, n = 6;
cluster 2, n = 6; cluster 3, and n = 14. *p < 0.05; **p < 0.01.
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under a different number of clusters. In this study, the
ConsensusClusterPlus function was performed using R
software (v4.0.5). By calculating the consensus cumulative
distribution map, the CDF plots were used to help determine
the optimal k value, and the delta area plot was drawn. For
each of the k, k−1 was compared, which was the relative change
in the area under the CDF curve. The point with an
insignificant increase was selected as the best k value.
Moreover, the cluster−consensus plot exhibited the cluster−
consensus value for each classification at different k values. A
higher value represents higher stability. It can be used to judge
the cluster−consensus value at the same k value and between
different k values. Furthermore, through the multiway analysis
of variance, the relationship between sample typing and clinical
parameters was more accurately measured to verify the typing
effect.

2.4. Gene Set Enrichment Analysis (GSEA). GSEA is a
computational method that assesses whether a priori-defined
set of genes shows statistically significant, concordant differ-
ences between two biological states. For GSEA, based on genes
with significantly different genes compared to normal control
samples, the expression matrix was formed to generate an
ordered gene list. The genes with significantly different genes
compared to other typed samples served as the reference gene
set. Each analysis was subjected to 1000 genome permutations,
and an enrichment plot was plotted.

2.5. WGCNA. WGCNA, a systematic bioinformatics
algorithm,14 was performed using the R language “WGCNA”
package. “pickSoftThreshold” was used to select the suitable
soft threshold β. Subsequently, the adjacency matrix was
clustered using the topological overlap measure (TOM) to
construct the hierarchical clustering tree. The similar gene
expression was divided into different modules with minimum
gene numbers of 20 in each module. To combine possible

similar modules, 0.25 was defined as the threshold of cutting
height. At last, each module expression’s first principal
component was summarized as module eigengenes (MEs).
The correlation between ME and traits was calculated, and the
most relevant module was selected. In addition, heat maps of
the expression of module genes in normal samples and cluster
1, cluster 2, and cluster 3 samples were drawn using the R
language ″heatmap″ package.

2.6. Protein Interaction Analysis. The interaction
relationship between 162 sample typing-specific gene-coding
proteins was obtained by the STRING website, and the
interaction relationship network of genes was visualized using
Cytoscape (v3.8.2) software. The depth of color indicates the
degree value (the number of connections between proteins and
other proteins). A darker color suggests a greater degree value.

2.7. Logistic Regression Analysis. The logistic regression
model is the most common multivariate quantification analysis
method applied in the regression analysis of dichodependent
variables (i.e., y = 1 or y = 0). In this study, the R language
package glmnet was used for logistic regression analysis. The
54 clinical samples were randomly divided into the training set
(train group) and the test set (test group), the former for
analysis and the latter for validation. The receiver operating
characteristic (ROC) curves were drawn using the R language
package pROC. The ROC curve and the area under the ROC
curve (AUC values) were used to assess the sensitivity and
specificity of the risk models or genes in predicting NASH.

2.8. Correlation Analysis. The R language “corrplot”
package was used to analyze the correlation between the SPP1
expression and expression of lipid metabolism-related genes
and the correlation between values of the risk model and
Fibrosis index and nonalcoholic fatty liver disease activity score
(NAS).

Figure 2. GSEA results of comparison between specific genes for each sample and normal samples. (A) Enrichment plot of comparison between
cluster 1 specific genes and normal samples. (B) Enrichment plot of comparison between cluster 2 specific genes and normal samples. (C)
Enrichment plot of comparison between cluster 3-specific genes and normal samples. The black vertical line represents the specific genes in the
sample typing; the abscissa indicates the difference between the sample typing and the normal samples. The genes closer to the left are the genes
with a more significant difference.
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3. RESULTS
3.1. Typing of Liver Tissue Samples in NASH Patients.

The GSE48452 dataset was retrieved and downloaded from
the GEO database with p < 0.05 as the threshold for
differential analysis, and 2472 DEGs were screened out (Figure
1A). Moreover, liver tissue samples from 9 patients with liver
fat deposition and 17 NASH patients were further selected for
consistency clustering analysis, which showed that when k = 3,
the typing results of clusters 1, 2, and 3 had the best effect and
when k ≥ 3, the coefficient dropped sharply, while the
classification results of class 4 or over 4 were relatively poor.
There was no obvious boundary between the categories
(Figure 1B−F). The comparison results of patient clinical
parameters (fibrosis and NAS) indicated that the fibrosis index
of cluster 3 samples was significantly higher than that of cluster
2 (Figure 1G), and the NAS of cluster 3 samples was
significantly higher than that of cluster 1 (Figure 1G). In
addition, the multivariate ANOVA results were statistically
different (p < 0.05), which indicated that the sample typing
was a significant effect independent of age, which predicted the
NAS of patients (Table S1).

3.2. Specific Genes in NASH are Significantly Differ-
ent Compared with Normal Samples. Each typing sample
was compared with other typing samples with |meaControliff|
> 0.2 and adj.P.value < 0.05 as the threshold. A total of 210

specific genes in cluster 1, 41 specific genes in cluster 2, and
213 specific genes in cluster 3 were selected (Table S2).
Further GSEA was performed; genes that were significantly
different from normal control samples served as the input gene
dataset and genes that were significantly different compared
with other typing samples served as the reference gene dataset.
The gene enrichment was compared to test whether these
genes were also specific when compared with normal samples,
which showed that three samples were significantly different,
namely NES > 1, nominal p-value < 0.05, FDR q-value < 0.05,
and FWER p-value < 0.05 (Figure 2A−C). These results
indicated that the specific genes were also significantly different
compared with the normal samples.

3.3. 162 Specific Genes are Closely Related to Clinical
Features Based on WGCNA. WGCNA was further
performed to screen sample genotyping-specific genes closely
related to clinical characteristics in patients with NASH. The
samples were first hierarchically clustered, and after removal of
two outlier samples was removed (Figure 3A), β = 10 (no scale
R2 = 0.9) was selected as a soft threshold to establish a scale-
free network (Figure 3B). Eight coexpression modules were
identified (Figure 3C). Significant correlations were found
between the red module (33 genes), blue module (53 genes),
brown module (41 genes), and yellow module (35 genes) with
clinical parameters of patients (fat, NAS, and fibrosis index),
among which the red, blue, and brown modules were positively

Figure 3. Modules associated with the clinical parameters of NASH based on WGCNA. (A) Cluster dendrogram of liver tissue samples from 26
NASH patients. (B) Scale-free fitting index (left) and average connectivity (right) of various soft threshold power β. The red line indicates the
correlation coefficient (0.9). (C) Cluster dendrogram of the coexpressed genes. Each leaf on the cluster dendrogram corresponds to a different gene
module. (D) Heat map of correlation between modules and patient clinical parameters (Fat, NAS, and fibrosis index). Each cell contains the
corresponding correlation and P-values. (E) Heat map of the expression of the red, blue, brown, and yellow module genes in the normal samples,
cluster 1, cluster 2, and cluster 3 samples.
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correlated with the patient clinical parameters, while the yellow
module was negatively correlated with patient clinical
parameters. The above-mentioned four modules contained
162 genes. These genes are also specific genes (Figure 3D). As
shown in Figure 3E, for red, blue, and brown modules, cluster
3-specific gene expression was significantly higher than that of
normal samples, and for yellow modules, cluster 1- and cluster
3-specific gene expression was significantly lower than that of
normal samples. These findings indicated that the sample

genotyping-specific genes included in the four modules were
closely related to the clinical characteristics of NASH patients.
These 162 sample genotyping-specific genes were used for
subsequent analysis.

3.4. Twenty Specific Genes are the Core Genes in the
Protein Interaction Network. We then constructed the
protein interaction network through the STRING database to
screen out the core genes. A total of 162 specific genes were
imported into the STRING database, with human as the

Figure 4. Protein interaction network of 162 sample genotyping-specific genes. (A) Protein interaction network of 162 sample genotyping-specific
genes. (B) Ranking diagram of degree values (top 20). (C) Bubble plot of KEGG pathway enrichment results for the top 20 genes; the horizontal
coordinate indicates GeneRatio, the vertical coordinate indicates the pathway entry name, the bubble color indicates P adj, and the bubble size
indicates counts.
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Figure 5. Risk model construction and clinical correlation analysis. (A) Heat map of DEGs in the training group. (B) Abscissa represents the log(λ)
value, the ordinate represents the binomial deviance, the upper part is the number of genes retained by the corresponding log(λ) value for the
calculation, and the dashed line indicates the log(λ) value and the number of genes. (C) ROC analysis of the constructed risk model and the NASH
occurrence in the train and test groups. (D) ROC analysis of the risk model constructed and NASH occurrence in all samples. (E) Correlation
between the risk model value and fibrosis index. (F) Correlation between the risk model value and NAS.

Figure 6. Diagnostic value of five sample typing-specific genes and correlation with lipid metabolism. (A−E) Correlation between the risk model
values with SCD (A), ACLY (B), PNPLA2 (C), PGC1α (PPARGC1A) (D), and LPL (E) expression.
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species. The generated protein interaction network was further
visualized in Cytoscape software. The degree value indicated
the number of connections to other proteins in the network,
which reflected the core degree of the protein in the network.
As shown in Figure 4A, darker blue indicated a larger degree
value. We ranked the top 20 genes by degree values as CDC45,
MCM6, FANCI, MCM2, MCM5, WDHD1, GINS2, RFC3,
TOPBP1, CLSPN, FOS, KNTC1, CENPU, ORC1, SPP1,
GINS1, SYK, BRIP1, DUSP1, and FCGR2A (Figure 4B). We
believed that the above-mentioned 20 genes were the core
genes in the protein interaction network. KEGG pathway
enrichment analysis based on core genes showed that core
genes were mainly involved in the inflammation-related
signaling pathway, including the cell cycle and toll-like receptor
signaling pathway and B cell receptor signaling pathway
(Figure 4C).

3.5. WDHD1, GINS2, RFC3, SPP1, SYK, and Their
Constructed Risk Models have Good Diagnostic Value
in NASH. All samples were divided into the train and test
groups. There was no difference in the GeControler and age
distribution between the two groups, which showed that the
test group could be used for validation (Table S3). Based on
the samples in the training group, the above-mentioned 20
specific genes were first differentially analyzed, and 8 DEGs
were selected (Figure 5A). The logistic regression analysis was
performed on these eight genes, and we found that as the
number of genes decreased, the error value gradually
decreased, and the final number of candidate genes with the
smallest error was 5, and the corresponding log(λ) value was
−3. The result showed that the risk model of the five genes was
successfully constructed (Figure 5B).

ROC analysis showed that the risk model had good
diagnostic value in the train (AUC = 0.988) and test (AUC
= 0.857) groups (Figure 5C). Combining the two results, the
risk model had very high diagnostic value in NASH (AUC =
0.904) (Figure 5D and Table S4). Further analyzing the
correlation between the risk model and clinical parameters
showed that the value of the risk model was significantly
positively correlated with the fibrosis index (R = 0.48, P =
0.039) (Figure 5E) and significantly positively correlated with
the NAS (R = 0.63, P = 0.0039) (Figure 5F).

The ROC analysis for five genes was conducted, which
showed that all five genes had good diagnostic value, including
SPP1 (AUC = 0.817), RFC3 (AUC = 0.801), WDHD1 (AUC
= 0.787), SYK (AUC = 0.754), and GINS2 (AUC = 0.752)
(Figure S1A). In addition, the five genes were significantly and
positively correlated with the NAS, which was ranked as SPP1
(R = 0.502, p < 0.0.001), WDHD1 (R = 0.051, p < 0.001),
RFC3 (R = 0.427, p = 0.001), SYK (R = 0.385, p = 0.004), and
GINS2 (R = 0.061, p < 0.007) (Figure S1B−F). The above-
mentioned results showed that the risk model constructed
based on five sample genotyping-specific genes (WDHD1,
GINS2, RFC3, SPP1, SYK) had very high diagnostic value in
NASH.

3.6. Risk Model Constructed with Five Specific Genes
is Closely Related to Lipid Metabolism. Finally,
correlation analysis was conducted between the value of risk
models constructed with WDHD1, GINS2, RFC3, SPP1, and
SYK and the expression of genes related to lipid metabolism.
The results showed that the value of the risk model was
significantly positively correlated with the expression of
lipoproduction-related genes SCD and ACLY (Figure 6A,B),
negatively correlated with the expression of lipidolysis-related

genes PNPLA2 (Figure 6C), negatively correlated with the
expression of lipid β oxidation-related gene PGC1α
(PPARGC1A) (Figure 6D), and positively correlated with
the expression of LPL, a key enzyme in triglyceride metabolism
(Figure 6E). These results showed that compared with the
low-risk group, the high-risk group of the model showed
increased lipoproduction and decreased lipolysis and lipid β
oxidation.

4. DISCUSSION
NASH is characterized by chronic inflammation and
accumulation of fat in liver tissue, leading to end-stage liver
failure or HCC.3,15 Therefore, finding novel therapy for hepatic
lipid metabolism in NASH remains the focus of the currently
relevant research. In our current study, we found 2472
common DEGs by searching the NASH datasets from GEO.
Following consistency clustering analysis, we found that when
k = 3, the typing results of clusters 1, 2, and 3 had the best
effect. We further validated that cluster 3 displayed an obvious
clinical correlation with NASH patients. Subsequent analysis
confirmed five hub genes (WDHD1, GINS2, RFC3, SPP1, and
SYK) showing high diagnostic value in NAFLD. These genes
and the risk model constructed with the five genes may have an
important ability to predict the risk of NASH.

WDHD1 is a DNA-binding protein in the nucleoplasm and
can modulate the cell response to DNA damage and repair and
bears great potential in malignant tumors.7 Higher WDHD1
expression is detected in lung and esophageal carcinogenesis.16

However, very little research about WDHD1 in the liver can be
found, especially in NASH.

GINS2, a member of the GINS family, exerts a crucial role in
DNA duplication, and its overexpression causes unfavorable
outcomes in diverse tumors, such as non-small-cell lung cancer
(NSCLC), breast cancer, HCC, and cervical cancer.17−20

Importantly, recent studies highlighted GINS2 as the hub gene
involved in NASH.9,21,22 GINS2-overexpressed HCC patients
showed poorer overall survival.23

It has been documented that decreased RFC3 can limit the
multiplication of cancer cells.24 More importantly, possible
roles of RFC3 in liver, breast, esophageal, and ovarian cancers
have been highly characterized, and its downregulation is
capable of inhibiting cancer cell malignant features.10,25−27

In addition, SPP1 had good diagnostic value in NASH,
which is closely related to lipid metabolism in NASH. It is
universally acknowledged that the fatty acid composition of the
diet is a key factor capable of affecting the hepatic lipid
metabolism, which affects the pathogenesis of liver diseases.28

SPP1 is involved in multiple liver diseases by promoting
inflammatory reactions.29,30 SPP1 is upregulated in NASH
mice induced by the MCD diet, which is related to the lipid
droplet area and inflammation.4 SPP1 could promote hepatic
lipid accumulation and aggravate NASH.31

SYK is a cytoplasmic nonreceptor tyrosine kinase, and its
overexpression has been detected in balloon hepatocytes
containing Mallory−Denk bodies, a hallmark of chronic liver
diseases such as metabolism-associated fatty liver diseases and
alcoholic liver diseases.32 Besides, SYK is capable of facilitating
liver fibrosis.33 Specifically, SYK is also confirmed as the hub
gene implicated in NASH.34

In conclusion, based on the observations and evaluations
made during the study, it was suggested that the risk models
based on WDHD1, GINS2, RFC3, SPP1, and SYK had high
diagnostic value in NASH, and this risk model was closely
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related to lipid metabolism pathways. Thus, studying the risk
model constructed with the above-mentioned five genes will
stimulate a greater interest in prospective studies, leading to
the discovery of novel and effective therapeutic targets for
NASH treatment.
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