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ABSTRACT

Francisella tularensis (Ft), the etiological agent of tularemia and a Tier 1 select agent, has been previously weaponized and
remains a high priority for vaccine development. Ft tularensis (type A) and Ft holarctica (type B) cause most human disease.
We selected six attenuating genes from the live vaccine strain (LVS; type B), F. novicida and other intracellular bacteria:
FTT0507, FTT0584, FTT0742, FTT1019c (guaA), FTT1043 (mip) and FTT1317c (guaB) and created unmarked deletion mutants
of each in the highly human virulent Ft strain Schu S4 (Type A) background. FTT0507, FTT0584, FTT0742 and FTT1043 Schu
S4 mutants were not attenuated for virulence in vitro or in vivo. In contrast, Schu S4 gua mutants were unable to replicate in
murine macrophages and were attenuated in vivo, with an i.n. LD50 > 105 CFU in C57BL/6 mice. However, the gua mutants
failed to protect mice against lethal challenge with WT Schu S4, despite demonstrating partial protection in rabbits in a
previous study. These results contrast with the highly protective capacity of LVS gua mutants against a lethal LVS challenge
in mice, and underscore differences between these strains and the animal models in which they are evaluated, and
therefore have important implications for vaccine development.
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Francisella tularensis (Ft) is the etiological agent of tularemia and
includes two subspecies that cause most disease in humans. Ft
subsp. tularensis (type A) causes the most severe form of dis-
ease following an aerosol infectious dose as low as 10 CFU. Ft
subsp. holarctica (type B) causes disease with reduced severity.

Considering the low infectious dose, high mortality rate and the
previous weaponization of this bacterium, Ft is classified as a
Tier 1 select agent, and there is an immediate need for a vac-
cine against this pathogen. One vaccine studied in depth was
the live vaccine strain (LVS), a subsp. holartica derivative which
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was passaged in vitro until attenuated. LVS was tested in hu-
mans in the 1960s (Saslaw et al. 1961; Hornick and Eigelsbach
1966) and demonstrated partial protection against pulmonary
challenge with a highly human virulent subsp. tularensis strain,
demonstrating proof of principle that a live-attenuated vaccine
can protect against tularemia. We hypothesized that improved
efficacy in humans against a highly virulent type A challenge
would be achieved by developing a live-attenuated vaccine de-
rived from a type A strain, Schu S4.

Using previously described techniques (Santiago et al. 2009),
we generated 7 Schu S4 mutant strains containing unmarked,
targeted deletions in the following Ft genes: FTT0507, FTT0584,
FTT0742, FTT1019c (guaA), FTT1043, FTT1317c (guaB) and a dou-
ble knockout of FTT1019c and FTT1317c (guaAguaB), as ho-
mologs of these genes have been previously demonstrated to
be attenuating in Francisella spp. or other intracellular bacte-
ria. In F. novicida, FTT0584 was required for suppression of the
host ASC/caspase-1 pathway, which is important for innate im-
mune defense (Henry and Monack 2007; Henry et al. 2007; Weiss
et al. 2007; Monack 2008), and FTT0742 encodes a hypothetical
lipoprotein that is predicted to form part of the F. novicida cell
wall (Tempel et al. 2006); both were attenuating mutations in
F. novicida. FTT0507was identified in Ft subsp. tularensis as a third
member of the thioredoxin (TRX) family of proteins; TRX pro-
teins play a major role in maintaining the redox environment
of the cell (Inaba 2008, 2009; Inaba and Ito 2008; Ito and Inaba
2008; Qin et al. 2008, 2009; Heras et al. 2009). The presence of
multiple TRXmembers in a single bacterium suggests that these
proteins play a crucial role in the correct folding of many se-
creted or exposed virulence determinants (Inaba and Ito 2008;
Ito and Inaba 2008; Heras et al. 2009). FTT1043 was identified
as encoding a protein with similarity to macrophage infectivity
potentiator (mip). Mip proteins have been well characterized in
several human pathogens, including Legionella (Bangsborg, Cian-
ciotto and Hindersson 1991; Cianciotto and Fields 1992; Wagner
et al. 2007),Neisseria (Starnino et al. 2010; Hung et al. 2011), Coxiella
(Mo, Cianciotto and Mallavia 1995; Seshu, McIvor and Mallavia
1997), Burkholderia (Norville et al. 2011) and Chlamydia (Lunde-
mose et al. 1991; Rockey et al. 1996; Neff et al. 2007; Bas et al.
2008; Lu et al. 2013), and are required by Legionella pneumophila
for invasion and proper intracellular establishment of infection
in macrophages and protozoa (Cianciotto and Fields 1992). Fi-
nally, deletions in genes encoding metabolic enzymes including
guaA and guaB have been demonstrated to attenuate Salmonella
and Shigella spp. (Chatfield et al. 1994; Cersini, Salvia and Bernar-
dini 1998; Kotloff et al. 2000, 2007). The guaA and guaB genes en-
code essential enzymes in guanine nucleotide biosynthesis and
deletion of either gene is highly attenuating in LVS; additionally,
LVS gua mutants were protective against subsequent lethal LVS
challenge (Santiago et al. 2009).

The successful deletion of each gene(s) in Schu S4 was con-
firmed by PCR, and growth kinetics were evaluated in both broth
and J774 macrophages, a preferential host cell type for Ft. Schu
S4 mutants in FTT0507, FTT0584, FTT0742 and FTT1043 exhib-
ited no defects and replicated in broth andmacrophageswith no
significant differences in kinetics compared toWT. As expected,
the Schu S4�gua single and doublemutants were unable to grow
in broth without exogenously added guanine, and growth of the
mutants was restored by either addition of guanine to themedia
or trans-complementation of the gene (data not shown). Addi-
tionally, the Schu S4 �guaA, �guaB and �guaA�guaB mutants
failed to replicate in macrophages, exhibiting decreased bac-
terial counts over the time course (P < 0.01 for all three mu-
tants compared to WT at 24 h, Fig. 1). Each single gua mutant

Figure 1. Growth of Schu S4 mutants in macrophages. J774.1 murine

macrophages (3 × 105 cells/well) were infected with an MOI = 100 of each desig-
nated strain for 2 h, then washed and treated with gentamicin for 1 h. Cells were
lysed with 0.02% SDS-PBS, and serial dilution plating was used to enumerate in-
tracellular bacteria at defined time points post-infection. Data are representative

of two independent experiments. Two-way ANOVAs with multiple comparisons
were carried out to compare growth of individual strains over the time course
and growth of all strains at each time point. WT Schu S4 showed significant

growth from 2 to 24 h (P < 0.001), followed by a significant decrease from the 24
to 48 h time point (P < 0.001). The �guaA, �guaB and �guaA�guaB strains were
significantly attenuated compared to WT at 24 h (P < 0.01 for all three strains).
No significant differences were seen between trans-complemented strains and

WT across the time course.

derivative was effectively complemented in trans, following a
growth pattern that was comparable to that of the WT Schu
S4 strain. The double �guaA�guaB strain could not be comple-
mented since the two genes could not be cloned and effectively
expressed in a single plasmid. Results similar to those seen in
J774.1 cells (Fig. 1) were also seen in primary murine peritoneal
macrophages (data not shown).

The mutants were then assessed for attenuation in vivo us-
ing the C57BL/6 mouse model and compared to WT Schu S4
(intranasal LD50 of Schu S4 is <10 CFU; Chen et al. 2003). Our
studies revealed that Schu S4�FTT0507 and Schu S4�FTT0584
retained WT levels of virulence; no animals survived intranasal
challenge. Schu S4 �FTT0742 and Schu S4�FTT1043 were mini-
mally attenuated, with 2/5 and 1/5 mice respectively surviving
intranasal inoculation (Table 1). As these four strains did not
show growth defects in vitro, these results were not unexpected.
Interestingly, we determined that protein sequence variations
may contribute to differing functions and levels of attenuation
betweenmutants in Ft and F. novicida. Alignment of the F. novicida
and Ft protein sequences for FTT0584 showed 88% identity over
the first 1015 amino acids but the F. novicida homolog FTN0757
contains 506 C-terminal amino acids that are lacking in the Ft
version. Similarly, FTT0742 is 79% identical to its F. novicida ho-
molog FTN0714 but FTT0742 is truncated by 1190 residues. Trun-
cation of these two F. novicida genes in Ft suggests the possibil-
ity that these may be pseudogenes in Ft, a common occurrence
with Francisella, and would explain why these deletions show no
phenotype in Ft. Likewise, FTT0507 and FTT1043, predicted to
be important virulence factors in Ft, did not affect macrophage
replication or significantly affect virulence in the mouse model.
The lack of attenuation in the FTT1043 mutant is especially in-
teresting given its homology to other mip genes in intracellu-
lar bacteria that have been demonstrated to be critical virulence
factors (Lundemose et al. 1991; Cianciotto and Fields 1992; Mo,
Cianciotto and Mallavia 1995; Rockey et al. 1996; Seshu, McIvor
and Mallavia 1997; Neff et al. 2007; Wagner et al. 2007; Bas et al.
2008; Starnino et al. 2010; Hung et al. 2011; Norville et al. 2011; Qin
et al. 2011; Qin, Scott and Mann 2013).

Only mutations in genes encoding enzymes in metabolic
pathways including guaA and guaB significantly attenuated Schu
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Table 1. In vivo attenuation and protective efficacy of Schu S4 mutants.

Attenuation in mice Protection against Schu S4 challenge

Gene/ Function Dose Survival Average Priming Booster Challenge Survival Average
strain (i.n.) time to dose dose dose time to

death∗ (i.n.) (i.n.) (i.n.) death∗

WT Schu S4 2 × 103 0/4 5

�FTT0507 Thioredoxin-like
oxoreductase

2 × 103 0/5 5.4

�FTT0584 Innate immune
response in Fn

3 × 103 0/5 6

�FTT0742 Putative
lipoprotein

1 × 103 2/5 14.2

�FTT1043 Macrophage
infectivity
potentiator
(mip)-like
protein

9 × 102 1/5 9.8

PBS – – 100 0/2 4

WT Schu S4 4 × 102 0/4 5

�FTT1019c GMP synthetase
(guaA)

7 × 105 3/3 28 7 × 105 – 100 0/3 4

7 × 106 1/4 12.75

7 × 107 0/4 7.25

�FTT1317c IMP
dehydrogenase
(guaB)

1 × 104 4/4 28 1 × 109 – 95 0/4 6

1 × 105 3/4 22.5 6 × 107 6 × 107 100 0/4 4

1 × 106 4/4 28

1 × 107 4/4 28

6 × 107 4/4 28

�FTT1019c
�FTT1317c

guaAguaB double
mutant

1 × 108 4/4 28 1 × 108 1 × 108 100 0/4 4

∗Average time to death, in days, of mice that were euthanized; mice surviving for 28 days were not included in this calculation.

S4 in the mouse model (Table 1). All mice receiving 7 × 105 CFU
of Schu S4�guaA survivedwith no adverse clinical signs (Table 1,
P < 0.05 compared to WT Schu S4). Schu S4�guaB was more
highly attenuated and 100% of mice survived i.n. inoculation
with 1 × 109 CFU (P < 0.01 compared to WT). As expected, the
double �guaA�guaB strain was also highly attenuated and 100%
of mice survived a dose of 1 × 108 CFU (P < 0.01 compared to
WT).

The high level of attenuation of the gua derivatives made
them potential vaccine candidates. Their ability to induce pro-
tective responses was assessed in mice following either a single
immunizing dose or a prime/boost regimen. Twenty-eight days
following the last dose, mice were challenged via the i.n. route
with a lethal dose of WT Schu S4. In contrast to the protective
capacity, we documented with LVS�guaA or LVS�guaB mutants
against a lethal LVS challenge in mice (Santiago et al. 2009), the
Schu S4 �gua derivatives did not confer protection against Schu
S4 challenge (Table 1). None of the mice immunized with the
highest safe dose of Schu S4�guaA, Schu S4�guaB (1 or 2 doses)
or Schu S4�guaA�guaB (2 doses) survived a challenge dose of
95–100 CFU Schu S4 (>10 LD50). In addition, time to death was
not significantly increased following vaccination.

We also assessed cytokine expression in murine peritoneal
macrophages infected with each of the gua mutants and found
no significant differences in cytokine production between Schu
S4 and either the Schu S4 �guaA, �guaB or �guaA�guaB strains
(Fig. S1, Supporting Information). Interestingly, all three guamu-
tant strains elicited cytokine profiles similar to that of WT Schu
S4 within 24 h of macrophage infection, with a rapid induc-
tion of TLR2 and TLR2-dependent transcription, including the
cytokines TNF-α, IL-1β and neutrophil-attracting chemokine KC
following infection of primary mouse macrophages, that de-
creased, but remained above uninfected levels at the 4 and 8-
h time points. Expression of a second group of cytokines that
are both TLR2- and IRF-3-dependent was induced after 4 h of in-
fection when the TLR2 gene transcription wanes, and included
IL-12 (p35 and p40), RANTES and iNOS. Transcription of these
genes remained high until 8 h and decreased by 24 h post-
infection. These observations were not entirely surprising, since
analysis of Ft Schu S4 genome reveals several potential lipopro-
teins that may be involved in the activation of TLR2. Moreover,
two lipoproteins (TUL4 and FTT1103) that can engage the TLR2
signaling pathway were not compromised during the gua muta-
genesis process (Thakran et al. 2008). It is also possible that the
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initial internalization of Ft, whether mutant or WT, triggers this
cascade of responses which is not dependent on the ability of
the bacteria to replicate within the macrophage. Alternatively,
the mutant strains may be scavenging guanine from the host
allowing for completion of the intracellular Ft life cycle, albeit
at a slower pace. While critical for immune activation, this pro-
file of cytokine induction is not sufficient to predict protective
immunity since the mutant andWT strains induced similar lev-
els of activation yet none were protective against a subsequent
challenge.

Targeting critical biosynthetic pathway components has
been a successful attenuating strategy for the Gram-negative
enteric organisms Salmonella and Shigella (Hoiseth and Stocker
1981; Hone et al. 1991; Chatfield et al. 1994; Cersini, Salvia
and Bernardini 1998; Kotloff et al. 2000, 2007) as well Ft LVS
(Santiago et al. 2009). Furthermore, the Ft LVS �guaA and �guaB
mutant strains elicited robust protection against a lethal LVS
challenge in themousemodel (Santiago et al. 2009). It was there-
fore surprising that the Schu S4�guaA and Schu S4�guaB vac-
cine strains did not induce protection against a lethal Schu S4
challenge (Table 1), as these two gene sequences in LVS and
Schu S4 are 99% identical. Pechous and colleagues reported sim-
ilar findings where purMCD mutations in LVS were both highly
attenuating and protective against virulent LVS challenge, but
that the same mutations in Schu S4 provided limited protection
against low dose Schu S4 challenge (Pechous et al. 2006, 2008).
Other reports have documented differences in efficacy conferred
by vaccines created in different background strains containing
the same deletion when alternative animal models were em-
ployed (Cong et al. 2009; Signarovitz et al. 2012; Chu et al. 2014).
Our data, although negative, underscore the importance of the
background strain that is used in vaccine construction and em-
phasize the importance of demonstrating protection against the
target type A strain. The Schu S4�guaA�guaB strain, which was
shown here to not be protective against challenge in mice, has
recently been demonstrated to be partially protective against
aerosol Schu S4 challenge in New Zealand white rabbits (Reed
et al. 2014), providing evidence of the value of using more than
one animal model to assess Ft vaccines. While themousemodel
can provide critical information regarding the contributions of
host genetics and immune responses to protective immunity,
viable live-attenuated vaccine candidatesmay be eliminated be-
cause they are still too virulent for vaccination/challenge studies
in the highly sensitive murine model. Alternative small animal
models (including rabbits and rats), which are more resistant to
Ft, may more accurately reflect the levels of reactivity and pro-
tection that would be seen in humans. As such, these findings
highlight the importance of the differences between subspecies
of F. tularensis and the use of appropriate models in tularemia
vaccine studies.
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