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Now in its fourth decade, the burden of HIV disease still persists, despite significant 
milestone achievements in HIV prevention, diagnosis, treatment, care, and support. 
Even with long-term use of currently available antiretroviral therapies (ARTs), eradication 
of HIV remains elusive and now poses a unique set of challenges for the HIV-infected 
individual. The occurrence of HIV-associated non-AIDS-related comorbidities outside 
the scope of AIDS-defining illnesses, in particular non-AIDS-defining cancers, is much 
greater than the age-matched uninfected population. The underlying mechanism is now 
recognized in part to be related to the immune dysregulated and inflammatory status 
characteristic of HIV infection that persists despite ART. Natural killer (NK) cells are mul-
tifunctional effector immune cells that play a critical role in shaping the innate immune 
responses to viral infections and cancer. NK cells can modulate the adaptive immune 
response via their role in dendritic cell (DC) maturation, removal of immature tolerogenic 
DCs, and their ability to produce immunoregulatory cytokines. NK cells are therefore 
poised as attractive therapeutic targets that can be harnessed to control or clear both 
HIV and HIV-associated malignancies. To date, features of the tumor microenvironment 
and the evolution of NK-cell function among individuals with HIV-related malignancies 
remain unclear and may be distinct from malignancies observed in uninfected persons. 
This review intends to uncouple anti-HIV and antitumor NK-cell features that can be 
manipulated to halt the evolution of HIV disease and HIV-associated malignancies and 
serve as potential preventative and curative immunotherapeutic options.
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inTRODUCTiOn

Since the introduction of antiretroviral therapy (ART), life expectancy of people living with HIV 
(PLHIV) has notably improved, and the gap between the uninfected population ranging from 60 
to 90%, of normal life expectancy is narrowing in regions of the world among those with access to 
ART (1). Before the availability of ART, immune suppression-related complications represented the 
predominant cause of mortality among HIV-infected individuals. Incidence rates of non-Hodgkin 
lymphoma (NHL) and Kaposi sarcoma (KS) were more than 100 times higher in the pre-ART era 
and were classified, together with cervical cancer, as AIDS-defining cancers (ADCs) (2). Overtime, as 
ART became the standard of care, prolonged use has lead to a remarkable improvement in immune 
status, dramatically reducing ADC rates (ratio of ART to no-ART) by 0.61 per year (3).
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In the United States, despite the sharp decline in the incidence 
of ADCs, increased risk of developing specific types of NHL such 
as Burkitt lymphoma and classical Hodgkin lymphoma (HL) has 
evolved (4, 5). A meta-analysis of standardized incidence ratios 
from 18 studies showed that infection-related cancers such  
as anal, liver and HL, as well as smoking-related cancers such 
as lung, kidney, and oral cancers, had an increased incidence 
among the HIV population despite being on ART, with lym-
phomas being the most frequent type of cancer observed (6). A 
separate comprehensive epidemiological study showed that the 
PLHIV also had significantly higher rates of these now termed 
“non-AIDS defining cancers” (NADCs) when compared to 
matched HIV-negative individuals, suggesting the likelihood of 
other etiologies besides an increase in life expectancy as pre-
disposing the HIV population to develop these types of cancers 
more frequently (7). In fact, NADCs have now become one of 
the leading causes of mortality among HIV-infected individu-
als (8, 9). Surprisingly, however, the incidences of breast and 
prostate cancers have significantly declined in HIV-infected 
persons, suggesting that HIV infection, ART, or other viral–host 
interactions have differential impacts on cancer risk in this 
population (10, 11). The increased incidence of NADC despite 
viral suppression and CD4 T-cell recovery in the era of ART 
raises important key mechanistic questions in the oncogenesis 
of NADC. The direct oncogenic effect of HIV, HIV-induced 
immunodeficiency, and chronic inflammation, as well as ART 
toxicities are some of the plausible mechanisms that are being 
investigated (12). Complete immune recovery after prolonged 
ART is variable and underscores that harnessing specific com-
ponents of the host immune response may play a vital role in 
preventing NADC.

Chronic immune activation and immune senescence 
contribute to immune dysfunction in chronic HIV infection 
and partially persist even after CD4 T-cell count recovery and 
viral suppression by ART (13). Such processes lead to immune 
exhaustion/senescence, thereby facilitating reactivation of 
other latent viral infections, such as Epstein–Barr virus (EBV). 
Besides HIV, all ADCs and the majority of NADCs appear to be 
associated with several chronic viral infections (12), justifying a 
new way to categorize HIV malignancies into infection-related 
and non-infectious-related cancers. KS is intimately associated 
with HHV-8 infection (14), and cervical cancer is almost always 
caused by HPV infection (15). B-cell lymphoproliferative dis-
orders are frequently associated with EBV infection, and such 
association is even more common in HIV-infected individuals, 
ranging from 60 to 100% (5, 16). Viral co-infections are present 
in NADC. The incidence of hepatocellular carcinoma has 
progressively increased among HIV-infected persons in the 
last decade (17). Merkel cell carcinoma, recently reported to be 
associated with Merkel cell virus, has a 20-fold increased risk 
among HIV-infected individuals (18). The potential direct effects 
of HIV in modulating oncogenes are under investigation, but 
how HIV impacts the oncogenic potential of other chronic viral 
infections is unclear (19–21). Persistent immune alterations may 
play a critical role in the oncogenic process in this population 
and deserve special attention, particularly in the context of 
co-infections.

nATURAL KiLLeR (nK) CeLLS:  
A CRiTiCAL iMMUne PLAYeR in 
AnTiTUMOR AnD AnTi-Hiv iMMUniTY

Since the discovery of NK  cells 40  years ago, a plethora of 
research has uncovered their phenotypic and functional capac-
ity against virally infected and tumor cells (22–25). NK cells are 
CD3− multifunctional effector lymphocytes defined based on 
levels of CD56 and CD16 expression (26), the majority (>90% of 
NK cells) in the peripheral blood being CD56dim and predomi-
nantly cytotoxic upon activation, thereby releasing pro-apoptotic 
cytoplasmic granules composed of granzymes and perforins. 
CD56dim NK  cells can also induce cytolysis via induction of 
Fas/FasL-dependent or TRAIL-dependent apoptotic signals. In 
addition, a minority of NK cells express the FcγRIIIA receptor 
(CD16) that binds to the constant (Fc) domain of IgG antibodies 
that can bind to viral antigens expressed on the surface of infected 
cells. This antibody conjugation of NK-cell and antibody-coated 
target cell, strongly mediating NK-cell activation, is known as 
antibody-dependent cell-mediated cytotoxicity (ADCC) (27). A 
distinct subset of CD56bright cytokine-producing NK cells with 
a limited cytotoxic capacity is more abundantly present in lymph 
nodes (28). By producing IFN-γ, TNF-α, IL-10, and chemokines, 
this NK subset predominantly modulates other subsets of 
lymphocytes, thereby regulating dendritic cell maturation, dif-
ferentiation of helper T cells, and B- and T-cell-specific immune 
responses (29, 30).

To understand the NK-cell effector functions, it is paramount 
to take into consideration the balance between activating and 
inhibitory signals (31) that drive NK-cell cytotoxicity. NK-cell 
activation relies on stimulatory signals capable of overcom-
ing the steady inhibitory state that is maintained by signaling 
through inhibitory receptors. Self-recognition of MHC-I proteins 
through C-type lectin receptor NKG2A and inhibitory killer 
cell immunoglobulin-like receptors (KIRs) represent the physi-
ological interaction between NK and target cells. The absence 
of recognition of “self ” by inhibitory receptors characterizes the 
“missing-self ” phenomenon and lowers the activating threshold. 
NK  cells become more susceptible to activation, especially if 
activating molecules are expressed in infected or transformed 
target cells and recognized by activating receptors, characterizing 
the altered-self phenomenon. Activating C-type lectin receptor 
NKG2D recognizes the altered self-state of infected or trans-
formed cells and triggers NK-cell cytolytic activity. Other surface 
molecules, such as natural cytotoxic receptors Nkp30, Nkp44, 
and Nkp46, and activating KIRs also contribute to NK-cell activa-
tion process and are critical to determine whether NK cells will be 
activated to target infected or transformed cells (27, 31).

Both HIV infection and oncogenesis lead to a downregulation 
of surface MHC-I expression as a way to avoid T-cell recognition 
but in turn renders target cells more susceptible to NK-cell-
mediated cytolysis. However, HIV has developed immune 
evasion mechanisms via the viral protein Nef, thereby leading 
to preferential downregulation of HLA-A and -B, and preserving 
expression of HLA-C and -E (32). Therefore, HIV prevents NK 
activation as well as CTL recognition of infected cells. Besides 
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interfering with self-recognition, HIV infection and cancer can 
induce expression of stress signaling molecules, in particular 
MHC class I polypeptide-related sequence A/B (MICA/MICB). 
More importantly, HIV leads to persistent activation and con-
sequently T cell and NK-cell immune exhaustion. Despite viral 
suppression and normal CD4 T-cell counts in the majority of 
HIV-infected persons on ART, NK-cell phenotype and function-
ality are not fully restored, suggesting that these individuals may 
be more susceptible to long-term comorbidities associated with 
immune dysfunction, such as HIV-related malignancies (33).

THe inTeRPLAY BeTween THe TUMOR 
MiCROenviROnMenT AnD nK-CeLL 
iMMUniTY

The process by which the immune system can promote or suppress 
tumor growth and development is based on animal models and 
data from cancer patients and has evolved to define the concept of 
cancer immunoediting (34). Tumor immunoediting is comprised 
of three phases: elimination, equilibrium, and escape. The elimi-
nation phase is when immune cells target cancer cells that suc-
ceeded in overcoming intrinsic tumor suppressor mechanisms. If 
tumor elimination is only partially achieved, a state of equilibrium 
between malignant cells and the immune system ensues. Tumor 
cells can become dormant or accumulate mutations, while the 
immune system continues to exert selective pressure, thereby 
controlling tumor progress temporarily or eventually eliminating 
the cancer cells. If elimination does not occur, tumor cell variants 
resistant to the existent immune response eventually give rise to 
tumor progression, thereby initiating the escape phase and char-
acterizing failure of tumor immune control. The contribution of 
NK cells in cancer immunoediting and clinical outcomes is now 
being appreciated (35).

Natural killer cells have proved to be critical for the eradication 
and inhibition of metastasis of cancer cells in vivo (36). Perforin 
protein (pfp) and/or IFN-γ knockout (KO) mice predominately 
develop B-cell lymphomas, especially after 1 year of age (older ani-
mals) with a combination of pfp and IFN-γ KO inducing an early 
onset of lymphoma, suggesting a synergistic immunosurveillance 
effect (37). Late age development of B-cell lymphoma and lung 
adenocarcinoma were also observed in TRAIL KO mice (38) and 
pfp KO mice (37), respectively. These findings support a role for 
NK-cell immunosurveillance of B-cell lymphomas as well as epi-
thelial malignancies, through a combination of NK-cell-mediated 
cytotoxic activity, IFN-γ secretion, and TRAIL killing pathways. 
In humans, NK cells are particularly relevant in the prevention of 
tumor development. An 11-year follow-up of the general popula-
tion for cancer incidence showed an association between reduced 
NK-cell cytotoxicity and increased risk of cancer (39). It has been 
postulated that NK cells are critical to the prevention of cancer 
development (elimination and equilibrium); however, once the 
tumor microenvironment is established (escape), suppressor 
factors such as TGF-β and IL-10 are induced and negative inhibi-
tory receptors, such as the T-cell immunoglobulin-and-mucin-
domain-containing molecule-3 receptor (TIM-3) on NK  cells, 
that maintain an NK-cell anergic state (40) are upregulated. The 
induced aberrant expression of HLA-G (membrane-bound and 

soluble) and increased shedding of MICA (sMICA) seen in tumor 
cells (41, 42) can further suppress NK-cell antitumor immune 
responses. HLA-G interaction with ILT2 and CD94/NKG2A 
results in the inhibition of NK-cell cytotoxicity, IFN-γ secretion, 
and chemotaxis (43), while sMICA–NKG2D binding impairs 
NK-cell tumor-specific cytotoxicity, NKG2D expression, and 
homeostatic maintenance (42).

As a result of these immune deregulated events, NK-cell-
associated suppressor factors are currently being considered 
as immunotherapeutic targets. TIM-3, for instance, is an 
immunoregulatory checkpoint expressed by most lymphocyte 
subtypes with critical and complex implications in cytotoxic 
NK cells (44, 45). Increased TIM-3 expression on NK cells has 
been shown as a marker of poorer prognosis in lung adenocar-
cinoma and other types of cancer and correlates with reduced 
NK-cell cytotoxicity. Blockade of TIM-3 is capable of restoring 
IFN-γ secretion and cytotoxicity of NK cells in lung cancer (46). 
Recent studies by Fowke et al. have shown that low expression of 
various inhibitory molecules on NK  cells were associated with 
HIV viral control (47). Despite the complexity of the immune 
suppressive strategy of the tumor microenvironment, targeting 
these inhibitory checkpoint receptors shows potential to restore 
NK-cell functionality in the control or clearance of solid tumors 
(48). Currently, several trials are underway assessing the impact 
of Tim-3 blockade in cancer patients (http://ClinicalTrials.gov: 
NCT02817633; NCT02608268). However, such therapeutic tools 
are still in their infancy in the context of HIV-associated ADC 
or NADCs. Given the success of immunotherapy targeting the 
inhibitory receptors PD-1 and CTLA-4 against several malignan-
cies (49), evaluation of the impact of NK-cell function following 
immune checkpoint blockade may have relevance in the setting 
of HIV and may serve a dual purpose in both HIV eradication 
and tumor clearance. Combining immunotherapy and NK-cell-
based therapies is another potential targeted strategy and war-
rants further investigation in individuals with HIV-associated 
malignancies (50–53).

nK-CeLL iMMUne COnTROL OF Hiv 
inFeCTiOn DURinG ART

HIV infection induces significant phenotypic changes and 
negatively impacts NK-cell cytotoxicity (54). Cytotoxic NK cells 
in aviremic HIV donors have impaired ADCC that is associated 
with a reduced expression of FcRIIIA, an activated phenotype 
represented by increased expression of CD38 and HLA-DR. 
Furthermore, NK  cells are rarely found in lymph nodes, an 
important site of both HIV replication and B-cell transformation 
(55). Critical activating receptors important in cancer immuno-
surveillance such as NKp30 and NKp46 are downregulated (56) 
in HIV infection, and expansion of dysfunctional CD56− NK-cell 
subsets (57) persists even after cART.

Non-neutralizing anti-HIV-1 antibodies can mediate protec-
tion through ADCC in assays of HIV candidate vaccines in 
non-human primate models of HIV infection. Several studies 
have suggested that HIV-specific ADCC responses may be 
contributing to partial control of HIV viremia during acute 
infection. The early initial interest in the utility of NK-mediated 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://ClinicalTrials.gov:


4

Leal et al. NK Cells and HIV-Associated Tumors

Frontiers in Immunology | www.frontiersin.org March 2017 | Volume 8 | Article 315

ADCC via HIV-specific antibodies was to enhance the develop-
ment of an HIV vaccine and novel therapies to suppress HIV 
replication. Interestingly, in the RV144 HIV vaccine Thai trial, 
the robust ADCC responses observed were associated with mod-
est protective efficacy (58). It would be intriguing to determine 
the effects of NK-mediated ADCC in the recently launched 
HVTN 702 study that builds on the success of the RV144 trial 
in support of this correlate. In addition, recent studies suggest 
that cytokine stimulation can enhance direct NK cytotoxicity and 
NK-mediated ADCC of autologous HIV-infected CD4+ T cells 
(59–61). Therefore, modulating NK activity is a potential strategy 
to develop novel immunotherapies to prevent and possibly lead 
to the eradication of HIV.

inFLUenCe OF nK-CeLL iMMUniTY in 
Hiv-ASSOCiATeD MALiGnAnCieS

It is becoming apparent that NK  cells may also contribute to 
tumorigenesis. The potential impact of such alterations in 
HIV malignancies is illustrated in Figure 1. Overexpression of 
activation markers on NK cells and spontaneous degranulation 
occurring during HIV infection may directly contribute to 
tumor development (33). Analysis of NK cells from patients with 
lymphoma demonstrated decreased levels of activating receptors 
in those with HIV compared to uninfected patients, suggesting 
that these cells might be less efficient to target cancer cells (62). 
NK  cells can also present proangiogenic activity in the tumor 
microenvironment in a similar way to decidual NK (dNK) cells 
early on in pregnancy. In fact, in non-small cell lung cancer, the 
majority of tumor-infiltrating NK cells have a dNK-cell pheno-
type: CD56bright, CD9+, perforin low, and high production of 
vascular endothelial growth factor (VEGF) (63). Hypoxia and 
TGF-β secreted by tumor cells has a known immunomodulatory 
impact in the tumor microenvironment and induces VEGF secre-
tion (64). In vitro exposure to TGF-β and hypoxia led to conver-
sion of CD56dim NK cells into dNK-like cells (65). HIV infection 
leads to increased levels of TGF-β by monocytes (66) and T cells 
(67), suggesting that TGF-β may play a more prominent role in 
tumorigenesis during HIV infection.

The combination of (1) reduced expression of activating 
receptors and increased inhibitory receptors (e.g., TIM-3), (2) 
reduced ADCC, (3) reduced secretion of TNF-α and IFN-γ, 
and (4) development of pro-cancer features such as persistent 
activation, spontaneous degranulation, and production of 
VEGF suggests that NK cells may directly be associated with the 
increased cancer risk in the setting of ART-treated HIV infection. 
It is fair to speculate that targeted immunotherapies reversing 
specific NK cells deficits may be relevant for many HIV-related 
malignancies.

nK-CeLL-BASeD iMMUnOTHeRAPieS 
TARGeTinG Hiv AnD Hiv-ASSOCiATeD 
MALiGnAnCieS

With the exception of the Berlin patient (75), and given the 
continued resurgence of virus in HIV-infected persons in various 

eradication approaches (76–78), it is clear that elimination of 
all latent HIV reservoirs is going to be critical to successfully 
achieve ART-free sustained HIV control or remission. Innovative 
approaches that are extrapolated from these studies and cases 
have lead to renewed interest in determining ways to bolster 
the host immune response and/or manipulate HIV target cells 
to render them refractory to infection. Since HIV and cancers 
have evolved sophisticated modalities to escape the host immune 
defense mechanisms, enhancing NK-cell function may serve as a 
promising tool as part of a multifaceted approach in the elimina-
tion of HIV as well as HIV-associated malignancies.

Recently, there has been renewed interest in harnessing 
HIV-specific ADCC responses as an HIV cure strategy. A 
monoclonal antibody (mAb) targeting the CD4-binding site on 
the HIV envelope spike (3BNC117) may have the potential to 
guide host immune effector cells to accelerate the clearance of 
HIV-1-infected cells by an FcyR-dependent mechanism (79, 80). 
In addition, Byrareddy et al. recently reported that a rhesusized 
mAb against α4β7 mediated sustained control of SIV infection 
in the absence of ART in non-human primates. This remarkable 
response was associated with increased cytokine-synthesizing 
NK cells (81). These studies, and others, highlight the potential 
of using mAbs through modulation of NK-cell-mediated activ-
ity as an exciting therapeutic tool to achieve sustained HIV 
remission and be beneficial in the context of HIV-associated 
tumors.

Natural killer-cell-based antitumor immunotherapeutic 
strategies targeting NK-cell activity have shown some promise in 
the oncology field (Table 1). Infusion of allogeneic or autologous 
NK cells has, to some degree, been successful in tumor clearance. 
Recently, single-chain variable fragment recombinant reagents, 
such as bispecific and trispecific killer cell engagers, are being 
considered as novel immunomodulators to enhance NK-cell 
function, antigen specificity, and in  vivo expansion of these 
infused cells; however, these reagents need to be fully evaluated for 
clinical use (82–91). The efficiency of ADCC-mediated NK-cell 
responses is dependent on several factors from the mAbs them-
selves, NK-cell, and target cell status and also to the glycosylation 
state and the expression of glycosylation-specific ligands of both 
the NK-cell and target cells (92, 93). These features can be modi-
fied to enhance antiviral and immunomodulatory functions and/
or the ability of the target cell to trigger or evade immunological 
recognition.

Several gene-editing technologies have been explored to geneti-
cally reprogram NK  cells to optimize their persistence, expan-
sion, migration, and cytotoxic capacity to improve the antitumor 
efficacy of primary human NK cells in vivo. With many challenges 
associated with most of these technologies, CRISPR/Cas9 nucle-
ase system offers a new promising tool to gene-edit NK cells to 
improve their utility as a novel cell-based cancer immunotherapy 
strategy (142). Finally, latency reversal agents (LRAs) are being 
explored as a part of a “shock” approach to reverse cellular HIV 
latency and expose HIV reservoirs to immune-mediated clear-
ance. Garrido et al. recently studied the impact of LRAs on the 
function of primary NK cells ex vivo and showed a heterogeneous 
mixed effect of different LRAs on antiviral activity, cytotoxicity, 
cytokine secretion, phenotype, and viability (143). Therefore, 
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FiGURe 1 | Compounded effect of Hiv infection on natural killer (nK) cell antitumor responses. The tumor microenvironment constrains NK-cell 
functionality through the expression of tumor-derived transforming growth factor β (TGF-β) (68), shedding of MICA, and HLA-G (69). The limitations of antitumor 
mechanisms by NK cells are exacerbated in HIV infection. HIV infection reduces the surface expression of activation receptors (aKIRs, NKp30, and NKp46) and 
CD16 (56) while upregulating the expression of inhibitory receptors (iKIRs). The net result of the influence of HIV on NK-cell receptor expression further impairs 
NK-cell activation by cancer cell interaction and decreases tumor-directed antibody-dependent cell-mediated cytotoxicity (ADCC) responses (70). HIV infection 
decreases INF-γ and TNF-α production by NK cells despite HIV viral suppression by cART (71, 72), which will limit dendritic cell (DC) maturation and thus prevent 
efficient tumor-directed adaptive responses (73). The increased plasma TGF-β and loss of cell-specific degranulation of NK cells seen in HIV infection could lead to 
tumorigenicity via contributing to increased frequency of vascular endothelial growth factor (VEGF)-producing intratumoral NK cells (63) and occurrence of chronic 
inflammation, respectively (74). Furthermore, the affect of cART on tumor activity is yet to be explored. Blue lines represent responses that promote tumor growth, 
while responses that inhibit NK-cell function are indicated in red. Decreases are indicated by dashed lines and increases by bolded lines.
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TABLe 1 | Therapeutic strategies utilizing natural killer (nK) cells in cancer immunotherapy that should be evaluated in the eradication of both Hiv and 
Hiv-associated malignancies.

Strategy Summary Limitations Reference

Allogeneic NK-cell-based 
immunotherapy

Freshly isolated or IL-2-stimulated NK-donor lymphocyte infusion Requires further optimization to 
avoid graft-versus-host disease and 
to enhance efficiency

(94–103)

Autologous NK-cell-based 
immunotherapy

Activating endogenous NK cells and promoting their proliferation and 
function in patients using pro-inflammatory cytokine stimulation, or bispecific 
killer cell engagers (BiKEs) and trispecific killer cell engagers (TriKEs)

Low cytotoxic potential and possible 
side effects when using high doses 
of cytokines. BiKEs and TriKEs need 
to be fully evaluated for clinical use

(82–91, 104–106)

ADCC-based immunotherapy Tumor-targeting monoclonal antibodies (e.g., anti-CD20, anti-HER-2,  
anti-GD2, anti-EGFR, and anti-GD2) or bispecific antibodies to induce 
antibody-dependent cell-mediated cytotoxicity (ADCC)

Requires tumor antigen-specific 
antibodies

(79, 107–111)

Immune checkpoint inhibitors-
based immunotherapy

Blockade of NK-cell surface inhibitory receptors by specific antibodies (e.g., 
anti-PD-1, anti-NKG2A, anti-KIRs, anti-TIM-3, and anti-CTLA-4) in order to 
induce NK cells cytolytic activity

Possible side effects (44, 112–118)

Genetically reprogrammed 
NK cells

Genetic modification of NK cells to induce the expression of activating 
receptors, silencing inhibitory receptors, inducing cytokine production, or 
genetic transferring of chimeric antigen receptors

Methods need further optimization (119–141)
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