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It is widely acknowledged that metastasis determines the prognosis of pancreatic
adenocarcinoma (PAAD), and the liver is the most primary distant metastatic location
of PAAD. It is worth exploring the value of liver-metastasis-related genetic prognostic
signature (LM-PS) in predicting the clinical outcomes of PAAD patients post R0 resection.
We collected 65 tumors and 165 normal pancreatic data from The Cancer Genome Atlas
(TCGA) and the Genotype-Tissue Expression project (GTEx), respectively. Differentially
expressed genes (DEGs) between primary tumor and normal pancreatic samples were
intersected with DEGs between primary tumor samples with liver metastasis and those
without new tumor events. The intersected 45 genes were input into univariate Cox
regression analysis to identify the prognostic genes. Thirty-three prognostic liver-
metastasis-related genes were identified and included in least absolute shrinkage and
selection operator (LASSO) analysis to develop a seven-gene LM-PS, which included six
risk genes (ANO1, FAM83A, GPR87, ITGB6, KLK10, and SERPINE1) and one protective
gene (SMIM32). The PAAD patients were grouped into low- and high-risk groups based on
the median value of risk scores. The LM-PS harbored an independent predictive ability to
distinguish patients with a high-risk of death and liver metastasis after R0 resection.
Moreover, a robust prognostic nomogram based on LM-PS, the number of positive lymph
nodes, and histologic grade were established to predict the overall survival of PAAD
patients. Besides, a transcription factor-microRNA coregulatory network was constructed
for the seven LM-PS genes, and the immune infiltration and genomic alterations were
systematically explored in the TGCA-PAAD cohort.
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INTRODUCTION

Pancreatic adenocarcinoma (PAAD) is one of the most lethal malignancies with strong metastatic
ability. It is predicted to become the second most common cause of cancer-related death within the
next decade [1,2]. Despite advances in diagnostic techniques, radiotherapies and systemic therapies
for PAAD, the five-years overall survival (OS) remains 10%, because 80–85% of the patients are
initially diagnosed with either unresectable or metastatic tumors [3,4]. For the small fraction of the
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patients with a resectable and localized tumor, the five-years
survival rate post-operation was 20% [3]. It is widely accepted
that metastasis determines the prognosis of patients with
pancreatic cancer [5]. Compared with patients with localized
tumors, the survival of patients with metastasis is only
6–8 months [6]. The most primary distant metastatic location
of PAAD is the liver [7]. Therefore, it is meaningful to explore the
potential biomarkers with the ability to distinguish patients with
unfavorable prognosis and high-risk of liver metastasis.

The hepatic metastasis process of PAAD involves complicated
steps such as the adhesion of dissociated pancreatic cancer cells
toward the liver, the formation of the remodeled extra-cellular
matrix (ECM), the angiogenesis for micro-metastasis, and the
construction of immune escape [7]. Previous studies have
revealed that pancreatic tumors are highly heterogeneous at
both cellular and molecular levels [8,9]. Molecular biomarkers
play increasingly important roles in predicting the prognosis of
patients with PAAD [10]. Multiple prognostic models with
reliably predictive value have been established based on the
mining of public databases such as The Cancer Genome Atlas
(TCGA), International Cancer Genome Consortium (ICGC), and
Gene Expression Omnibus (GEO) [11–13]. Recently, Venkat
et al. reported that the alternative polyadenylation promoted
the expression of the protumorigenic gene in pancreatic ductal
adenocarcinoma (PDAC) by mining the integrated data of the
Genotype-Tissue Expression (GTEx) project and TCGA [14].
There are few studies on mRNA combination biomarkers for the
liver metastasis of PAAD. In the current study, we hypothesized
that the differentially expressed genes associated with liver
metastasis might harbor the potential for predicting the
prognosis of patients with PAAD.

In this study, we integrated the mRNA expression data of
normal pancreas and PAAD tissues from the GTEx and the
TCGA datasets, respectively. A seven-gene prognostic signature
was constructed with the ability to predict both OS and liver
metastasis for PAAD patients following R0 resection.

MATERIALS AND METHODS

Patient Selection and Data Retrieval
Patient inclusion criteria in the TCGA dataset were [1] PAAD
patients with a surgical operation of R0 resection [2], patients
with no new tumor event or with liver metastasis during follow-
up. The exclusion criteria were [1] patients with survival period
<30 days or with incomplete survival data [2], patients with
missing data of gene expression. Sixty-five patients were
included in this study. During the follow-up period, the
numbers of patients with liver metastasis and with no new
tumor event were 15 and 50, respectively. The corresponding
clinicopathological information of the PAAD patients was
obtained via Genomic Data Commons Data Portal (https://
portal.gdc.cancer.gov/). The mRNA expression data
[Fragments Per Kilobase of exon model per Million mapped
fragments (FPKM)] of the PAAD samples in the TCGA dataset
and the normal pancreas samples in the GTEx dataset were
reprocessed using UCSC xena (https://xenabrowser.net/) to

avoid data imbalance and transformed into log2(FPKM+1).
The batch effects between the TCGA and the GTEx cohorts
were minimized by “limma” R package. To assess the batch
effects, the variation of housekeeping gene expression between
the TCGA and the GTEx datasets was evaluated as Eisenberg et al.
reported [15]. The mRNA expression profiles of the 65 PAAD
and 165 normal pancreas samples were obtained for downstream
analysis. The GRCh38 file was downloaded from the Ensembl
website (https://asia.ensembl.org/index.html) for annotation of
the mRNAs.

The 65 PAAD patients in the TCGA cohort were training dataset.
The whole TCGA-PAAD dataset with 147 patients (cases with a
survival period ≥30 days and complete gene expression data), GEO
(https://www.ncbi.nlm.nih.gov/geo/) and ICGC (obtained from
SurvExpress website, http://bioinformatica.mty.itesm.mx:8080/
Biomatec/SurvivaX.jsp) were used as validation datasets.

Identification of Differentially Expressed
Genes Associated with Liver Metastasis
Based on the threshold of |logFC| > 1 and p value <0.05, the
differentially expressed genes (DEGs) of normal pancreas samples
vs. primary tumor samples, and DEGs of primary tumor samples
without new tumor event vs. primary tumor samples with liver
metastasis during follow-up were screened by Wilcoxon test. Venn
diagram tool (http://bioinformatics.psb.ugent.be/webtools/Venn/) was
used to identify the intersection of DEGs in PAAD tissues and PAAD
tissues with liver metastasis.

Prognostic Gene Signature Construction Based on Liver-
metastasis-related mRNAs.

Univariate regression Cox analysis was performed to filter
mRNAs associated with OS. Then the identified mRNAs were
included in the least absolute shrinkage and selection operator
(LASSO) Cox regression model to develop a liver-metastasis-
related prognostic signature (LM-PS) for the PAAD patients
involving seven liver-metastasis-related genes and derive the
regression coefficient of each gene by “glmnet” and “survival”
R packages. Thereafter, risk scores for patients were calculated
according to the following formula:

Risk score � ∑
n

i�1
(CoefipExpi)

where Expi represents the expression of each prognostic mRNA
in the LM-PS, and Coefi represents the coefficient of the
corresponding mRNA. PAAD patients were grouped into low-
and high-risk groups based on the median value of the risk scores.
Principal component analysis (PCA) was performed for the two
groups using the R package “factoextra”.

Independence of the
Liver-Metastasis-Related Prognostic
Signature for Predicting Overall Survival
and Liver Metastasis
In the TCGA dataset, the liver-metastasis-related prognostic
signature and corresponding clinicopathological factors of the
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PAAD patients were included in univariate/multivariate Cox
proportional hazards analysis and logistic regression model
analysis to identify the independent predictors of OS and liver
metastasis, respectively. A nomogram was established based on
the independent predictors of OS with the “rms” R package. The
receiver operating characteristic (ROC) curves and the area under
the curve (AUC) values were used to evaluate the predictive
ability of the established models in this study.

Functional Enrichment Analysis
Based on the threshold of |logFC| > 1 and p value <0.05, 408
DEGs between high- and low-risk groups were identified and
uploaded to the “Metascape” website (https://metascape.org/) for
enrichment analysis involving Gene Ontology (GO) and the
Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG).

The Immune Infiltration Analysis of PAAD
The infiltration levels of the 22 immune cells were determined to
assess the tumor microenvironment between high- and low-risk
groups and between liver-metastasis and non-new-tumor groups
in the TGCA dataset by the CIBERSORT R script v1.03. A p value
<0.05 was set as the significance threshold.

Gene Mutation Profiles of the PAAD
Patients in the TCGA Dataset
The cBioPortal website (http://www.cbioportal.org/) is a large
depository that provides access to cancer genomics data carried
out by many institutions including the TCGA database [16]. In
this study, the cBioPortal was used to explore the connection
between the gene mutation and the prognosis of the 65 PAAD
patients in the TCGA dataset.

Transcription Factor-microRNA
Coregulatory Network Construction
The seven liver-metastasis-related genes identified by the Lasso Cox
regression model were uploaded to NetworkAnalyst (https://www.
networkanalyst.ca/faces/home.xhtml) to construct a transcription
factor-microRNA coregulated network. The transcription factor-
microRNA coregulatory data were predicted from the Regulatory
Network Repository. The transcription factor-microRNA
coregulatory network was visualized by Cytoscape 3.8.1.

Statistical Analysis
PAAD patients in the TCGA cohort were divided into high- and
low-risk groups based on the median value of the risk scores.
Mean ± standard deviation or medians (with interquartile range),
and counts with percentages were used to present continuous
variables and categorical variables, respectively. Continuous
variables were compared by Student’s t-test or Mann-Whitney
U-test, and categorical variables by Chi-square test. Kaplan-Meier
curves were plotted to analyze patient survival. The log-rank tests
were performed to analyze the differences in patient survival. The
statistical analysis was carried out with the R software 4.0.2, SPSS
22.0, and GraphPad Prism 8.0.1. p values <0.05 were considered
to indicate statistical significance (two-sided).

RESULTS

Identification of Liver-Metastasis-Related
Genes in PAAD Patients
This study included 65 PAAD patients with R0 resection from the
TCGA dataset, and the corresponding clinicopathological factors
of the patients were presented in Table 1. As shown in the table,
with the exception of survival status and pathologic M stage, there
was no significant difference in terms of all the other
clinicopathological variables that were analyzed. Previous
studies successfully compared the gene expression between the
GTEx and TCGA datasets, and minimized the batch effects in
data processing [14,17]. To assess the batch effects in this study,
the variation of housekeeping genes expression between the
TCGA and GTEx datasets was compared, and a high
correlation between the PAAD and normal pancreas tissues
was observed (Pearson R � 0.89, p < 0.0001, Supplementary
Figure S1), indicating minimal batch effects between the two
datasets. Subsequently, we screened DEGs based on the standards
of |logFC| > 1 and p < 0.05 between the 65 PAAD tissues vs. 165
normal pancreas tissues and between the 15 primary PAAD
tissues with liver metastasis vs. 50 primary PAAD tissues
without new tumor event. The results showed that 4,996 and
62 genes were differently expressed in PAAD tissues and PAAD
tissues with liver metastasis, respectively. Thereafter, the Venn
diagram web tool was used to get the intersection of the two
groups of DEGs, and 45 liver-metastasis-related genes were
identified. The study flow chart is shown in Figure 1.

Construction of the LM-PS in the TCGA
Cohort
To build the LM-PS for forecasting the OS of PAAD patients, we
included the expression of the 45 liver-metastasis-related genes
into the univariate Cox regression analysis and identified 33 genes
significantly associated with OS (Supplementary Table S1).
Subsequently, based on the 33 prognostic genes, the LASSO
Cox analysis (Figures 2A,B) was performed to construct a
seven-gene LM-PS containing anoctamin-1 (ANO1), family
with sequence similarity 83, member A (FAM83A), G protein-
coupled receptor 87 (GPR87), integrin beta-6 (ITGB6),
kallikrein-10 (KLK10), serine protease inhibitor, clade E
member 1 (SERPINE1), and small integral membrane protein
32 (SMIM32). The detailed information and the prognostic
ability of the seven liver-metastasis-related genes were
presented in Table 2 and Figure 2C, respectively. Next, the
risk score for predicting OS was calculated for each patient in
the training dataset based on the expression and coefficients
(Figure 2D) of the seven liver-metastasis-related genes. Then the
patients were separated into low- and high-risk subgroups based
on the median value of the risk scores (Figure 2E). The survival
status of the patients in the high- and low-risk groups was
visualized in Figure 2F showing that the mortality rate post
R0 resection was higher in the high-risk group than in the low-
risk group. The heatmap showed that the expression of the risk
genes (ANO1, FAM83A, GPR87, ITGB6, KLK10, and
SERPINE1) were up-regulated, while the expression of the
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protective gene (SMIM32) was down-regulated (Figure 2G)
with the increasing risk score. In addition, the PCA was used
to assess the biological difference between low- and high-risk
groups based on the expression of the seven liver-metastasis-
related genes. The result demonstrated that the low- and high-
risk patients were distributed separately in distinct directions
(Figure 2H).

Prognostic Analysis of the Seven
Liver-Metastasis-Related Genes and the
LM-PS
The patients in the training dataset were divided into two groups
based on the median expression of each liver-metastasis-related
gene. The Kaplan-Meier curves showed that high expression of
ANO1, FAM83A, GPR87, ITGB6, KLK10, SERPINE1, and low
expression of SMIM32 were significantly associated with worse
patient survival (Figures 3A–G). In addition, based on the two
different risk groups distinguished by the LM-PS, the Kaplan-
Meier curve also showed that patients with high-risk had a
significantly lower OS rate than those with low-risk (p �
6.093E-05, Figure 3H). The OS predictive ability of the LM-

PS was confirmed by the ROC curves in the TCGA cohort with 1-
year AUC � 0.864, 2-years AUC � 0.899, and 3-years AUC �
0.856 (Figure 3I).

The distribution of clinicopathological factors with the risk
score increasing is shown in Figure 3J. In addition, risk scores
were observed to be higher in patients with G2 and G3/G4,
pathologic stage II, and liver metastasis compared with the
corresponding control groups but were not significantly
associated with age, gender, pathologic T stage, or pathologic
N stage (Figures 3K–Q).

The Prognostic Ability of the LM-PS to
Predict Liver Metastasis
As expected, the Kaplan-Meier curve showed that the OS rate
was remarkably lower in PAAD patients with liver metastasis
after R0 resection than those without new tumor events
(Figure 4A). This study tried to provide an insight into the
factors associated with the liver metastasis of PAAD. The risk
score, age, gender, histologic grade, pathologic stage,
pathologic T stage, pathologic N stage, and the number of
positive lymph nodes were included in univariate logistic
regression model analysis. Interestingly, only risk score was

TABLE 1 | Clinicopathological factors of the PAAD patients in TCGA dataset.

Clinical features Patients with no
new tumor (n = 50)

Patients with liver
metastasis (n = 15)

p

Age at diagnosis (years), mean ± SD 61.16 ± 11.1 62.9 ± 9.3 0.577
Gender, n (%) 0.548
Female 19 (38) 7 (46.7)
Male 31 (62) 8 (53.3)

Number of positive lymph nodes, median (interquartile range) 1 (0–3) 2 (0-5) 0.357
Survival status, n (%) <0.001
Alive 40 (80.0) 3 (20.0)
Dead 10 (20.0) 12 (80.0)

Histologic grade, n (%) 0.473
G1 11 (22.0) 2 (13.3)
G2 23 (46.0) 5 (33.3)
G3 14 (28.0) 7 (46.7)
G4 1 (2.0) 0
GX 1 (2.0) 1 (6.7)

Pathologic stage, n (%) 0.746
Stage I 8 (16.0) 1 (6.7)
Stage II 39 (78.0) 14 (93.3)
Stage III 0 0
Stage IV 1 (2.0) 0
Not available 2 (4.0) 0

Pathologic T stage, n (%) 0.441
T1 5 (10.0) 0
T2 8 (16.0) 1 (6.7)
T3 35 (70.0) 14 (93.3)
TX 2 (4.0) 0

Pathologic N stage, n (%) 1.000
N0 16 (32.0) 5 (33.3)
N1 31 (62.0) 10 (66.7)
NX 3 (6.0) 0

Pathologic M stage, n (%) 0.019
M0 17 (34.0) 11 (73.3)
M1 1 (2.0) 0
MX 32 (64.0) 4 (26.7)

PAAD, pancreatic adenocarcinoma; TCGA, The Cancer Genome Atlas; SD, standard deviation.
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significantly associated with liver metastasis [Odds Ratio �
1.176, 95% confidence interval (CI) � 1.061–1.302, p � 0.002;
Table 3]. The ROC curve confirmed that the risk score
harbored a good ability to predict liver metastasis of PAAD
in the TCGA cohort (AUC � 0.756, Figure 4B).

Validation of the LM-PS in the TCGA, GEO
and ICGC Datasets
In the whole TCGA-PAAD cohort, the forest plot showed that
high expression of ANO1, FAM83A, GPR87, ITGB6, KLK10,
SERPINE1, and low expression of SMIM32 were significantly

FIGURE 1 | Study flow chart.
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FIGURE 2 | Identification of a 7-gene signature for OS by LASSO regression analysis in the TCGA-PAAD cohort (A, B) The LASSO regression was performed to
calculate the minimum criteria. The prognostic ability (C) and corresponding coefficients (D) of the seven liver-metastasis-related genes. Distributions of risk scores
based on the liver-metastasis-related prognostic signature (E) and survival status (F) of the PAAD patients in the TCGA dataset (G)Heatmap of the associations between
the expression levels of the seven liver-metastasis-related genes and the risk score in the TCGA dataset (H) Principal component analysis was performed to assess
the difference between the low- and high-risk groups.OS, overall survival; LASSO, Least absolute shrinkage, and selection operator; TCGA, The Cancer Genome Atlas;
PAAD, pancreatic adenocarcinoma.

TABLE 2 | Information of the seven genes in the liver-metastasis-related prognostic signature.

Gene symbol Description Ensemble ID Location (GRCh38/hg38)

ANO1 Anoctamin-1 ENSG00000131620 chr11:69,985,907–70,189,530
FAM83A Family with sequence similarity 83 ENSG00000147689 chr8:123,178,960–123,210,079
GPR87 G protein-coupled receptor 87 ENSG00000138271 chr3:151,294,086–151,316,820
ITGB6 Integrin beta-6 ENSG00000115221 chr2:160,099,666–160,200,313
KLK10 Kallikrein-10 ENSG00000129451 chr19:51,012,739–51,020,175
SERPINE1 Serine protease inhibitor, clade E member 1 ENSG00000106366 chr7:101,127,104–101,139,247
SMIM32 Small integral membrane protein 32 ENSG00000271824 chr5:136,191,468–136,193,162

Pathology & Oncology Research July 2021 | Volume 27 | Article 16098226

Dong et al. Prognostic Model for PAAD



FIGURE 3 | Prognostic analysis of the seven liver-metastasis-related genes and the LM-PS (A–G) Kaplan-Meier curves showed that high expression of ANO1,
FAM83A, GPR87, ITGB6, KLK10, SERPINE1, and low expression of SMIM32 were significantly associated with worse OS in the TCGA-PAAD dataset (H) Kaplan-Meier
curves showed that the high-risk subgroup had worse OS than the low-risk subgroup in the TCGA-PAAD dataset (I) ROC curves of LM-PS for predicting the 1-, 2-, and
3-years OS in the TCGA dataset (J)Heatmap of the associations between the expression levels of the seven liver-metastasis-related genes and clinicopathological
features in the TCGA dataset (K–Q) Risk scores were higher in patients with G2 and G3/G4, pathologic stage II, and liver metastasis compared with the corresponding
control groups but were not significantly associated with age, gender, pathologic T stage, or pathologic N stage. OS, overall survival; LM-PS, liver-metastasis-related
prognostic signature; TCGA, The Cancer Genome Atlas; PAAD, pancreatic adenocarcinoma; ROC, receiver operating characteristic curves; *, p < 0.05; **, p < 0.01;
***, p < 0.001.
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associated with worse patient survival (Figure 5A). Based on
the LM-PS, risk scores were calculated for patients in the
whole TCGA-PAAD and GSE57495 cohort and obtained from
the SurvExpress website for the ICGC cohort, respectively.
The clinicopathological data of the GSE57495 were presented
in Supplementary Table S2. Patients in the three datasets
were divided into high- and low-risk groups based on the
median value of risk scores, respectively. The Kaplan-Meier
curves showed that the high-risk patients had significantly
lower OS rates than the low-risk patients in the whole TCGA-
PAAD, GSE57495, and ICGC datasets (Figures 5B–D). Risk
scores and survival status distributions of GSE57495 and
ICGC were presented in Supplementary Figures S2A–D.
Then the ROC curves were plotted to assess the prognostic
values of the risk scores. The 1-, 2-, and 3-years AUCs were
0.766, 0.786, and 0.748 in the whole TCGA dataset,
respectively (Figure 5E); 0.601, 0.710, and 0.645 in the
GSE57495 dataset, respectively (Supplementary Figure
S2E); and 0.719, 0.664, and 0.601 in the ICGC dataset,
respectively (Supplementary Figure S2F). These results
indicated that the LM-PS harbored a moderate OS
predictive ability for PAAD patients.

The Independent Prognostic Value of
LM-PS for PAAD Patients
Univariate and multivariate Cox regression analyses were used to
assess the prognostic value of the LM-PS in the TCGA-PAAD
dataset. In the training set, the risk score and clinicopathological
factors of PAAD patients were included in univariate Cox
analysis, and the results showed that risk score was
significantly associated with OS [hazard ratio (HR) � 1.132,
95% CI � 1.077–1.190, p < 0.001; Table 4]. Furthermore, the
multivariate Cox analysis demonstrated that risk score was an
independent predictor of OS (HR � 1.126, 95% CI: 1.060–1.197,
p < 0.001; Table 4).

Univariate and multivariate Cox regression analyses were also
performed in the whole TCGA-PAAD dataset. The univariate
Cox regression analysis showed that risk score was significantly
associated with OS (HR � 2.668, 95% CI � 1.761–4.042, p < 0.001;
Table 5). The multivariate Cox regression analysis further
indicated that risk score was an independent predictor of OS
in the whole TCGA-PAAD dataset (HR � 2.762, 95% CI:
1.680–4.541, p < 0.001; Table 5).

Construction and Validation of a
LM-PS-Based Nomogram in the TCGA
Dataset
In the training cohort, the risk score, number of positive lymph
nodes, and histologic grade were included to establish a clinically
applicable quantitative nomogram to predict the OS of PAAD
patients (Figure 6A). The calibration plot revealed that the
predicted 1-, 2- and 3-years OS using nomogram agreed with
the observed OS in the TCGA dataset (Figure 6B). Furthermore,
ROC curves were used to assess the prediction accuracy of the
nomogram both in the training cohort and the whole TCGA-
PAAD cohort. The AUCs values for 1-, 2- and 3-years in PAAD
were 0.947, 0.913, and 0.940 in the training cohort, respectively

FIGURE 4 | The prognostic ability of the LM-PS to predict liver metastasis in PAAD patients (A) PAAD patients with liver metastasis had a significantly worse overall
survival than those without new tumor events (B) ROC curves of LM-PS for predicting liver metastasis in the training TCGA-PAAD dataset. LM-PS, liver-metastasis-
related prognostic signature; PAAD, pancreatic adenocarcinoma; ROC, receiver operating characteristic curves; TCGA, The Cancer Genome Atlas.

TABLE 3 | Logistic regression analysis of liver metastasis post R0 resection.

Factors p Or (95% CI)

Risk score 0.002 1.176 (1.061–1.302)
Age 0.571 1.016 (0.961–1.074)
Gender 0.549 0.700 (0.219–2.244)
Histologic grade 0.220 1.718 (0.724–4.077)
Pathologic stage 0.483 1.839 (0.336–10.081)
Pathologic T stage 0.129 5.200 (0.620–43.595)
Pathologic N stage 0.960 1.032 (0.301–3.537)
Number of positive lymph nodes 0.387 1.112 (0.875–1.413)

OR, odds ratio; CI, confidence interval.
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FIGURE 5 | Validation of the LM-PS in the TCGA, GEO, and ICGC Datasets (A) Forest plot of the prognostic ability of the seven liver-metastasis-related genes
included in the prognostic signature. Kaplan-Meier curves showed that the high-risk group had worse OS than the low-risk group in the whole TCGA (B), GSE57495 (C),
and ICGC (D) datasets (E) Time-dependent ROC curves for the risk score in the whole TCGA dataset for predicting 1-, 2-, and 3-years OS. TCGA, The Cancer Genome
Atlas; LM-PS, liver-metastasis-related prognostic signature; GEO, Gene Expression Omnibus; ICGC, International Cancer Genome Consortium; OS, overall
survival.
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(Figure 6C); and 0.815, 0.826, and 0.791 in the whole TCGA-
PAAD cohort, respectively (Figure 6D), indicating high accuracy
of the nomogram in the TCGA-PAAD cohort.

Then the ROC curves were also plotted to assess the
prognostic values of the nomogram and other independent
predictors (risk score, histologic grade, and the number of
positive lymph nodes) in the whole TCGA-PAAD dataset. The
AUCs of the risk score, histologic grade, number of positive
lymph nodes, and the nomogram were 0.753, 0.619, 0.665, and
0.815, respectively, indicating that the inclusion of risk score
added to the accuracy of the other two factors included in the
nomogram (Figure 6E).

The Landscape of Immune Infiltration in
PAAD
The landscape of immune cell infiltration of PAAD in the
TCGA cohort was explored between low- and high-risk
groups and between liver-metastasis and no-new-tumor
groups using the CIBERSORT algorithm. The violin plots
showed that patients in the high-risk subgroup harbored
significantly higher prevalence in M0 macrophages (p �
0.004) and Eosinophils (p � 0.003), but a lower prevalence
in naive B cells (p � 0.022) than those in the low-risk subgroup
(Supplementary Figure S3A). However, no immune cell
proportions were observed to be different between non-
new-tumor and liver-metastasis subgroups (Supplementary
Figure S3B).

Transcription Factor -microRNA
Coregulatory Network
The transcription factor-microRNA coregulatory network based
on ANO1, FAM83A, GPR87, ITGB6, KLK10, SERPINE1, and
SMIM32 was obtained from NetworkAnalyst. This network
contains the seven genes of the LM-PS, 63 transcription
factors, and 37 microRNAs, with 86 associations between the
LM-PS genes and transcription factors, and 38 associations
between the LM-PS genes and microRNAs. As shown in
Figure 7, the transcription factors FOS, JUND, USF1, and
MYC were observed to regulate three LM-PS genes, the
microRNA hsa-miR-224 was observed to modulate two LM-PS
genes, and SERPINE1 was the most frequently modulated LM-PS
gene. The increase of ANO1, FAM83A, GPR87, ITGB6, and the
decrease of SMIM32 were significantly associated with the
increase of SERPINE1, while no significant correlation was
observed between the expression of KLK10 and SERPINE1 in
the TCGA dataset (Supplementary Figures S4A–F).

Genomic Alterations in PAAD
We explored the genomic alteration for the TCGA-PAAD cohort
in this study (data of 64 out of the 65 patients could be found on
the cBioPortal website). In this study, 45.3% of the patients (29/
64) had at least one LM-PS gene alteration with FAM83A,
SERPINE1, and GPR87 being the most frequently altered
genes (22%, 14%, and 11%, respectively; Supplementary
Figure S5A). The oncoprints of low- and high-risk subgroups
are shown in Figures 8A,B. Patients in the high-risk subgroup

TABLE 4 | Univariate and multivariate analyses of clinicopathological factors and LM-PS with OS in the training set.

Factors Univariate analysis Multivariate analysis

p HR (95% CI) p HR (95% CI)

Risk score <0.001 1.132 (1.077–1.190) <0.001 1.126 (1.060–1.197)
Age 0.056 1.045 (0.999–1.093) – –

Gender 0.556 1.300 (0.543–3.113) – –

Histologic grade 0.007 2.245 (1.245–4.048) 0.017 2.530 (1.182–5.415)
Pathologic stage 0.042 1.240 (1.008–1.526) 0.055 1.382 (0.993–1.923)
Pathologic T stage 0.023 4.227 (1.225–14.583) 0.196 0.306 (0.051–1.845)
Pathologic N stage 0.016 3.791 (1.278–11.243) 0.069 0.133 (0.015–1.173)
Number of positive lymph nodes 0.025 1.208 (1.025–1.425) 0.005 1.689 (1.168–2.441)

LM-PS, liver-metastasis-related prognostic signature; OS, overall survival; PAAD, pancreatic adenocarcinoma; TCGA, The Cancer Genome Atlas; HR, hazard ratio; CI, confidence interval.

TABLE 5 | Univariate and multivariate analyses of clinicopathological factors and LM-PS with OS in the whole TCGA-PAAD set.

Factors Univariate analysis Multivariate analysis

p HR (95% CI) p HR (95% CI)

Risk score <0.001 2.668 (1.761–4.042) <0.001 2.762 (1.680–4.541)
Age 0.014 1.033 (1.007–1.061) 0.264 1.015 (0.989–1.042)
Gender 0.432 1.237 (0.728–2.102) – –

Histologic grade 0.001 2.016 (1.354–3.003) 0.092 1.439 (0.943–2.196)
Pathologic stage 0.019 2.242 (1.139–4.411) 0.866 1.111 (0.329–3.755)
Pathologic T stage 0.019 2.608 (1.171–5.811) 0.600 0.736 (0.235–2.312)
Pathologic N stage 0.013 2.321 (1.194–4.512) 0.840 1.090 (0.472–2.515)
Number of positive lymph nodes 0.023 1.076 (1.010–1.146) 0.001 1.181 (1.066–1.309)

LM-PS, liver-metastasis-related prognostic signature; OS, overall survival; PAAD, pancreatic adenocarcinoma; TCGA, The Cancer Genome Atlas; HR, hazard ratio; CI, confidence interval.
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FIGURE 6 |Construction and validation of an LM-PS-based nomogram in the TCGA dataset (A) The nomogram is based on risk score, a number of positive lymph
nodes, and histologic grade (B) The calibration plot of the nomogram for predicting the probability of OS at 1, 2, and 3 years in the TCGA dataset (C) Time-dependent
ROC curves for the nomogram in the training TCGA-PAAD dataset for predicting 1-, 2-, and 3-years OS (D) Time-dependent ROC curves of the nomogram in the whole
TCGA dataset for predicting 1-, 2-, and 3-years OS (E) ROC curves for the risk score, histologic grade, number of positive lymph nodes, and the nomogram for OS
prediction in the whole TCGA-PAAD dataset. LM-PS, liver-metastasis-related prognostic signature; TCGA, The Cancer Genome Atlas; OS, overall survival; ROC,
receiver operating characteristic curves; PAAD, pancreatic adenocarcinoma.
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harbored significantly higher genetic alteration frequency in
FAM83A (p � 0.002), GPR87 (p � 0.037), but lower frequency
in SMIM32 (p � 0.024) than those in the low-risk subgroup
(Supplementary Table S3). In total, no significant difference
was observed in OS between the altered and non-altered
subgroups (Supplementary Figure S5B). For the individual
LM-PS gene alteration, compared to patients with no genetic
alteration, patients with alteration of FAM83A and ITGB6
were significantly associated with lower OS (Supplementary
Figures S5C,D), while those with alteration of SMIM32 were
significantly associated with higher OS (Supplementary
Figure S5E). The most frequent mutated genes between the
patients with no LM-PS gene altered and those with at least
one LM-PS gene altered were also explored. The results
showed that the altered subgroup harbored higher
enrichment of the V-Ki-ras2 Kirsten Rat Sarcoma Viral
Oncogene Homolog (KRAS) (71.43% vs. 48.57%, p �
0.0571), Tumor Protein 53 (TP53) (64.29%% vs. 42.86%,
p � 0.0748), and Cyclin-dependent Kinase Inhibitor 2A
(CDKN2A) (28.57% vs. 8.57%, p � 0.0405) than the non-
altered subgroup (Supplementary Figure S5F).

Functional Enrichment Analysis of DEGs
GO and KEGG enrichment analyses were performed for the 408
DEGs between high- and low-risk subgroups to identify the most
relevant biological processes and pathways. The GO annotations
showed that the DEGs enriched in GO terms mainly related to
ECM, cell adhesion, and locomotion such as ECM organization,
positive regulation of locomotion, cell-substrate adhesion, cell
adhesion molecule binding, cell junction organization, collagen
binding, regulation of cell adhesion, and ECM binding
(Figure 9A). The most enriched KEGG pathway was also
ECM-receptor interaction. Additionally, the KEGG enrichment
analysis showed that DEGs were enriched in several tumor-
related pathways such as proteoglycans in cancer, pathways in
cancer, transcriptional misregulation in cancer, prostate cancer,
and p53 signaling pathway (Figure 9B).

DISCUSSION

The current study was mainly based on the TCGA dataset. DEGs
between primary PAAD tissues with liver metastasis and those

FIGURE 7 | Transcription factor (blue squares)-microRNA (green squares) coregulatory network for the seven liver-metastasis-related prognostic genes (red
circles).
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without new tumor events were intersected with DEGs between
primary tumor and normal pancreatic tissues, and 45 liver-
metastasis-related genes were identified. Thirty-three out of
the forty-five DEGs were identified to be significantly
associated with the OS of PAAD patients, and seven of them
(ANO1, FAM83A, GPR87, ITGB6, KLK10, SERPINE1, and
SMIM32) were identified by the LASSO model to construct an
LM-PS for predicting the OS of PAAD patients post R0 resection.
The up-regulation of ANO1, FAM83A, GPR87, ITGB6, KLK10,
and SERPINE1 was significantly associated with poor outcomes
of PAAD patients, however, the up-regulation of SMIM32 was
protective for the prognosis of PAAD patients. Based on the
median value of risk scores generated from the LM-PS, PAAD

patients were grouped into the low- and high-risk subgroups and
the high-risk subgroup had a significantly lower OS rate than
those in the low-risk subgroup. The prognostic value of the LM-
PS in the TCGA dataset was validated in the GEO and ICGC
datasets. Subsequently, the multivariate Cox analysis and logistic
regression analysis confirmed that the LM-PS was a reliable
predictor of OS and liver metastasis, respectively. Furthermore,
a robust prognostic nomogram based on risk scores, the number
of positive lymph nodes, and histologic grade were established to
predict 1-, 2-, and 3-years OS for PAAD patients. In addition,
immune infiltration analysis showed that only a few kinds of
immune cell proportions were different between high- and low-
risk subgroups. A transcription factor-microRNA coregulatory

FIGURE 8 | The oncoprints of low- (A) and high-risk (B) groups.
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network based on the seven LM-PS genes was constructed for
viewing the potential regulatory mechanism of these genes. The
cBioPortal was used to give an insight into the impact of genomic
alterations on the prognosis of PAAD patients. The genetic
alteration frequency in FAM83A, GPR87, and SMIM32 was
significantly different between high- and low-risk groups. No
significant difference was observed in patient survival between
altered and non-altered subgroups. However, compared with
those with non-alteration, patients with alterations of
FAM83A and ITGB6 were significantly associated with lower
OS, while patients with alterations of SMIM32 were significantly
associated with higher OS. These results indicate that mutations
of FAM83A, ITGB6, and SMIM32 may play important roles in
tumor modulation. Additionally, the LM-PS gene altered

subgroup was observed to harbor a gene mutation enrichment
in KRAS, CDKN2A, and TP53.

The regulatory mechanism of the KRAS, TP53, and CDKN2A
has been well discussed. It has been widely acknowledged that
KRAS mutation is associated with the poor prognosis of patients
with pancreatic cancer [18]. KRASmutates in approximately 90%
of the PDAC cases and promotes the disease mainly by activating
the RAS-RAF and PI3K-AKT pathways (an intracellular
signaling pathway regulating the cell cycle) [10]. CDKN2A,
which encodes protein p16, mutates in more than 90% of the
PDAC cases, and the CDKN2A function loss could promote the
cell cycle transition from the G1 to S phase [3,19]. TP53, whose
mutation was observed in 50–70% PDAC, is one of the critical
tumor suppressor genes mutating in the later stages of the disease.

FIGURE 9 | GO (A) and KEGG (B) analysis of the differentially expressed genes between low- and high-risk groups, colored according to p-value. GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes Pathway.
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The aberrant regulation of TP53 promotes tumor progression by
inhibition of apoptosis, regulation of cell cycle, and improvement
in cell survival [3].

The modulation of most of the LM-PS genes in this study has
been reported to be associated with the progression of pancreatic
cancer. A Danish study reported that ANO1 (TMEM16A) was
the main component of the Ca2+-activated Cl− channel, which
was upregulated in PDAC cell lines. ANO1 was reported to be
crucial for cell migration but was not significantly associated with
cell proliferation in PDAC [20]. Crottès et al. further
demonstrated that the high expression of ANO1 promoted
pancreatic cancer cell migration by regulating ligand-
dependent EGFR signaling pathway and resulted in a low
probability of patient survival [21]. These results are consistent
with our study, which indicates that ANO1 is a metastasis-related
gene in pancreatic cancer.

As a member of the family with sequence similarity 83
(FAM83), FAM83A is, remarkably, up-regulated in PAAD and
significantly associated with poor clinical outcomes. Over-
expression of FAM83A markedly promotes cancer stem cell
traits and chemoresistance by activating the Wnt/β-catenin
signaling and TGF-β signaling in pancreatic cancer [22]. The
high expression of FAM83A is also essential for the tumorigenesis
and the maintaining of MEK/ERK signaling to prevent cell death
in pancreatic cancer cells [23]. These results indicate that
FAM83A is an important oncogene and a potential biomarker
for predicting prognosis and therapeutic targets in pancreatic
cancer.

As a G protein-coupled receptor, GPR87 is significantly over-
expressed in PAAD tissues and is an independent risk predictor
of OS. Elevated GPR87 expression promotes cancer stem cell
expansion by regulating the JAK2/STAT3 pathway [24]. A study
by Wang et al. demonstrated that up-regulation of GPR87
markedly promoted angiogenesis, proliferation, and resistance
to chemotherapy-induced apoptosis of pancreatic cancer by
activating the NF-κB signaling pathway [25].

The Kallikreins family are a series of serine proteases
modulating the proteolysis scene. They have been reported
to be closely correlated with angiogenesis and metastasis
[26,27]. Cao et al. reported that the over-expression of
KLK10 was observed in the PDAC, especially in those with
lymphatic and distant metastasis, and was significantly
associated with poor prognosis. The study further revealed
that the KLK10 promoted the invasive and metastatic
phenotype of PDAC by regulating EMT and FAK-SRC-
ERK signaling [28].

As a crucial regulator in the plasminogen activator system,
SERPINE1 encodes the plasminogen activator inhibitor and was
reported to markedly modulate tumor invasion and proliferation
and was negatively associated with the OS of PDAC patients
[29,30]. Recently, the study of Akula et al. showed that SERPINE1
was mainly targeted by TP53/miR-34a axis in PDAC [31]. Studies
about ITGB6, a member of the ITGB superfamily, in pancreatic
carcinogenesis were limited. Only Zhuang et al. reported that the
overexpression of ITGB6 in PAAD was significantly associated
with the methylation level of CpGs (cg23008083) in promoter
region [32]. There has been no study concerning the modulation

of SMIM32 in pancreatic cancer, which is a potential protective
biomarker and is worth exploring in the future.

The GO enrichment analysis showed that the DEGs were
mainly enriched in GO terms associated with ECM, cell adhesion,
and locomotion. Additionally, the most enriched KEGG pathway
was also ECM-receptor interaction. As a reservoir of numerous
signaling molecules, the ECM plays an essential role in the tumor
microenvironment and has been found to promote metastasis by
the degradation of 500–600 proteases [33–35]. In addition,
several tumor-related pathways were also highlighted in the
KEGG analysis. Therefore, we hypothesize that some
phenotypes of pancreatic cancers harbor the ability to disorder
normal ECM organization and cell-substrate adhesion in the
tumor microenvironment to promote invasion and metastasis.

Recent studies have demonstrated that a low fraction of naive
B cells and a high fraction of M0 macrophages were correlated
with the decreased OS of PDAC patients [36,37]. These results
were consistent with our results showing that naive B cells were
significantly down-regulated, whereas M0 macrophage was
significantly up-regulated in the high-risk subgroup. As crucial
mediators of the tumor microenvironment, macrophages have
been reported to promote angiogenesis, proliferation, and
metastasis in solid tumors [38]. The M0 macrophages can be
polarized into antitumoral M1 phenotype or protumoral M2
phenotype. The functions and phenotypes of tumor-associated
macrophages have been reported to be similar to M2
mononuclear cells [39]. Ye et al. reported that tumor
associated macrophages promoted pancreatic cancer by
regulating the Warburg effect via the CCL18/NF-kB/VCAM-1
axis [40]. However, no significant difference in the proportion of
M1 or M2 was observed between low- and high-risk subgroups in
our study. Therefore, the mechanism of how M0 macrophages
impact the prognosis of pancreatic cancer needs further
exploration.

In addition, the transcription factors FOS, JUND, USF1, and
MYC were found to regulate three LM-PS genes in the
transcription factor-microRNA coregulatory network. FOS and
JUND belong to the Activator Protein 1 family [41]. FOS, which
encodes leucine zipper protein, was reported to be over-expressed
in pancreatic cancer and was closely correlated with tumor
proliferation, differentiation, and apoptosis [42]. JUND was
also reported to regulate the progression of pancreatic cancer
by activating the tumor suppressor gene RASSF10 [43]. The up-
regulation of USF1 has been reported to promote multiple solid
tumors such as hepatocellular carcinoma, gastric carcinogenesis,
and glioma [44–46]. However, there are few reports on howUSF1
modulates the progression of pancreatic cancer, and further
studies are needed. As an oncogene that is widely implicated
in the pathogenesis of malignancies, MYC is reported to be
indispensable in KRAS-driven pancreatic carcinogenesis, and
the activation of MYC promotes sporadic liver metastasis in
PDAC [47].

The limitations of our study are first, that it was a retrospective
study and, therefore, no adjustment could be made for
confounding factors that might have influenced the clinical
outcomes. Second, batch effects between TCGA and GTEx
datasets cannot be eliminated, though they have been
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minimized and assessed. Third, limited samples of PAAD
patients were included in this study, and prospective large
sample studies are needed in the future.

In conclusion, our study constructed a seven-gene signature
with the prognostic ability to identify PAAD patients with a high-
risk of death and liver metastasis after R0 resection. Furthermore,
a clinically applicable nomogram incorporating genetic features
and clinicopathological factors was established to predict the OS
of PAAD patients. The nomogram may facilitate an individual
therapeutic strategy, early intervention, and delayed cancer
progression in clinical practice.
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