npj | Digital Medicine

ARTICLE

www.nature.com/npjdigitalmed

Fast and accurate medication identification

Natalia Larios Delgado’, Naoto Usuyama', Amanda K. Hall', Rebecca J. Hazen', Max Ma', Siva Sahu' and Jessica Lundin’

Much of the Al work in healthcare is focused around disease prediction in clinical settings, which is an important application that
has yet to deliver in earnest. However, there are other fundamental aspects like helping patients and care teams interact and
communicate in efficient and meaningful ways, which could deliver quadruple-aim improvements. After heart disease and cancer,
preventable medical errors are the third leading cause of death in the United States. The largest subset of medical errors is
medication error. Providing the right treatment plan for patients includes knowledge about their current medications and drug
allergies, an often challenging task. The widespread growth of prescribing and consuming medications has increased the need for
applications that support medication reconciliation. We show a deep-learning application that can help reduce avoidable errors
with their attendant risk, i.e., correctly identifying prescription medication, which is currently a tedious and error-prone task. We
demonstrate prescription-pill identification from mobile images in the NIH NLM Pill Image Recognition Challenge dataset. Our
application recognizes the correct pill within the top-5 results at 94% accuracy, which compares favorably to the original
competition winner at 83.3% for top-5 under comparable, though not identical configurations. The Institute of Medicine claims that
better use of information technology can be an important step in reducing medication errors. Therefore, we believe that a more
immediate impact of Al in healthcare will occur with a seamless integration of Al into clinical workflows, readily addressing the

quadruple aim of healthcare.
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INTRODUCTION

The third most common cause of death is not disease, but medical
error, with 250-400k or more mortalities per year.'” The
epidemic of medical error gained attention in reports from the
Institute of Medicine,>® which found that the most common type
of preventable medical error is medication error, which results in
over 1.5-m injuries and over $3b in complication costs alone. The
Institute of Medicine’s 2006 report further provides guidelines on
reducing the high frequency and unacceptable cost of medication
error, including greater use of information technology, which
could be implemented at each stage from prescribing and
dispensing through to monitoring the patient's response.
Technology solutions have been applied to drug reference
information, drug—drug interactions, drug allergies, and threshold
warnings for high doses. Despite the common occurrence, there is
little research funding in medical error, particularly when
compared with other leading causes of death, such as heart
disease and cancer. However, there are clear cost benefits;
computerized medication systems have the potential to reduce
errors by 84% and save hospitals over $500 k/year in direct costs.”

In 2015, the triple aim:® patient experience, outcome, and cost,
became the quadruple aim to include care-team experience.’
Personalized medicine squarely addresses the outcome, with
pioneering advances in research;>'® however, personalized
medicine is nascent years or generations from generalizing in
earnest in clinical settings."'™'* For example, we show how deep
learning can more immediately address the quadruple aim by
providing tools that improve task efficiency and seamlessly fit into
clinical workflows. This improves the patient and care-team

experience while improving quality and cost, and furthermore,
as demonstrated here, these technologies already generalize
beyond specific settings or use cases, here on real-world, mobile-
generated images.

To provide appropriate healthcare and avoid medication errors,
it is paramount to know which medications a patient is taking.'
Discrepancies in medication are common, over half of patients in
one study at the time of hospital admission, with 39% capable of
causing injury, and the most common type of discrepancy is errors
of omission, leaving out medications a patient is taking.'® It is
frequently a challenge for consumers to identify pills when pills
are transfered to different containers, combined to a single
container for convenience, or portioned into day-of-week
pillboxes to simplify medication management. While generally
well intended, when patients separate medications from their
original bottles or packaging, this presents a challenge to their
healthcare teams. Pharmacies often host brown bag consulta-
tions,'” where patients are encouraged to bring in their unknown
pills in brown-paper bags for pharmacists to identify. A reference
search by hand-entering physical characteristics (color, shape, and
imprint) of over 10,000 FDA-approved medications'® is a slow,
tedious, and error-prone process that requires dexterity to handle
small pills, vision to read small writing, and some degree of health
literacy.

Breakthroughs in prescription medication are among the
reasons we live longer. For example, HIV is today a chronic
disease,’® while it was a fatal diagnosis in the 1980s. Meanwhile,
there is an increasing number of medications, both branded and
generic on the market as the number of FDA-approved drugs
continues to increase.?’ At the same time, prescription medication
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usage is increasing; over 4 billion prescriptions were filled in
2017.2" In a given week, four out of five people take prescription,
over-the-counter, and supplementary medications, and one-third
of people will take five or more.> Medication usage is increasing
across age groups, particularly among the elderly. Of people aged
65 and above, nine of ten were on prescription medications within
the last 30 days.**?* In the same age group, the consumption of
multiple medications is common. Despite high rates of medication
usage, as a population, we are getting sicker. In 2012, about half of
the Americans had at least one chronic condition, and one in four
had multiple chronic conditions,®* a growing population that
frequently requires multiple medications. Thus, increasing medi-
cation usage across the population puts additional responsibility
on patients to take medications as prescribed and making
medication errors more likely outside hospital settings. Between
2003 and 2007, there was a 44% increase in calls to poison control
centers®®> with most of the increased calls relating to pill
identification. From 2000 through 2012, Poison Control Centers
in the United States received data on 67,603 exposures related to
unintentional therapeutic pharmaceutical errors that occurred
outside of healthcare facilities that resulted in serious medical
outcomes. The overall average rate of these medication errors was
1.73 per 100,000 population, resulting in 414 deaths, and there
was an increase from 3065 to 6855 during the 13-year study
period.?® In 2012, nearly 300k people called poison control
regarding medication error, 16% for taking the wrong
medication.?’

Due to the US intellectual-property law, drug manufacturers
own the physical characteristics of the medication, including size,
shape, color, texture, and aroma. The motivation behind this
legislation was to reduce opportunities for counterfeit medica-
tions. The unintended consequence today is that the patient may
experience wide ranges in pill appearance when refilling a
medication due to changes in generic brands. Currently, generic
medications are 70% of the US market, where some drugs (e.g.,
fluoxetine) can have over 10 variations of generics. It is easy to
imagine how the plethora of drugs and drug formulations can
create confusion that can negatively impact adherence, medica-
tion error, and complexity as part of a medication regimen.?®

Automated pill recognition. Recognizing the need to push for
innovation around automated pill identification, the NLM hosted a
Pill Image Recognition Challenge? in 2016. Although the challenge
deadline has already passed, the dataset provided offers valuable
consumer images, and the winning model offers a baseline for
improving upon pill recognition and identification task. The
dataset contains two types of images, one type imitating pictures
taken by mobile users and the other consisting of images
submitted by pharmaceutical companies to the NIH, which are
respectively referred as consumer and reference images. The
winner of NLM's pill challenge®® used an approach combining pill
localization based on simple gradients and morphology opera-
tions for reference images and support vector machine-based pill
detection operating over regions represented by a histogram of
oriented gradients®° for consumer ones, with pill identification
based on a modified deep-ranking®’ approach. The paper
authored by the challenge winners focuses to a large degree in
the creation of lighter mobile-ready versions of their base model.
Following the NLM challenge, two other deep-learning
approaches were proposed. Wang et al3? proposed a pill
recognition system using GooglLeNet Inception Network®® with
Canny edge detection®* for pill localization. Wong et al.*
proposed an AlexNet**-based approach. Remarkably, the authors
created their own dataset, consisting of 400 “commonly-used
tablets and capsules”. Though the orientation, position, and
lighting of these tablets are much more controlled than those in
the larger NLM dataset. This is also a classification-based
approach, as the survey of models that we present in the
Methods section.
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Apart from the deep-learning-based approaches, various
feature engineering methods have been proposed. For capturing
shape features, Lee et al>” proposed Hu moment®® and grid
intensity methods. Hu moment was also proposed by Cunha
et al* because of its rotation-invariant nature. Caban et al.*
proposed another rotation-invariant feature, which adds up the
distances from the centroid to the contour of the pill. Focusing on
imprint representation, Yu et al.*’ proposed Modified Stroke Width
Transform to obtain imprint stroke features. For color character-
istics, Caban et al.** proposed a HSV color histogram-based
method. A HSV color model was also employed in the studies by
Cunha et al*® and Yu et al.** to eliminate the disturbance of
luminance. With the hand-crafted features,*® Wong et al.®
reported 98.55% top-5 accuracy of 400 pills using Random
Forest.** The evaluation is based on the corrected images using
their color marker.

Our research revisiting automated recognition of pills is
motivated by current trends in healthcare relating to the
increasing administration of prescription medications in pill form;
the emphasis is on medication reconciliation as a quality and
safety initiative (the Centers for Medicare and Medicaid Services,
the Institute for Healthcare Improvement, and The Joint Commis-
sion's National Patient Safety Goals), and the great advances in
image classification in the last few vyears, thanks to new
developments in deep learning. We employ the data afforded
by the Pill Recognition Challenge to perform a series of
experiments that create and evaluate image classifiers powered
by different deep Convolutional Neural Network (CNN) models in
the task of recognizing pills from images. The results of these
experiments allow us to select the best model and parameter
configuration to create a proof-of-concept pill identification
service that already provides high-certainty predictions on the
set of pills that it was created. Our results, when considered for a
real-world pill identification implementation, dramatically outper-
form those of the deep-ranking-based approach of the challenge
winner. Thus, the experimetal results presented below made us
decide to continue with a traditional multi-class approach, as we
aim to increase the number of supported drug codes. Even so, we
are fully aware that at some point, we may need to consider
approaches based on extreme multi-label prediction or ranking to
support a much larger number of codes (currently several tens of
thousands).

RESULTS
Classification accuracy

The following recognition results abide to an experimental setup
that finds an optimal hyper-parameter configuration to learn each
model, which also provides a realistic and fair evaluation. This is a
very important consideration, given our desire to power a pill-
identification service with the resulting model. Details about the
dataset we employ and the differences between reference and
consumer pill images can be found in the Methods section. Our
protocol is comprised of using a hold-out set formed by 20% of
the consumer images set combined with a hyper-parameter
search consisting of a fourfold cross-validation (CV) on different
parameter value combinations for each CNN model-configuration
setup. The CV and final model learning are carried out with the
remaining 80% consumer images and all the reference ones.
Table 1 contains the top-1 and top-5 accuracy results obtained
in the best CV average (CV avg.) in the configuration search for
each model and (Evaluation) with the best configuration in the
hold-out consumer images. The CV results shown are for the
configuration with the highest top-5 CV avg of each model. A final
instance is learned with this configuration, which was then applied
to the hold-out test to obtain an estimate as close to the
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Table 1. Summary of model accuracy results on evaluation of consumer images where the correct image is the first result (Top-1), or within the first

Best CV avg. Evaluation Model

Top-1 Top-5 Top-1 Top-5 Avg precision Parameters [millions] Depth

Accuracy, % Accuracy, % All classes, %
ResNet50* 71.72 92.85 77.00 953 85.87 26.35 168
MobileNet*? 71.7 92.00 77.10 94.40 84.29 5.04 88
SqueezeNet>? 49.05 76.80 56.20 83.20 61.33 2.06 18
InceptionV354 74.42 93.30 76.30 94.80 85.94 26.56 159

The table also includes average precision of the model over all classes along with its total number of parameters to assess its complexity

performance of a service using any of these models in the real
world.

The Methods section includes details about the CNN models we
surveyed and the hyper-parameters value configuration we have
to find. We set up a hyper-parameter search space consisting of
value pairs from the Cartesian product [0.2,0.4] x[5x 107>, 1x
107* 5% 10 between predefined sets of drop-out and initial
learning-rate values. The configuration of each model with the
highest average performance in CV is then used to perform a final
model learning process, which is then evaluated on the never-
seen hold-out dataset of consumer images.

Inception V3 had the best average top-5 accuracy during CV,
closely followed by ResNet50 and surprisingly MobileNet. The two
leading models swapped the performance lead with the hold-out
dataset. It is also notable that MobileNet displayed performance
levels very close to these two top models that have five times the
number of parameters. SqueezeNet is the smallest and least
complex type of model that we evaluated for this domain, and it
clearly showed in its much lower level of performance. Though
not displayed in these results, SqueezeNet also had the largest
variance in CV accuracy during the hyper-parameter search with
one configuration only achieving 34.35% of top-5 accuracy.

As a baseline reference, the average top-1 and top-5 accuracy
reported in the MobileDeepPill*° are 26.0 +1.2% and 53.2 + 1.9%
for the single-CNN version, and 53.1+1.0% and 83.1 +0.9% for
the multi-CNN one based on a retrieval scheme. These metrics are
computed over fivefold CV partitioning by pills. Thus, they are not
directly comparable with the numbers in Table 1, since the
authors partition image data by pill, thanks to the retrieval-based
approach they propose; meanwhile, we only split sets by image. In
addition, they use the appearance-based identifiers defined in the
challenge, while we directly use NDCs as identifiers, which for
some pills, this means combining multiple appearances under the
same code, making our task more complex. Still, the MobileDeep-
Pill metrics work as an identification performance baseline when
considering which type of approach to apply for a real-world
deployment.

Precision analysis

Figure 1 contains the evaluation precision-recall (PR) curve plots of
each model calculated using per-class micro-averages. These plots
illustrate well the differences in the overall evaluation perfor-
mance between models. ResNet50 and Inception V3 have
practically identical PR curves and average precision scores.
MobileNet has a slightly lower identification performance due to
lower precision averages at a low-recall range.

ResNet50 detailed analysis

We now focus on the ResNet50 model, which displayed the best
evaluation performance in our setup, and which we already use in
our proof-of-concept implementation.

Scripps Research Translational Institute

We create t-SNE** visualizations (Fig. 2) of the final high-
dimensional hidden layer of the ResNet50 model of the hold-out
consumer images. By visualizing in 2d the model output, we see
that the CNN model detects groupings of similar pill categories of
color and shape, without explicitly including these features in the
model training.

We also created confusion matrices for this model's predictions
on the hold-out consumer images. First, we had created a
confusion matrix of NDC predictions as it is standard in reporting
classification performance, but given the model’s high perfor-
mance and the experiment’s high pill count, it was hard to make
out the details of it. Thus, we include two confusion matrices that
group the hold-out images by color and by shape of the
predicted-pill NDCs (Fig. 3) that have few images outside the
diagonal, since most of the mistakes made by the model are
intrashape and color. This is also clearly shown when looking at
the pills in which the model obtained its lowest average precision
scores.

Finally, we present the pills that had the lowest average
precision in Fig. 4. It is easy to understand the reason why these
particular pills are worsening the model performance. In fact,
groups of these pills in combination are the hardest for the model
since they are easy to confuse. Most of them have an engraved
imprint, which is more difficult to read. These pills are a clear
example of the intrashape and color mistakes indicated by the
confusion matrices above, since they all are either white round
tablets or capsules.

DISCUSSION

The results shown in our survey of the existing CNN technology
applied to pill identification demonstrate that recent advances in
Al make it feasible to mostly automate this task involving
pharmacies, patients, first responders, and care providers. In
general, this work serves as an example that one of the initial
impacts of Al in healthcare will be to streamline tasks, before
getting into supplanting care staff in complex and high-stake
tasks, such as diagnosing and prognosticating, if ever. On the
other hand, Al-powered tools like ours will allow care teams to
focus more on the patient increasing their productivity and
deceasing the risk of error. It is through these mechanisms that
our system can have an effect in the quadruple aim.

For the first proof-of-concept implementation of our pill
recognition service, we went with a Resnet50* model as the
final classifier. Both MobileNet and SqueezeNet are simpler deep
CNN-based classifiers aimed at running in mobile devices, which
provide an interesting contrast with our initial ResNet50 selection.
On the other hand, InceptionV3 has a network structure of
comparable depth and number of parameters. The results of this
evaluation are the basis from which we will select the type of
model to power the next iteration of our recognition service.
Current results indicate that ResNet50 continues to be a good

npj Digital Medicine (2019) 10
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Precision-recall curve plots on a hold-out set comprised from micro-averages of the precision values for each pill class. The plots in

clockwise order staring from the upper-left corner are produced by evaluating models learned with the best hyper-parameter configurations

for the ResNet50, InceptionV3, MobileNet, and SqueezeNet networks
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option, with Inception V3 and surprisingly MobileNet also having
comparable performance in this domain.

As future work, expanding the dataset for different camera
angles and configurations, and lighting conditions would be
required to ensure model performance in practice. The consumer
images in the competition dataset are challenging with various
lighting conditions; however, they are still relatively controlled
with the same layout and the camera angle. Expanding the
dataset with more pill types would be also important to support
more use cases. We plan to look into extreme classification®® and

Scripps Research Translational Institute

metric- learning®” techniques to handle a much larger range of
pills. Although our identification approach performed quite well
with 924 target pills, giving coverage to the tens of thousands
FDA-approved pills will be challenging. In addition, as the pills
with low average-precision score indicate (Fig. 4), it is necessary to
employ advanced OCR “in the wild” techniques (i.e, from
photographs of signs and lettering instead of documents) in
order to improve identification accuracy since many of these low-
precision pills are all but identical with the exception of their hard-
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Fig.5 Example synthetic images for the segmentation model training. These images are randomly generated with multiple backgrounds, pills
types, and lighting conditions to augment the training set for the segmentation model

to-read engraved imprint. These areas constitute two rich and
interesting avenues for future work.

We believe that current developments in Al make it possible to
create systems that will have an immediate impact in multiple
pharmacy and first-responder processes throughout the health-
care industry. These Al-powered systems and services have the
potential to change for the better how patients and healthcare
teams communicate and interact with each other, as well as, how
staff and practitioners are empowered by smart tools that help
them to be more efficient and accurate.

METHODS

Data and preprocessing

The Pill Image Recognition Challenge dataset consists of 7000 pill images
of 1000 pill types specifically designed for the contest. The images are
divided into 2000 reference images and 5000 consumer-quality ones.
Reference images have controlled lighting and background, while the
consumer-quality ones have variable conditions. Consumer images
additionally vary in focus and device type. They imitate the pictures taken
by users that would be sent to an automated pill-recognition system.

Labels based on National Drug Codes. The National Drug Code (NDC) is a
unique 10-or-11-digit, 3-segment number. It functions as a universal
product identifier for human drugs in the United States. Our implementa-
tion goals for recognizing pills require providing medication information
based on the predicted identity of the pills. Thus, we decided to use the
NDC label and product codes of the pills available as part of the challenge
dataset identifiers instead of the original labels provided by the NLM
dataset creators. Some pills in the dataset were put into different classes,
given that they are versions of the same NDC with different appearances.
Thus, as we changed into NDC-based labels, some of these pills merged
into a single group producing a 924-class dataset for our experiments.

Identification system overview

Pills are identified employing two deep-learning models in series. First, we
perform image segmentation isolating the pill from the background with a
blob-detection CNN and define a bounding box to crop a smaller image
that centers on the pill. Second, we employ a deep-learning-based
classifier to return a ranked list of drug codes based on matched likelihood
by the pill in the cropped image output by the initial stage. Figure 6 shows
the system architecture overview. In the following sections, we detail the
learning setup for the models of each stage. Next, we present the results of
the experiment we carried out, comparing multiple CNN models to select
which one we will use in our pill identifier implementation. We include
additional results deepening the performance evaluation of the selected
model.

Pill localization
Our pill localization approach consists of a blob-detection neural network
and morphological post processing. For the blob detector, we trained a
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fully convolutional network (FCN),*® which is a pixel-segmentation
algorithm. Since the NIH competition dataset does not provide the pill
localization data, e.g., bounding boxes, we generated synthetic images and
trained FCN only with the synthetic images. The segmentation perfor-
mance was evaluated indirectly through its effect on the overall
classification accuracy as a proxy.

Synthetic training images. We generated 100,000 synthetic images of size
480 x 640 for the segmentation model training. From the NIH reference pill
images, the background region with RGB color (117 +1, 117+1, 117+ 1)
was cropped. We collected various background images, including papers,
desks, carpets, and metal textures. They were taken mainly in indoor office
environments, but different lighting sources were used. The pill images
were superimposed on the background images with the following
parameters:

® 1-5 pills per image

360° rotation

20-50 px pill size

0-20 px drop shadow
Example synthetic images are shown in Fig. 5. During the model training
runtime, various image augmentations were applied, including contrast
and brightness adjustment, Gaussian-blur, and affine and perspective
transformation to increase variety in our training set.

Blob Detection Neural Network. Our blob detector takes an input image of
480x640x 3 and generates a predicted mask of 480x640x 1. The
network architecture differs from the original FCN model in terms of the
input image size and the number of output classes. However, we can still
leverage transfer learning using the ImageNet*® pre-trained weights
because FCN does not have any fully connected layers at the top. We
replaced the final softmax layer with the sigmoid layer as the output is only
two classes (pill and background). To improve the segmentation accuracy
around the pill boundaries, we increased the loss weight by two times
around the pill boundaries, which is a similar technique used in U-Net.>° An
Adam optimizer’’ was used with the initial learning rate of 1e—3. The
learning rate was decreased by multiplying 0.2 whenever a plateau in the
validation loss was detected. The network was trained until the
performance stopped improving. Given the predicted masks, we apply a
closing morphology operation of 10 px kernel to remove small blobs. For
the consumer images in the dataset, the detected blobs were dilated with
10 px kernel to avoid cutoff for difficult cases. The connected components
in the masks are extracted and passed to the next pipeline along with the
bounding boxes.

Identification model input

After the pills in an image have been found by the segmentation stage, a
tight bounding box is created around each pill to crop an image and scale
it into a 224 x224-pixel resolution. Note that we do not segment
the contour using the predicted masks to avoid cutoff but to also keep
the lighting context information in the background texture. The pills are
placed in a centered position and padding is inserted in order to maintain
the proportion of each pill while creating a square input image.

Scripps Research Translational Institute
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CNN models for identification

Deep CNNs have been proven successful in multiple tasks identifying
object categories in pictures taken with realistic conditions of varying
illumination, focus, and perspective. For this reason, we decided to employ
a classification framework instead of a similarity-based one, as it was
encouraged in the experimental setup of the pill recognition challenge
where we got the data for these experiments.

The main goal of this work is to reliably identify pills from images under
any imaging condition in order to provide accurate medication informa-
tion. As such, we chose classifiers that optimize obtaining the highest
accuracy rate with robustness to these challenges when users freely take
pictures.

To obtain the models for pill classification, we fine-tune starting from
model weights pre-trained on ImageNet. In this paper, we provide a
comparison between results of applying ResNet50, SqueezeNet,>> Mobi-
leNet,”> and InceptionV3** models as the final identifier. We modify the
original structure by removing the classification layers at the top, e.g., until
the last average pooling for ResNet50. We connect the output of this layer
with two sequential blocks, each consisting of batch-normalization, drop-
out, and dense layers. The rate of these new drop-out layers is left as a
hyper-parameter of each model training process. We use an Adam
optimizer’' whose initial learning rate constitutes the second hyper-
parameter whose value we will find by search. The rate is decreased to 0.2
every time learning stops after an epoch, as indicated by the validation loss
not decreasing. The weights for each model are all learned with the same
fine-tuning strategy starting from the pre-trained weights.

Pill-identification service implementation

The implementation of our pill identification service is composed of two
web-based APIs that handle segmentation first and then identification. The
APIs are hosted in separate Azure VMs with a Python implementation
based on the Flask framework, and using models with a TensorFlow>® back
end. The segmentation service locates pills in the image it receives as a
parameter. It responds with a list of bounding-box and confidence-score
pairs for all the pills it has found. The client is then responsible for cropping
the source image based on the received bounding boxes to obtain pill-
centered images. Requests to the identification service also require an
image as a parameter. These are expected to be generated from the first
API, since the identification model is trained and validated on images
generated with it. In particular, the second APl works on the assumption
that there is only one pill per image, roughly centered and covering a big
portion of its area. The service response consists of a ranked list of the top-
5 pill identity predictions of the model based on confidence. These
predictions consist of an NDC and a confidence-score pair for each of the
pill image possible medications. The ordered list of NDCs are combined
with related information from NLM Pillbox'® for the client-side conve-
nience, although it is optional. In terms of the runtime speed, API response
time from a 4G mobile network is estimated to be 0.14 s and 0.05 s for the
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Table 2. Runtime performance of our pill identification service
Model API end-to- APl end-to-
end (4G) end (3G)

GPU CPU GPU CPU GPU CPU

0.02s 1.04s
0.02s 0.22s

0.14s 1.21s
0.05s 0.28s

0.70s  1.67s
0.26s 0.42s

Detection API
Identification API

APl end-to-end performance was measured using a throttled network to
simulate 3G and 4G mobile networks

detection APl and the identification API, respectively. APl end-to-end
performance was measured using simulated 4G (upload 3.5 Mb/s, down-
load 4.0 Mb/s, 20 round-trip time) and 3G (upload 500 kb/s, download
750 kb/s, 100 RTT) mobile networks. An Azure VM with Nvidia Tesla V100
GPU and Intel Xeon CPU E5-2690 v4 (2.60 GHz) was used for running the
service. The details are shown in Table 2.

Here, we presented a prescription-pill identification method based on a
fully convolutional network (FCN) employed as a blob detector. One of the
benefits of using a fully convolutional network is that the background
textures can be removed from pill images using the predicted segmenta-
tion masks. Another advantage is that our approach can locate multiple
pills in an input image. This method is accurate, scalable, and rapidly
deployed as an API, and has direct applicability in medication reconcilia-
tion in addition to other use cases not limited to administration of
medications, adherence, and counterfeit detection, the latter estimated to
be a $75b challenge.”® While we believe that training and testing a model
on mobile images will likely result in a method that generalizes well,
further investigation is needed to study the efficacy of a similar technology
in a pharmacy, ER, or other healthcare (or clinical) setting. We demonstrate
with this use case the application of deep learning to empower patients
and care teams with tools that streamline tasks and directly impact all four
points of the quadruple aim:' improving the patient experience, outcome,
cost, and care-team experience.

Code availability

The experiments and data analysis were carried out using Python 3.5 with
the following openly available libraries: tensorflow 1.3.0, keras 2.0.8, numpy
1.15.0, opencv 3.4.2, and sklearn 0.19.0. The code to fine-tune the models
was based on the Keras neural network library available at https://keras.
i0.>” The tuning code is proprietary and might be available upon request
and under a nondisclosure agreement.
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Reporting summary

Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.
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