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ABSTRACT

We report a high-resolution time series study of
transcriptome dynamics following antimiR-mediated
inhibition of miR-9 in a Hodgkin lymphoma cell-
line––the first such dynamic study of the microRNA
inhibition response––revealing both general and
specific aspects of the physiological response. We
show miR-9 inhibition inducing a multiphasic tran-
scriptome response, with a direct target perturba-
tion before 4 h, earlier than previously reported, am-
plified by a downstream peak at ∼32 h consistent
with an indirect response due to secondary coher-
ent regulation. Predictive modelling indicates a ma-
jor role for miR-9 in post-transcriptional control of
RNA processing and RNA binding protein regula-
tion. Cluster analysis identifies multiple co-regulated
gene regulatory modules. Functionally, we observe a
shift over time from mRNA processing at early time
points to translation at later time points. We validate
the key observations with independent time series
qPCR and we experimentally validate key predicted
miR-9 targets. Methodologically, we developed sen-
sitive functional data analytic predictive methods to
analyse the weak response inherent in microRNA in-
hibition experiments. The methods of this study will
be applicable to similar high-resolution time series
transcriptome analyses and provides the context for
more accurate experimental design and interpreta-
tion of future microRNA inhibition studies.

INTRODUCTION

MicroRNAs (miRNA) are small RNAs providing a post-
transcriptional regulatory system which, when base-pairing
to a target gene, lead to message degradation and/or trans-
lational repression. miRNA transfection and inhibition
have been widely used to study miRNA target genes in var-
ious systems. However, the majority of these studies were
based on one or two time points, e.g. (1,2) and the dynam-
ics of the time series response following miRNA inhibition
has not been previously well studied. Here we report a high
resolution time series study of transcriptome dynamics fol-
lowing locked nucleic acid (LNA) anti-miR mediated inhi-
bition of miR-9 in a Hodgkin lymphoma (HL) cell-line at
17 time points over 112 h. We investigate both dynamic as-
pects of the miRNA post-transcriptional response, includ-
ing downstream interaction over time with transcriptional
regulatory systems, as well as changes in function induced
by the miR-9 inhibition response. The entire high resolution
time-series was repeated in total across four biological repli-
cate samples: we used a microarray dataset to produce a full
transcriptomic analysis for the overall exploratory analysis
on one sample, with three replicate quantitative polymerase
chain reaction (qPCR) time courses to validate the results
of specific findings from the exploratory analysis.

In a previous study (3), we applied functional data ana-
lytic (FDA) statistical analyses (4) to a miR-124 transfec-
tion dataset at a low time resolution (seven time points).
We found evidence of a multi-phasic response to miRNA
transfection, with direct miRNA targets showing an ini-
tial early downregulation of mRNA levels and with appar-
ent additional downregulation responses at ∼32 to 72 h,
which we hypothesized were due in part to coherent indirect
regulation. A limitation of this study was that the super-
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physiological levels of transfected miRNA may have not
been representative of typical physiological responses over
time and transfection raised the possibility of off-target ef-
fects. Also, the small number of time samples limited the
sensitivity to detect the response.

The current study is the first high resolution time series
study following miRNA inhibition. It utilizes a tiny LNA
(locked nucleic acid) anti-miR oligonucleotide, complemen-
tary to the 5′ end seed region of miR-9 (5), which forms
a high affinity duplex with miR-9 within the RISC com-
plex (6), functionally blocking its activity and leading to
de-repression of miR-9 target mRNAs (7,8). Thus miRNA
inhibition gives insight into a more physiological response
pattern of miRNA regulation and biological targets, with-
out off-target effects.

miR-9 is a conserved miRNA with three paralogous
genes (hsa-mir-9-1, hsa-mir-9-2 and hsa-mir-9-3), reviewed
in (9). Although miR-9 was originally characterized as a
brain-expressed miRNA (10), it is expressed in multiple tis-
sues, e.g. it is involved in immune regulation (11–14) and
is amongst the 10 most abundant miRNAs in the HL cell
line used in this study (15–17). miR-9 was chosen for this
experiment as it is involved in key pathways and in several
disease processes, and is a well-studied miRNA across mul-
tiple tissues with a substantial literature including examples
of validated direct targets and regulatory interactions. The
miR-9 LNA inhibition system in the cell line used in this
study has been previously validated (5).

Direct targets represent genes directly bound by miR-9-
loaded RISC complex and are here defined by predictions
using AGO-CLIP-Seq data; indirect targets are defined as
genes showing a downstream response to miR-9 inhibition
but which are not themselves directly targeted by miR-9. In
this study we show that the dynamic response to miRNA
inhibition involves an initial direct de-repression response
by 4 h, earlier than previously reported (1) and we give ev-
idence of widespread coherent downstream indirect ampli-
fication of this initial direct response at ∼32 h. We use the
time series data to predict miR-9 direct targets in HL cell
lines and analyse co-regulated modules. The predicted miR-
9 direct targets involve multiple roles in post-transcriptional
regulatory control, including small RNA processing with
DICER, TNRC6 and AGO3; message splicing with SRSF1;
message degradation with XRN1/XRN2; P-body message
storage with LSM14A; and a co-regulatory role by target-
ing of several RNA binding proteins, including QKI, PUM2
and RANBP2.

MATERIALS AND METHODS

Cell culture, transfection and miR-9 inhibition, and RNA ex-
traction

The HL cell line L428, was grown under standard condi-
tions in 5% CO2 at 37 ◦C in RPMI 1640-glutamax (Gibco,
Invitrogen) supplemented with 10% FBS (Hyclone, Thermo
Scientific). The L428 were transfected via unassisted up-
take (18) by adding LNA-antimiR-9 or LNA scramble
control oligonucleotides directly to the culture medium at
a final concentration of 10 �M. Total RNA was obtained
by TRIZOL (Invitrogen) extraction. For miR-9 inhibition

the following LNA oligonucleotides were used: 5’- AAC-
CAAAG -3’ to target miR-9 (hsa-miR-9-5p miRBase id,
matching miR-9 seed base positions 2–9) and 5’- TCAT-
ACTA -3’ as a negative control (see (5)). The LNA were
checked before the experiment by luciferase with the perfect
match reporter. The efficiency and specificity of the miR-9
inhibition was previously verified using the same LNA se-
quence, cell line and method ((19) Supplementary Figure
1 A): a sample was co-transfected with a (firefly) luciferase
reporter containing 2X perfect match miR-9 binding sites
and the normalized luciferase activity measured relative to
a renilla luciferase control. Comparing the normalized lu-
ciferase activity of the LNA sequence against the scram-
ble control sequence showed a relative luciferase activity
of ∼5.8. The oligonucleotides were retained in the medium
throughout the full time course of the experiment––overall
levels would be expected to decrease across the experiment
due to uptake by cells and dilution by cell growth. To mini-
mize potential confounding of the dynamic response by syn-
chronized cell-cycle effects, we ensured that the cells were
not synchronized by cell cycle during the experiment: the
cell line was subcultured 24 h before the LNA inhibition
at the initiation of the experiment to ensure that the RNA
sampling was during the culture exponential growth phase,
where the cells are desynchronized. The HL cell line used
here has a doubling time of 35 h, which gives an upper
bound on cell cycle generation time.

Experimental design: the full time course used for the mi-
croarray transcriptome-wide experiment was: 2, 4, 6, 8, 10,
12, 14, 16, 18, 20, 22, 26, 32, 40, 56, 80, 112 h post-miR-9
inhibition (0 h = LNA added). Each LNA-antimiR treated
cell-line sample was matched with an LNA scramble control
at each time point. Microarrays were Affymetrix HuGene-
1 0-st-v1. This overall time schedule was divided into two
intervals using independent cell cultures: one covering early
time points (2–20 h) and another covering later time points
(22–112 h).

Raw data were submitted to GEO with ID: GSE52710.

Normalization

All arrays passed standard quality checks. The data were
RMA normalized (20) across all arrays simultaneously and
log2 fold change (FC) against scramble LNA control was
computed. As RMA normalization assumes approximately
equal distributions across samples and can lead to residual
non-linear intensity-dependent biases when this does not
hold, especially when there is unequal distribution of up and
downregulated genes (21,22), we performed an additional
post-normalization step to further reduce inter-array tech-
nical differences: a loess fit to the mean curve of the M–A
plot of a large set of human house-keeping genes (23) was
centred by a non-linear correction of FC (M) depending
on mean gene expression (A). Low-expressed genes where
the loess fit was imprecise, defined as S.E. <0.02, were not
adjusted. This post-normalization step was necessary, as
demonstrated by Figure S13 showing a systematic bias at
4 h corrected by the post-normalization. Figure S14 shows
MA plots at all time points.
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Figure 1. Time-series curves of gene expression fold change (FC) following miR-9 inhibition show a multiphasic response, with initial miR-9-specific direct
target response occurring by 4 h. (A) Red curve shows the FC response (mean ± SE) for a set of genes computationally enriched for direct miRNA target
genes (see ‘Materials and Methods’ section for set definitions). This shows an initial direct inhibition response by 4 h and downstream responses. By
contrast, the blue curve shows FC response (mean ± SE) for a set of of genes enriched for indirect miR-9 target genes and does not show a substantial
4 h response. Asterisk denotes highly significantly (P < 1E-3) above background variance at other time points. Bands show SEM at each time point. (B)
Functional PCA of computationally defined sets, from top to bottom: miR-9 direct target set, miR-9 indirect target set, non-target set (see ‘Materials and
Methods’ section for set definitions). Shown are the first functional PCA harmonic which is the major variance component. Blue dashed line shows position
of first major variance peak. Orange and black lines demarcate the variation limits of the mean when this variance component is added. The three sets
show distinct dynamics with the major variance components commencing at progressively later time points for direct, indirect and non-targets, respectively:
direct targets show a large asymmetric variance at early time points of 4 h and later at 32 h; indirect targets show predominantly symmetric variance at 32 h
and non-targets show a major variance downstream after 40 h. (C) Significance of enrichment of miR-9 seeds relative to background, calculated separately
for each time point, in genes showing ≥1.5 FC response. There are two statistically significant peaks, with a highly significant enrichment at 4 h, and a
smaller, but still highly significant, peak at 32 h. This supports the hypothesis of an initial direct miRNA response at 4 h and a 32 h coherent secondary
response. (D) Predictive performance of gene expression FC in discriminating miR-9 direct and indirect target gene sets, estimated separately for each time
point. The highest predictive performance, measured by AUC of genes ranked by FC at each time point, is at 4 h. Good predictive performance is also
seen downstream at 32 h.
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Definition of model training sets

An initial training set of computationally predicted direct
miR-9 targets was defined by the set of predictions with
false discovery rate (FDR) <0.2 from the ‘Antar’ PAR-clip-
based miRNA target predictive model of (24) (with Phast-
Cons conservation score of the seed ≥0.9). An initial non-
target set was defined by the set of genes with no miR-9 seed
match (7 or 8-mer) in UTR or CDS and also not predicted
as miR-9 targets by the ‘Antar’ models of (24) (either the
PAR-CLIP or transfection based models) or TargetScanS
or PITA predictors. Importantly, the ‘Antar’ miRNA target
prediction model that was used to define the initial sets was
trained using AGO PAR-clip binding-sites and not trained
using expression data, so avoiding possible selection biases
confounding the later analyses of differences in expression
curve shape between putative targets and non-target gene
sets.

Non-specific filtering requiring a FC (absolute FC of
≥1.5) in the up or down direction at any time point was
used to define the subset of genes that responded with ei-
ther direct or indirect expression changes following miR-9
inhibition in HL cells. A final training set of putative direct
targets for the HL cell line was defined by applying this non-
specific filtering to the set of predicted direct miR-9 targets
as defined above, giving a training set size of N = 161. A
corresponding putative indirect target set (i.e. genes show-
ing some downstream response to miR-9 inhibition, but not
themselves directly targeted by miR-9) was defined by ap-
plying the same non-specific filtering to the non-target set
above, and then subsampling to match the size of the direct
training set. A putative non-target set representing genes
showing no substantial direct or indirect response was de-
fined by genes that did not pass the non-specific filter above
(i.e. not showing an absolute FC of ≥1.5 in the up or down
direction at any time point) and that were not predicted
miR-9 targets. It was then subsampled to be the same size
as the direct target set.

Functional data analysis

After normalization, the time series FC samples were con-
verted to continuous functions by spline-fitting: we used
a set of 19 B-spline basis functions of order 4 (for cubic
smoothing splines). Knots were located at the data points;
additional regularized smoothing, using a second derivative
roughness penalty (λ = 0.05) was applied (4).

The data were then subjected to an unsupervised, ex-
ploratory data analysis using functional principal compo-
nent analysis (PCA) (3–4,25) and a graph-based functional
clustering method (26). Functional PCA decomposes the
overall complex variance of each time course into separate,
simpler, ‘eigenfunction’ components ranked by fraction of
variance explained. The functional PCA sets were defined
as above (except using a non-specific filtering FC thresh-
old of ≥1.2 to ensure adequate set sizes). For the functional
clustering and functional predictive models, the individual
curves were additionally scaled to have the same root mean
square and then the functional inner product performed be-
tween the first derivative of the FC curves. This method
was designed to focus the analysis purely on curve shape, to

avoid confounding of the analysis by overall per-gene differ-
ences in expression and to avoid biasing the analysis toward
high differential expression genes only.

For a supervised predictive analysis, the computation-
ally defined direct and indirect miR-9 target sets as de-
fined above were used as training sets (except using a non-
specific filtering absolute FC threshold of ≥1.2 to ensure ad-
equate training set sizes). Functional non-parametric pre-
dictive models were based on a k-nearest neighbour classi-
fier using the functional inner product of the first deriva-
tive curves. Separate models were built for different phases
of the response: early models trained on 2–10 and 2–20 h
and a late model trained on 22–112 h, as well as a model
trained on all time points. The predictive performance of
the trained models was tested by 10-fold cross-validation
(CV) with area under the ROC curve (AUC) as performance
measurement (AUC is a measure of predictive performance,
ranging from 1.0 to 0.5 for perfect to random prediction,
respectively). Predicted miR-9 targets of this model were
defined as those with a high posterior probability (≥0.75)
and predicted miR-9 non-targets defined as those with low
posterior probability (≤0.25). Predicted miR-9 targets were
then ranked by FC at 4h. FDR estimates for the predictive
models were estimated by a shuffling procedure: the frac-
tion of false positives was estimated by applying the same
procedure to null sets defined by random sampling of genes
using exactly the same non-specific filtering cutoffs and pa-
rameters as for the real model.

To estimate the specificity of the miR-9 model, it was
compared against 2–10 h early models similarly trained us-
ing pooled ‘Antar’ miRNA target prediction sets for all non-
miR-9 miRNAs with prediction set size ≥150. Members of
these non-miR-9 training sets showing miR-9 or miR-9* 7-
mer seed matches in UTR or CDS were excluded, to min-
imize confounding by the effects of genes co-targeted by
miR-9. The final pooled non-miR-9 training sets were ran-
domly subsampled to match the size of the miR-9 training
sets and the predictive performance (AUC) of the models
compared.

Enrichment analyses

Gene set enrichment analyses were performed using
R/Bioconductor (27). Gene sets were defined using the fol-
lowing resources: miRNA seed and TF motif target genes
sets from MSigDB v 3.0 (28); RNA-binding protein (RBP)
target gene sets from (29) (see supplementary Table S2 for
details); TF gene sets from (30); RNA binding protein gene
sets from doRiNA (31); immune gene sets from http://www.
immport.org; ARE set from ARED (32). A set of highly sig-
nificantly enriched TF motifs and miR seeds was defined as
those that showed significant GSEA (P < 1E-4) at any time
point.

To analyse downstream targets of TFs, two subsets of
TFs were formed: those that are predicted targets of miR-
9 using the FDA predictive model; and those that are
predicted non-targets of miR-9. Corresponding TF target
gene sets were defined for these two TF subsets, based on
MSigDB v 3.0 (28), with target gene sets combined for all
TFs within each subset and TF target genes intersecting
both subsets excluded.

http://www.immport.org
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Experimental validation

To validate the reproducibility of the expression response
across independent biological replicates, time series qPCR
of selected predicted miR-9 direct target genes and control
non-target genes was performed across three independent
biological replicate cell cultures following LNA-antimiR-
9 inhibition using the identical protocol to the microarray
experiment, with identical sequences for the LNA-antimiR
and scramble controls. Life Technologies Fast Sybr Mas-
ter Mix and qPCR kit were used for qPCR; and high-
capacity cDNA Reverse Transcription Kit for RT, accord-
ing to manufacturer’s instructions; 1 �g RNA was used for
the reverse transcriptions, with RNA pooled from the bio-
logical replicates. The geometric mean of three housekeep-
ing genes––GAPDH, ACTB and YWHAQ––selected from
amongst the genes showing lowest FC variance across all
microarray time points and with no 7-mer miR-9 seeds in
UTR or CDS, were used in the denominator of the ��Ct
normalization (33), with no correction for primer efficiency
differences. The time schedule for the qPCR was 1, 2, 3, 4,
5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 26, 32, 40 h, with a higher
time resolution at the early time points than the microar-
ray experiment (3 and 8 h were subsequently excluded based
on quality filtering). All qPCRs were also repeated in three
technical replicates. Statistical significance of the 2–4 h peak
FC in comparison with the background level of gene activ-
ity across time was computed by one sample t-test of mean
FC from 2 to 4 h against mean FC of time points from 5 to
40 h.

To validate the predicted miR-9 targets, an affinity purifi-
cation (‘pull-out’) approach was used: low levels (2 nM) of
a biotin-tagged and thiouridine-labelled miR-9 were trans-
fected into the L428 HL cells, then in vivo cross-linked, then
miR-9 with its target messages was purified using strep-
tavidin beads. qPCR (n = 3) was used to measure the
enrichment of the target transcripts in biotin-tagged and
thiouridine-labelled miR-9 compared to non-thiouridine-
labelled controls, as in (5).

RESULTS AND DISCUSSION

The transcriptome-wide expression of antimiR-9 treated
HL samples was measured from 2 to 112 h post-inhibition.
Each LNA-antimiR treated cell-line sample was matched
with an LNA scramble control. The FC of the antimiR-9
samples relative to the corresponding scramble LNA con-
trols was computed for all annotated genes at each time
point and used in the following analyses. The sampling
schedule spacing was increasing with time, 2, 4, 6, 8, 10,
12, 14, 16, 18, 20, 22, 26, 32, 40, 56, 80 and 112 h, giv-
ing higher time resolution at early time points and coarser
resolution sampling at later time points to capture critical
early events (34). A transcriptome-wide analysis of this time
series dataset, Figure 1, revealed the following general fea-
tures of the inhibition response of miR-9.

Multiphasic time-course response is indicative of a multi-
layered regulatory process

We first used a non-tissue-specific computational miRNA
target predictor, ‘Antar’ (24), based on seed and flanking

sequence features, but not expression, with rigorous cutoffs
to define a small (N = 161) but high confidence training set
of predicted miR-9 direct targets. This training set of puta-
tive direct targets was used both for an initial exploratory
data analysis to investigate curve shape differences between
direct and indirect (causatively downstream) targets, and,
later, to train a predictive model specific to the HL cell line
used, based on the time-series expression data (see ‘Materi-
als and Methods’ section for formal set definitions).

As previously reported, experimental miRNA pertur-
bations typically lead to only moderate, e.g. ≈1.5, FC
in expression (1–2,6,8,35). Moreover, miRNA inhibition
typically leads to much smaller FC than miRNA over-
expression, e.g. three times lower FC (log2) reported for let-
7b (1), and our miR-9 inhibition data were consistent with
this. We required a minimum absolute FC threshold of 1.5 at
any time point to define a gene as showing some response to
the miRNA perturbation in the following exploratory anal-
yses.

Figure 1 A shows the mean response curve over (pre-
dicted) miR-9 direct targets compared with (predicted) in-
direct targets. The mean miR-9 direct target curve showed
two major peaks: an initial substantial upward peak at ∼4 h
(FC = 1.58) and a subsequent upward peak at ∼32 h (FC =
1.28). These peaks were significantly above the background
variation across other time points (4 h: P = 8E-9, 32 h: P =
9E-4; t-test). There were also smaller intermediate pertur-
bations at ∼14–16 h. By contrast, for predicted non-miR-9
targets, the mean indirect target curve showed no substan-
tial 4 h peak (FC = 1.08, P = 0.35) compared with direct
targets and a delayed downstream peak at 32–40 h (P =
7E-8). We hypothesize that this multiphasic response is due
to an initial direct miR-9 response at ≤4 h, leading to the
upward de-repression response expected of a miRNA inhi-
bition, followed by later, causally downstream, indirect re-
sponses.

This miR-9 inhibition multi-phasic response over time
is broadly similar to the miR-124 transfection response re-
ported in (3), indicative of a complex multi-stage regulatory
cascade (Figure S1). However, a major difference in this
study is that the response to antimiR-9 inhibition appears
as sharply delineated peaks, compared with the more dif-
fuse response of miR-124 transfection. We conjecture that
the super-physiological concentrations of miR-124 trans-
fection lead to sustained induced degradation, whereas the
competitive inhibition by antimiR-9 in this study perturbs
the physiological levels of miRNA, in which case cellular
homeostatic mechanisms likely act to return to pre-existing
levels more quickly after the initial perturbation, causing a
sharp initial impulse response.

To sensitively reveal overall differences in gene responses,
we used functional PCA (3) to give a high level decompo-
sition into variance components of the dynamic responses
of the direct, indirect and non-target sets of genes (Figure
1 B). These three sets showed strikingly different dynam-
ics progressively: direct targets showed a large asymmetric
variance at 4 and 32 h, indirect targets showed a delayed
major symmetric variance at 32 h and later, and non-targets
showed a major variance component much later, after 40 h.
These progressively delayed variance components support
that the 4 h response represents a direct miRNA effect and
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the 32 h response represents a downstream secondary re-
sponse and beyond 40 h represents further delayed down-
stream perturbations.

Direct target de-repression response occurs by 4 h

We further analysed the initial major peak occurring at 4
h after miR-9 inhibition, earlier than previously reported.
Several lines of evidence support that this peak represents a
direct miRNA post-transcriptional response. First, miR-9
7-mer seeds are significantly enriched at two time points: 4
and 32 h, with the most significant enrichment at 4 h, com-
pared with background (58 versus 35%; P-value = 1.8E-64,
binomial test), and with a lesser but still significant enrich-
ment at 32 h (51%; P-value = 1.5E-13) (Figure 1 C). Sec-
ond, we measured how well gene expression FC can dis-
tinguish miR-9 direct and indirect target sets at each time
point, measured by AUC (area under the ROC curve). We
found that FC can distinguish miR-9 direct and indirect tar-
get sets maximally at 4 h, with an AUC of 0.82 compared to
<0.74 at other time points (Figure 1 D), demonstrating that
the initial and most predictive miR-9 inhibition response
occurs within the first 4 h.

32 h peak represents secondary transcriptional coherent re-
sponses

Several lines of evidence support that the later 32 h peak
represents an indirect transcriptional response secondary to
the initial miRNA perturbation.

Regulatory control systems can be analysed in terms of
their simplest fundamental regulatory components and in-
clude feed-forward and feed-back mechanisms (36–39). Co-
herent feed-forward loops (FFL) occur when a regulator, e.g.
miRNA, changes the expression of a target through a direct
effect as well as through an indirect path via another regu-
lator in the same direction (Figure 2 A(i)). Coherent FFL
can allow a small initial control signal, such as a miRNA
direct response, to be converted into a larger longer-lasting
response (e.g. a transcriptional response) (40–42). In par-
ticular, a gene regulated by both a fast post-transcriptional
mechanism as well as a slower translational mechanism can
provide an overall faster and more precise response than
a simple single target mechanism. This fits with the con-
cept of miRNAs as a fine-tuning mechanism of gene ex-
pression, with overall levels being sustained by larger down-
stream transcriptional responses and with the direct ini-
tial response used for fast fine-tuning of expression levels
(2,35,43). In previous general computational studies of reg-
ulatory systems, it has been noted that FFL are more com-
mon than expected by chance (44,45) and there are pub-
lished examples of such coherent feed-forward regulation
whereby an initial miRNA effect is enhanced by a later tran-
scriptional response in the same direction (40,45–47). Feed-
back regulation (Figure 2 A(ii)) occurs when a target tran-
scription factor affects the transcription of the regulator it-
self. Positive feedback is amplifying (40), whereas negative
feedback is typically stabilizing.

In the regulatory model we hypothesize, miR-9 targets a
range of genes directly at 4 h and for these genes the ini-
tial post-transcriptional impulse response is amplified and

sustained downstream, at 32 h, by a coherent feed-forward
or feed-back transcriptional mechanism to give a sustained
biological effect, see Figure 2 A(i) and (ii). Additionally, by
32 h additional genes will be secondarily regulated by sim-
ple indirect regulation by miR-9 targetted TFs initiated at
4 h, see Figure 2 A (iii), and these indirect responses will
be a mix of up and downregulation depending on whether
activator or repressor TFs were involved.

Figure 2 A(iv) shows the results of simulating the feed-
forward and feed-back models. The TF dynamic responses
were modeled by the basic dynamic equation of (41,48),
dY
dt = β − α · Y, with production rate � and degradation
rate � for TF Y set to approximately match the experimental
results, with decay half life defined to be 10 h. The top panel
shows the initial expression impulse response at 4 h due to
LNA de-repression of miR-9. The second panel shows tran-
siently increased TF (protein) levels due to this miR-9 per-
turbation. The third panel shows the expression level of the
target gene, consisting of a 4 h peak due to the direct miR-9
de-repression and a secondary peak commencing once the
TF accumulates to reach an activation threshold for the tar-
get gene promoter (defined as 0.6 in this simulation), suffi-
cient to regulate the target gene. This causes a delay (dotted
line): for a TF, an upper bound on this delay is typically on
the order of one cell cycle generation time (40). By contrast,
the bottom panel shows the response for a simple indirect
regulation of a non-miR-9 target downstream gene by acti-
vator or repressor TFs: as it is not a miR-9 target it does not
show the 4 h de-repression peak but does show the delayed
downstream response.

For the experimental data, the heatmap (Figure 2 B and
Figure S5) shows genes having substantial up (red) or down
(green) response at either 4 h (≥1.5 absolute FC) or at 32
h (≥1.3 absolute FC) (N = 5278), demonstrating that 4 h
responses do indeed tend to be upregulated and to be fol-
lowed by upregulation responses at 32 h. To quantify this,
of the 2196 upregulated genes at 32 h, highly significantly
more genes were overlapped by preceding upregulation at 4
h than expected by chance (28% overlap, P = 9E-8, Fisher
test). This demonstrates that the 32 h upward peak is pre-
dominantly a downstream indirect response, as opposed to
an alternative hypothesis in which it represented a direct
miRNA response of a subset of genes for which the de-
repression was somehow delayed until 32 h, in which case
such delayed genes would not be predicted to show a pre-
ceding 4 h response. Conversely, when a 32 h response does
follow a 4 h direct miRNA response, it is overwhelmingly
coherent i.e. in the same upward direction: among the 1042
genes showing both upregulation at 4 h (≥1.5 FC) and up or
downregulation at 32 h (≥1.3 absolute FC), almost all genes
(98%) were upregulated at 32 h. These results are consistent
with the response curves, Figure 2 A(i) and (ii), of the hy-
pothesized model.

When comparing the number of genes showing an ab-
solute FC ≥1.5 up or downregulation at each time point
(Figure 2 C): the 4 h response shows a marked asymmetry
with predominantly upregulated genes (1303 up, 17 down;
P = 2E-16, binomial test of proportion difference > 10%),
characteristic of a direct post-transcriptional miRNA re-
sponse, whereas the 32 h time point shows a symmetric
mix of up and downregulation (489 up, 560 down; P = 0.9,
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Figure 2. Evidence for downstream 32 h peak representing a coherent secondary response. (A) Coherent feed-forward and feed-back models. In the feed-
forward model, (i), miR-9 directly targets a gene and also indirectly represses the same gene by targeting an (activator) transcription factor (TF) controlling
that gene. In the positive feed-back model, (ii), miR-9 directly targets a gene and also indirectly represses the same gene by targeting a repressor TF that
targets the miR-9 genes themselves. Such regulatory mechanisms can potentially amplify and sustain the miR-9 direct response. By contrast, (iii) shows
simple downstream indirect regulation of a gene without feed–back or feed-forward regulation. (iv) shows simulated time series response of the various
models. Top panel shows initial expression impulse response at 4 h due to LNA de-repression of miR-9; second panel from top shows increased TF (protein)
levels due to miR-9 perturbation; third panel shows expression level of the target gene in coherent feed–forward or feed–back regulation, with a 4 h peak
due to the direct miR-9 de-repression and a secondary peak commencing once the TF (gold) reaches an activation threshold (dotted line––0.6 in this case);
the bottom panel shows the response for the simple indirect regulation of a non-miR-9 target downstream gene (red = activator TF, blue = repressor TF).
x-axis = time in hours; y-axis = normalized protein or RNA levels. (B) Heatmap showing the distribution of genes with substantial FC response at 4 or at
32 h (absolute FC ≥ 1.5 at 4 h or ≥ 1.3 at 32 h), highlighting that substantial 4 h responses tend to be followed by upward responses at 32 h (red = induced;
green = repressed; rows sorted by 4 h response). (C) Number of up and downregulated genes with absolute FC ≥1.5 in antimiR-9 treated cells at each time
point. The peak at 4 h is asymmetric, with predominantly upregulated genes; the peak at 32 h is symmetric, with a mix of up and downregulated genes,
consistent with a TF-driven secondary response at this time. (D) Comparison of downstream FC response at 32 h of TF target genes regulated by TFs
predicted to be directly targeted by miR-9 (blue) compared with FC response of targets of TFs predicted not to be miR-9 direct targets (grey), The large
positive response for TFs targeted by miR-9 is consistent with coherent feed–forward regulation (analysis based on genes showing substantial response,
≥1.5 absolute FC, at any time point; error bars show SE). (E) The ratio of number of highly significantly enriched (P < 1E-4; GSEA) transcription factor
motifs to miRNA seeds across time. Four hours shows significantly enriched miRNA seed motifs but no significant TF motifs; 14 h shows substantial
enrichment of TF motifs relative to miRNA seeds; 32 h shows substantial enrichment of both (time points showing no significant miRNA or TF motif
enrichment not shown).
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binomial test of proportion difference > 10%), more con-
sistent with causally downstream indirect transcriptional
activator/repressor regulation i.e. due to a mix of Figure 2
A(i), (ii) and (iii) type responses. A similar result is seen in
Figure S3 which is based on all genes showing a substantial
response ≥1.5 up- or down-FC at any time point.

Both coherent feed-forward, Figure 2 A(i), and coherent
feed-back, A(ii), are plausible mechanisms contributing to
the observed 32 h peak. According to the coherent feed for-
ward model, TF genes that are part of such FFL will be
transcriptional activators and will be miR-9 targets, as will
the targets of their TF product. To investigate this further,
we divided transcription factor target genes into two sets:
those for which their corresponding TF gene is predicted
to be directly targeted by miR-9, compared with those for
which their corresponding TF gene is predicted not to be di-
rectly targeted by miR-9 (see ‘Materials and Methods’ sec-
tion). If coherent FFLs are a prominent mechanism then by
the FFL model we would expect the target gene sets of TFs
that are themselves targeted by miR-9 to have an enrich-
ment for miR-9 direct targets. By contrast, TF genes that are
not miR-9 targets cannot be part of such a coherent FFLs,
and so the target gene sets of these would not be expected
to be enriched for miR-9 direct targets. Indeed, we observed
weakly significant enrichment of predicted miR-9 direct tar-
gets amongst the TF targets of miR-9 controlled compared
with non-miR-9 controlled TFs (22.1 versus 18.0%; P =
0.03). We then compared downstream FC responses of the
targets of these two sets of transcription factors. The largest
FC difference was observed at 32 h with a significant up-
regulation (activator) response for genes targeted by miR-9
regulated TFs, compared to a smaller downregulation for
genes controlled by non-miR-9 regulated TFs (Figure 2 D).
These results are consistent with coherent feed-forward reg-
ulation being a contributing regulatory mechanism of miR-
9 in the HL cell line. A candidate TF potentially involved
in coherent feed-back mechanisms involving miR-9 is the
repressive transcription factor REST (aka NRSF) (Figure
S4), which is involved in validated examples of positive feed-
back involving miR-9 in other tissues. Notably, it is a pre-
dicted miR-9 direct target and is known to regulate miR-9
promoters to cause transcriptional gene silencing by histone
acetylation; miR-9-1 and miR-9-2 promoters have been re-
ported as REST targets in human and all three paralogues
in mouse (49–51).

As noted above, transcription factor and miRNA interac-
tion plays a major role in downstream coherent responses,
so we sought to further analyse gene co-expression changes
over time in TF and miRNA targets following miR-9 in-
hibition. We performed motif gene set enrichment analy-
ses (GSEA) based on ranking by FC at each time point
and found many significantly enriched known TF motifs
and miRNA seed motifs. To estimate the degree of signif-
icant miRNA target enrichment compared with transcrip-
tion factor target enrichment, we calculated the ratio of
the number of highly significant (P < 1E-4) TF motifs and
miRNA seeds from the GSEA at each time point (Figure 2
E and Figure S11). At 4 h we observed a significant enrich-
ment for only miRNA seeds and no enriched TF motifs, as
expected for perturbation of direct miRNA targets at this
time point. At 14 h we saw a substantial enrichment of TF

motifs relative to miRNA seeds, suggesting a first level of
downstream secondary responses of TF targets of miR-9
direct targets at this time. By 32 h enrichment of both TF
motifs and miRNA seeds was observed, consistent with a
later downstream coherent indirect response.

Taken together, the miR-9 inhibition results in this exper-
imental system indicate an early, ≤4 h, direct miRNA effect
followed by secondary indirect perturbations, with predom-
inantly coherent transcriptional regulation of the same di-
rect target genes later by ∼32 h, likely involving both feed-
forward and feed-back mechanisms.

miR-9 target prediction model trained on transcriptome dy-
namics

We next built a predictive model utilizing the high-
resolution time series data to identify miR-9 targets which
are functional in the HL cell-line. The high time-resolution
of this study allowed for the full utilization of FDA tech-
niques which can analyse the curve shape, and in particular
changes in curve derivatives over time (3), as features to in-
crease performance and robustness of the predictive model.
Such power is required to distinguish the smaller perturba-
tions induced by miRNA inhibition.

This required an initial training set for which we used the
‘Antar’ direct and indirect sets defined above. Note that the
‘Antar’ CLIP-seq-based predictive model of (24) is a gen-
eral non-tissue-specific predictor, which was trained using
miRNA target and contextual sequence features from AGO
CLIP-seq target sites and so did not use expression data for
training. By contrast, the FDA model incorporates as a fea-
ture the additional information provided by the time series
expression data, allowing for the training of a more sensi-
tive prediction model specific for the HL cell-line. This pro-
vides a more complete survey of miR-9 targets in HL than is
possible with a non-tissue specific genomic sequence-based
miRNA target predictor.

Although genes showing a larger FC are likely of bio-
logically importance, lower FC targets can also have a bi-
ologically substantial effect, for example by acting mainly
by blocking translation (1) or by simultaneously target-
ing several members of a key pathway (36). We aimed to
build a predictive model able to classify miR-9 target genes
even with low overall FC. This is particularly important for
miRNA perturbation studies which typically have moderate
FC. To do so we trained the model by extracting curve shape
only and normalizing away overall amplitude of response.
This ensured maximal sensitivity of the model to overall re-
sponse curve shape differences in the FDA analysis, which
avoided biasing prediction towards only target genes with
high FC responses. We defined high-confidence predicted
direct targets of the FDA predictive model as those with a
prediction posterior probability of ≥0.75 and defined high-
confidence predicted indirect targets by a posterior proba-
bility of ≤ 0.25. We then ranked these predicted targets by
the FC at 4 h and thresholded at a defined lower bound on
FC to form the final prediction set (Figure 3 B).

To focus on the initial direct target de-repression response
at ∼4 h, we trained the FDA predictive model using only
early time points from 2 to 20 h. The overall cross-validated
AUC for this early FDA predictive model was 0.76 (S.E.
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Figure 3. miR-9 predictive model trained on time series responses. (A) FC curves (mean ± SE) of high confidence predicted direct targets (≥0.75 posterior
probability) with FC ≥1.5-fold versus predicted indirect targets (≤0.25 posterior probability, black). Predicted direct miR-9 targets show an early 4 h peak
and a 32 h upregulatory coherent response, compared with no substantial response for predicted indirect miR-9 targets (grey). Asterisk denotes peaks
highly significantly, P < 1E-3, above background variance across all other time points. Bands show SEM at each time point. (B) Number of predicted
miR-9 direct targets with estimated false discovery rate at various FC thresholds at 4 h for the miR-9 prediction model. (C) Specificity of miR-9 predictive
model. Performance of the miR-9 FDA model (red) was compared to two models trained on other miRNAs: miRNAs sharing substantial co-targets
with miR-9 (Antar predicted target overlap >15%, blue) and miRNAs without substantial co-targets with miR-9 (Antar predicted target overlap <8%,
green). The miR-9 model shows a much better performance compared with the non-miR-9 models, giving evidence that the response is miR-9 specific.
The increased AUC of the non-miR-9 miRNAs showing computational evidence of miR-9 co-targeting (blue) to those without (green) is consistent with
the AUC increase of the blue set being due to computationally undetected miR-9 targets. Error bars show SE over 10 CV iterations. P-values calculated
by Hanley–McNeil estimation. (D) A model trained for miR-9 performs better than equivalent models trained for other miRs. Prediction performance of
models trained identically for all miRNAs with >150 predicted targets. The y-axis estimates the model specificity by the increase in predictive performance
(AUC) for the miRNA for which the predictive model was built, relative to the mean AUC for other miRNAs pooled. The predictive model for miR-9
is the most specific, demonstrating that the direct target response seen at 4 h is miR-9 specific. Other highly ranked miRNAs suggest co-targetting with
miR-9.

0.02), while a model built using all time points gave a simi-
lar AUC of 0.77 (S.E. 0.02), demonstrating that the majority
of the signal to distinguish direct and indirect miR-9 targets
is within the first 10 h. Further, the good predictive perfor-
mance of the FDA model validates that the initial training
sets were of high quality.

Consistent with the mean FC curves based on the train-
ing sets in Figure 1 A, the mean FC response curve over
the predicted high confidence miR-9 direct targets from this
FDA model (posterior probability ≥ 0.75) showed peaks at
4 and 32 h significantly above background levels, in contrast
to the high confidence indirect targets (posterior probability
≤ 0.25) which did not show a significant peak at 4 h (Fig-
ure 3 A). This result was robust to varying the FC threshold

from 1.5- to 2-fold, which did not change the overall target
response curve shape, see Supplementary Figure S2B.

Comparing the predicted targets from an early model
trained on 2–20 h with a late model trained on 22–112 h,
we observed a substantial 49% overlap, again supporting
that the majority of miR-9 direct targets are followed by a
coherent downstream response.

We further wanted to test the specificity of the FDA pre-
dictive model for miR-9. Figure 3 C shows that the predic-
tive performance of the trained miR-9 FDA model was sub-
stantially higher for predicting miR-9 targets compared to a
model predicting the targets of all other (non-miR-9) miR-
NAs pooled, indicating a miR-9 specific model. Figure 3 D
shows this increase in AUC for the miRNA used to train the
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Figure 4. Time series qPCR of selected positive and negative example genes. The time schedule for the qPCR was from 1 to 40 h with a higher hourly time
resolution at the early time points. qPCR over three pooled biological replicate samples was performed using the identical miR-9 inhibition protocol to the
transcriptome–wide study. The response of the three predicted miR-9 direct target genes REST, XRN1 and ONECUT2 and the mean of these (top panel)
qualitatively matched the major features of the response seen in the transcriptome–wide analysis (bottom panel), with an initial large peak at 2–4 h and a
mean upward peak at approximately 32 h. The mean FC from 2 to 4 h (purple highlight) of REST, XRN1 and ONECUT2 was significantly higher than
the background mean FC variance over the rest of the time course from 5 to 40 h (t-test). The qPCR analysis reveals that the early direct response peak
may initiate as early as 2–4 h. The negative control gene PRDM5 by contrast did not show a dominant peak at 2–4 h and the mean FC over 2–4 h was not
significantly higher than over 5–40 h.

model, relative to a background AUC over all other miR-
NAs, for predictive models trained independently for each
miRNA showing a substantial number (N ≥ 150) of pre-
dicted Antar targets. Notably, the specificity of the miR-9
FDA predictive model was the highest amongst all miRNA
FDA models. Note that the training and testing pipeline
was repeated identically for each of these non-miR-9 miR-
NAs, demonstrating in an unbiased manner that the time
series responses seen in the data are indeed a specific con-
sequence of the miR-9 inhibition and not due, for example,
to a non-specific effect on miRNA response. Notably, sev-
eral non-miR-9 miRNAs showed a predictive performance
above random levels which we hypothesize is a result of co-
targeting of genes by both miR-9 and multiple other miR-
NAs.

Predicted miR-9 targets in HL cell line indicate roles in RNA
processing and RBP regulation

To generate a complete list of predicted functional miR-9
targets specific for the HL cell line, we applied the trained
time-series FDA predictive model above to all genes. In to-
tal, the early 2–20 h FDA model predicted 921 miR-9 tar-
gets with posterior probability >0.75 and FC ≥1.5 at 4 h.

We estimated the FDR for the direct target predictions
using a shuffling approach, comparing with random back-
ground within this sample (see Methods). Figure 3 B shows
the FDR and number of predicted targets for various FC
cutoffs. An FC cutoff of 1.5 gave an FDR of <5%. Figure
S6 shows the miR-9 seed enrichment of the predicted miR-9

direct target sets at 4 h across varying FC cutoffs: all cutoffs
show highly significant miR-9 seed enrichment.

Of 33 published miR-9 targets validated across multiple
cell lines from several previous studies (Table S1), 13 were
predicted as functional targets in this HL cell line. These in-
cluded e.g. REST which has been shown to be involved in a
negative feedback loop involving REST silencing complex
in brain (50); and ALCAM which is regulated by miR-9 in a
negative auto-regulatory loop in hepatoma, possibly affect-
ing cell migration (52).

Several predicted targets are involved in post-
transcriptional regulation at multiple stages of RNA
processing including: DICER1 (5), AGO3 (EIF2C3) and
TNRC6B which are involved in miRNA function; SRSF1,
PRPF4B and NSRP1 which are involved in alternative
splicing; XPO4 which is involved in the nuclear export of
miRNA precursors; XRN1/2 which are involved in RNA
degradation; LSM14A which is involved in message storage
in P-bodies; and EIF5 which is involved in translation.
Seventy-eight predicted targets were RBP genes, including
QKI which is involved in RNA processing including
splicing; RANBP2 which is involved in nuclear transport;
and STAU1 which is involved in STAU1-mediated mRNA
decay. A total of 148 predicted targets were transcription
factor (TF) genes, including STAT4, ONECUT2, ELK4
and POU2F1 (aka OCT2), shown to be involved in
lymphocyte biology (53). Other notable targets include
those involved in cell cycle regulation, such as CENPF
and CEP152; DNA repair e.g. BRCA1; and the mTOR
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Figure 5. Experimental validation of selected predicted miR-9 targets: EIF5, SRSF1, LSM14A, XRN2 and STAU1. PRDM5 is a predicted non-miR-9
target as a control. (A–E) shows miR-9 pull-out validation. Biotin-tagged and thiouridine-labelled miR-9 was transfected into the L428 HL cells and qPCR
used to measure their ability to pull-down the corresponding messages, qPCR was normalized to input (see ‘Materials and Methods’ section for details).
‘miR-9 tU’: miR-9 labelled with biotin and containing 4-thiouridine, leading to pull-down; ‘miR-9 biotin’: miR-9 labelled with biotin only, as control;
‘miR-9 no biotin’: miR-9 only, as control. Error bars show SEM (n = 3). The corresponding mean dynamic response curves are shown (yellow highlights
the 2–10 h early time points). EIF5, SRSF1, LSM14A, XRN2 and STAU1 show significant miR-9 tU pull-down evidence of miR-9 targeting compared to
controls with biotin only or without biotin and the time series curves show the expected peak at 4 h. By contrast, the negative control PRDM5 time series
curve (F) does not show a characteristic peak at 4 h. (G–I) shows western blots for SRSF1, XRN2 and STAU1 validating translational induction compared
with the scramble control; the non-target PRDM5 by contrast shows no substantial change relative to control.

pathway e.g. RICTOR, FBXO9. See Supplementary Table
S1 for a full list of predicted targets.

Replicated time series qPCR confirms early miR-9 direct re-
sponse

To maximize the sensitivity of the FDA exploratory data
analysis for the fixed number of microarrays available, the
transcriptome-wide experimental design used above was
optimized to maximize time resolution against number of
biological replicates, see (34). To validate the reproducibil-
ity of the measured curve response across independent bio-
logical replicates, time series qPCR of selected positive and
negative example genes over three pooled biological repli-
cate samples was performed using the identical miR-9 inhi-
bition protocol (Figure 4). The time sample schedule for the
qPCR was 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 26, 32,
40 h which gave finer hourly time resolution at early time-
points. The response curves of the three predicted miR-9
direct target genes REST, XRN1 and ONECUT2, and the
mean over these, qualitatively matched the major features
of the response detected in the transcriptome analysis, with
an initial large impulse response peak at ≤4 h significantly
above background variation across other time points (mean
curve P = 2E-9; t-test) and an upward peak at ∼32 h signif-
icantly above background (mean curve P = 5E-5; t-test),
particularly pronounced for REST. The negative control

gene PRDM5, by contrast, did not show a substantial peak
at ≤4 (P = 0.9) or 32 h (P = 0.2). This time-series qPCR
analysis on selected target genes indicates that the initial
miRNA response may occur as early as 2–4 h.

Experimental validation of selected predicted miR-9 targets

Several computationally predicted targets involving key
RNA processing steps were experimentally validated:
SRSF1, LSM14A and EIF5, XRN2, STAU1. We used an
affinity purification approach, pull-out validation, in which
biotinylated and thiouridine-labelled miR-9 was transfected
into the HL cells and qPCR used to measure their ability
to pull-down the corresponding messages (see ‘Materials
and Methods’ section). This method has been used previ-
ously to validate targets of several miRNAs (5). We showed
that biotin-tagged and thiouridine-labelled miR-9 can effi-
ciently pull-out XRN2, SRSF1, STAU1, LSM14A and EIF5
compared to non-thiouridine-labelled controls, validating
them as direct miR-9 targets (Figure 5 A–E). Mean dy-
namic response curves of these target genes showed the ex-
pected peak at 4 h. Using western blots, we further con-
firmed that miR-9 efficiently regulates XRN2, SRSF1 and
STAU1 at a translational level while non-target PRDM5 did
not show substantial change relative to control (Figure 5 G–
I). PRDM5 is a predicted non-target and did not show a FC
peak at 4 h as expected (Figure 5 F).
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Figure 6. Functional clustering reveals distinct regulatory modules with varying dynamic response. (A) Mean FC curves for the two largest functional
clusters. Cluster 1 has a similar response to that of direct miR-9 targets and is highly enriched for miR-9 seeds. Cluster 15 is significantly enriched for
targets of the repressive TF REST/NRSF, showing a repressive response at 32 h. The background cluster shows the mean curve of genes not otherwise
classified into regulatory modules and shows no substantive response, demonstrating no substantial normalization artifacts between microarrays. Bands
show standard error at each curve position. (B) miR-9 target enrichment in each cluster. To avoid possible confounding by transcript length differences, we
compared miR-9 3’UTR target enrichment of each cluster against a subsample of the background cluster of the same size, with sampled genes matched to
have the same 3’UTR length distribution (mean of of 10 repetitions was reported). Cluster 1 is highly enriched for miR-9 targets, whereas the other clusters
show equality or depletion relative to background (blue line denotes background enrichment of 1.0).

Functional cluster analysis detects miR-9 regulatory modules

We next aimed to identify gene modules co-regulated by
miR-9 with similar dynamic responses. We used a functional
cluster analysis approach utilizing the full time series curves,
with the first derivative as a feature vector and we identi-
fied 135 functional clusters with ≥10 genes (15 large clusters
with ≥ 50 genes).

The largest cluster (cluster 1; N = 1798) consisted of
primarily miR-9 direct target genes. Genes in this cluster
showed substantial upregulation at 4 h and at 32 h (Fig-
ure 6 A), with a similar response to miR-9 direct targets
and showed a highly significant miR-9 seed enrichment in
both 3′UTR (2.1X; P = 1.4E-10) and CDS (1.5X; P = 2E-
9) compared to the background (Figure 6 B). Functionally,
the highest gene ontology (GO) or KEGG pathway enrich-
ment was for cell cycle (mitotic) functions (P = 3.3E-11);
ubiquitin-mediated proteolysis (P = 5E-6); and DNA repair
(P = 2E-16). An enrichment analysis for targets of RBPs us-
ing CLIP-seq datasets (see Materials and Methods’ section)
showed that this cluster is strikingly enriched for targets of
multiple RBPs predicted as miR-9 direct targets including
SRSF1 (P = 8E-105); AGO2-3 (P = 2E-66); TIAL1 (P =
8E-48); QKI (P = 4E-40); PUM2 (P = 2E-32); TIA1 (P =

6E-13). This suggests that RBPs may play a co-regulatory
role in the miR-9 regulatory mechanism. This cluster is also
highly enriched for AU rich elements (ARE) (P = 7E-5)
which are often found in 3′UTRs of cytokines and other
immune early response genes.

The second largest cluster (cluster 15; N = 1532) is, func-
tionally, enriched for proteinaceous extracellular matrix (P
= 3E-9); cell adhesion (P = 8E-5); NCAM1 cell adhesion
mediated interactions (P = 9E-5); and cell junctions (P =
4E-5). Notably, Hodgkin lymphoma is associated with scle-
rosis and fibroblast infiltration and miR-9 has previously
been reported to be involved in focal adhesion pathways in
collagen (54). This cluster showed a substantial negative FC
at 32 h (Figure 6 A), which we hypothesize is a downstream
simple transcriptional repressive response. This cluster was
the only cluster showing significant enrichment for targets
of transcriptional repressor REST (P = 2E-4).

The background ‘cluster’ (cluster 0; N = 4152), defined
as otherwise unclustered genes, had a miR-9 seed propor-
tion at background levels (38%) and showed a flat mean ap-
proximately centred at 0 as expected, supporting that there
were no substantial per-chip normalization artifacts con-
founding the analyses above. Additional time series mean
FC curves for example clusters are shown in Figure S7. A
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Figure 7. (A and B) CDS miR-9 targets show a substantial degradation response. (A) Cumulative distribution, at 4 h, of FC for genes with one or more
3′UTR or CDS miR-9 seeds, compared with genes with no miR-9 seeds, demonstrating an enrichment of miR-9 seeds in both CDS and 3′UTR. (B)
Decrease in FC on removing genes from an initial set of all genes showing ≥1.5 FC at 4 h (red). The genes excluded were those containing miR-9 7-mer
seeds in: 3′UTR (green), CDS (blue) and whole gene body (yellow), respectively. These were compared with controls (grey) which used a shuffled miR-9
seed sequence. Notably, removing CDS seed sites showed a substantial decrease in FC relative to randomized controls, while removal of 3′UTR seeds was
not greater than random control. Note that the randomized control seed sets also show a small systematic decrease in FC which is likely due to systematic
dependencies between FC and UTR/CDS length. (C) Heatmap of gene ontology (GO) functional enrichment based on expression FC across time. Red
= statistical significance. There is a functional shift from mRNA processing at early time points to translational terms at later time points. GO terms were
included where highly significant enrichment with P-value < 1E-7 occurred at any time point (see Figure S12 for full heatmap).

full table of clusters listing gene members is given in Sup-
plementary Table S3; a table of cluster gene set enrichments
is given in Supplementary Table S4; additional cluster de-
scriptions are given in supplementary results.

Dynamic functional genomics of miR-9 inhibition in HL cell
line

miR-9 seeds in coding regions lead to substantial message
degradation response. miRNA targets in coding regions
(CDS) have been shown to be extensive in AGO CLIP–
seq studies (55) and in some cases to have substantial ef-
fect on expression level (56). Several recent studies have sug-
gested that CDS sites have a less substantial effect on mes-
sage degradation compared with UTR sites (57). To quan-
tify the impact of CDS miR-9 target sites on our analysis,
we analysed the effect of CDS and UTR miR-9 target sites
for the size of the degradative response. Figure 7 A shows
the FC cumulative distribution, at 4 h, for genes with one or
more miR-9 seeds in 3′UTR or CDS, compared with genes
with no miR-9 seeds. Both 3′UTR and CDS seeds show a
marked enrichment in up-regulated genes. Notably, CDS
miR-9 seeds are more highly enriched than 3′UTR seeds
(3′UTR: 8-mer versus no seed: KS statistic = 0.12 P = 2E-7;
CDS: 8-mer versus no seed: KS statistic = 0.19; P ≈ 0)(see
Supplementary Figures S8 and S9 for similar plots at all
time points).

As 4 h demonstrates the major direct target response, we
further compared the FC at 4 h following sequential re-

moval of targets with 7-mer miR-9 seeds in 3′UTR, CDS
and both (Figure 7 B). We noted that FC is weakly pos-
itively correlated with 3′UTR length (Spearman correla-
tion coefficient = 0.27; P < 2E-16). As a longer UTR is
more likely to match a given seed sequence by chance, to
avoid possible confounding with sequence length FC dif-
ferences were compared with control analyses which used
randomly shuffled miR-9 miRNA sequence. Surprisingly,
the expression decrease on removing genes with CDS seeds
was substantially larger than random control, while remov-
ing genes with 3′UTR seeds was not greater than random
control, demonstrating that inhibition of miR-9 CDS seeds
in HL cell-line has a large effect on message degradation.
Removing genes with both 3′UTR and CDS seeds showed
the largest message degradation. Consequently, we have in-
corporated both CDS and 3′UTR seeds in relevant analyses
above.

GO enrichments show a progression from RNA process-
ing to translational terms. To investigate gene functional
changes across time following the miR-9 perturbation, we
further performed GO analysis independently at each time
point based on FC. This revealed two highly enriched terms:
RNA processing at early time points, with peak at 14 h,
and translation and ribosomal-related terms at later time
points, at ∼40 h (Figure 7 C and Supplementary Figure
S12). This gene function shift from RNA processing at early
time points to protein synthesis terms at later time points
is consistent with a regulatory cascade showing indirect
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downstream protein synthesis responses secondary to up-
stream RNA processing perturbations. Significant changes
in alternative splicing patterns of genes involving the mTOR
pathway were also evident downstream, see Supplementary
Figure S10.

CONCLUSIONS

We performed a high-resolution time series study of miR-9
inhibition in an HL cell-line which revealed physiological
aspects of the complex miRNA regulatory response over
time.

Dynamically, it revealed a multi-phasic response show-
ing a very early direct response within the first 4 h, enriched
for miR-9 seeds, followed by substantial downstream in-
direct responses at ∼32 h. This was further confirmed by
time series qPCR. These responses are consistent with co-
herent feed-forward or feed-back regulation being a typi-
cal mechanism of miRNA regulation, amplifying the initial
perturbation into larger sustained downstream responses,
involving transcriptional, and likely RBP-mediated post-
transcriptional, regulation. As evidence of this early direct
response, a predictive model trained on early data points
≤10 h could clearly distinguish a miR-9-specific signal.
Both this study and our earlier miR-124 study (3) have pro-
vided evidence for a downstream coherent response, sug-
gesting that such downstream amplification of an initial
miRNA perturbation may be a common feature of miRNA
transcriptome responses.

Functionally, this study revealed a changing physiolog-
ical response across time in response to miR-9 inhibition,
with the overall functional profile shifting from transcrip-
tional to translational processing. Target prediction re-
vealed that miR-9 is involved in regulating multiple stages
of the RNA life-cycle and post-transcriptional regulatory
mechanisms such as RBPs. Several key targets were val-
idated by biotin-tagged thiouridine-labelled miR-9 pull-
out and western blots. Functional clustering revealed large
miR-9-controlled regulatory modules involved in cell adhe-
sion and other functions.

Methodologically, we developed sensitive FDA predic-
tive methods designed to analyse the intrinsically weak sig-
nal of miRNA inhibition studies. Using a high-resolution
time series design allowed for more sensitive and specific
predictive models to be built than possible with single time-
point studies, with FDR estimates demonstrating a strong
signal above noise background. Functional cluster analysis
revealed a new catalogue of miR-9 driven regulatory mod-
ules in the HL cell-line showing specific functions and func-
tional predictive models provided a set of miR-9 targets in
the studied HL cell line. The methods of this study will be
applicable to high-resolution time series expression analy-
ses of other miRNAs and the increased understanding of
the dynamics following miRNA inhibition revealed by this
study provides the context for more accurate experimental
design and interpretation of future miRNA inhibition stud-
ies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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