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Abstract: Dynamic cumulative residual (DCR) entropy is a valuable randomness metric that may
be used in survival analysis. The Bayesian estimator of the DCR Rényi entropy (DCRRéE) for the
Lindley distribution using the gamma prior is discussed in this article. Using a number of selective
loss functions, the Bayesian estimator and the Bayesian credible interval are calculated. In order to
compare the theoretical results, a Monte Carlo simulation experiment is proposed. Generally, we
note that for a small true value of the DCRRéE, the Bayesian estimates under the linear exponential
loss function are favorable compared to the others based on this simulation study. Furthermore, for
large true values of the DCRRéE, the Bayesian estimate under the precautionary loss function is
more suitable than the others. The Bayesian estimates of the DCRRéE work well when increasing the
sample size. Real-world data is evaluated for further clarification, allowing the theoretical results to
be validated.

Keywords: Rényi entropy; Lindley distribution; Bayesian estimators; squared error loss function

1. Introduction

Reference [1] introduced the idea of the Rényi entropy as a measure of randomness
for Y. The Rényi entropy can be used to estimate the uncertainty in a random observation.
In the study of quantum systems, quantum communication protocols, and quantum
correlations [2,3], it has been extensively utilized. The probability density function (PDF)
g (.) and the distribution function (CDF) G(.) of the Rényi entropy with the order β is
given by

Ξ(β) = (1− β)−1 log

 ∞∫
−∞

gβ(y)dy

, β > 0, β 6= 1 . (1)

In recent times, several authors studied the statistical inferences for the entropy
measures using different distributions and sampling schemes (for example, [4–12]).

Alternative measurements of uncertainty for probability distributions in recent times
are of interest to many authors, especially in reliability and survival analysis studies.
Therefore, the cumulative residual entropy and its dynamic version have been proposed,
respectively, in [13,14]. The DCRRéE is defined as follows:

γR(β) = (1− β)−1 log

 ∞∫
t

Gβ
(y)

Gβ
(t)

dy

, β > 0, β 6= 1. (2)

where G(t) = 1− G(t) is the survival function (SF), and for t = 0, the DCRRéE leads to
the cumulative residual Rényi entropy. In the literature, few works have been regarded
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for the inferential procedures of DCR entropy for lifetime distributions. Properties of the
DCR entropy from the order statistics were presented in [15]. The cumulative residual
and past inaccuracy have been proposed in [16] as extensions of the cumulative entropies
for the truncated random variables. The Bayesian estimators of the DCR entropy of the
Pareto model using different sampling schemes have been studied in [17–19]. The Bayesian
inference of the DCR entropy for the Pareto II distribution was given in [20]. The Bayesian
and non-Bayesian estimators of the DCR entropy for the Lomax distribution were provided
in [21].

Reference [22] was the first to use the Lindley distribution to evaluate failure time
data, particularly in reliability modeling. It is also a good alternative to the exponential
distribution since it combines the exponential and gamma distributions. Hazard rates
might be increasing, decreasing, uni-modal, or bathtub-shaped, resulting in the modeling
of multiple lifetime data. The PDF of the Lindley distribution is

g(y; θ) =
θ2

θ + 1
(1 + y) e−θy ; y, θ > 0. (3)

The CDF and the SF of the Lindley distribution are given by

G(y; θ) = 1− e−θy[1 +
θy

θ + 1
]; y, θ > 0, (4)

and
G(y; θ) = e−θy[1 +

θy
θ + 1

]; y, θ > 0. (5)

The authors of [23,24] handled the properties and the inferential procedure for the
Lindley distribution. As a result, numerous writers have utilized the Lindley distribution
to predict lifetime data under intended circumstances; see [25–30] and the references
listed therein.

To generate random numbers from the Lindley distribution, we may use the fact that
the distribution, as given in Equation (3), is a mixture of exponential (θ) and gamma (2, θ),
with mixing proportions (θ/1 + θ) and (1/1 + θ), respectively. For generating a random
sample of size n, we have the following simulation algorithm:

(i) Generate Ui from uniform (0, 1), i = 1, 2, . . . , n.
(ii) Generate Qi from exponential (θ), i = 1, 2, . . . , n.
(iii) Generate Vi from gamma (2, θ), i = 1, 2, . . . , n.
(iv) If Ui ≤ θ/1 + θ then set Xi = Qi, otherwise, set Xi = Vi.

Since the last decade, the Lindley distribution has attracted the attention of researchers
for its use in several fields as well as for modeling lifetime data. Herein, we intend to discuss
the Bayesian inference of the DCRRéE for the Lindley model. The Bayesian estimators and
the Bayesian credible intervals of the DCRRéE under the gamma prior are derived. The
proposed estimators are obtained via the squared error (SE), linear exponential (LINEx), and
precautionary (PR) loss functions. The Markov Chain Monte Carlo (MCMoC) simulation
is utilized because the DCRRéE’s Bayesian estimator is complicated. A real data analysis
is given for illustration. We outline the paper as follows: Section 2 gives the formula for
the DCRRéE of the Lindley distribution; Section 3 offers the DCRRéE’s Bayesian estimator
of the Lindley distribution under the specific loss functions; a description of MCMoC is
provided in Section 4; and in Section 5, a real-world data application is shown. Using the
findings of our numerical investigations, we came to certain conclusions.
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2. Expression of the DCRRéE for the Lindley Distribution

This section presents the formula of the DCRRéE for the Lindley distribution. The
DCRRéE of the Lindley distribution is obtained by substituting Equation (5) into Equa-
tion (2) as follows:

γR(β) =
1

(1− β)
log

 1

Gβ
(t)

∞∫
t

e−θβy
(

1 +
θy

θ + 1

)β
 =

1
(1− β)

log

(
1

Gβ
(t)

I

)
, (6)

where I =
∞∫
t

e−θβy
(

1 + θy
θ+1

)β
dy. To obtain I, we use the transformation x = 1 + θy

θ+1 , then

we have

I =
(

1 +
1
θ

) ∞∫
1+ θt

θ+1

e−β(1+θ)(x−1)xβdx =

(
1 +

1
θ

)
eβ(1+θ)

∞∫
1+ θt

θ+1

xβe−β(1+θ)xdx. (7)

Let z = β(1 + θ)x, and then Equation (7) can be expressed as

I =
(

1 +
1
θ

)
eβ(1+θ)

[β(1 + θ)]β+1

∞∫
β(1+θ+θt)

zβe−zdz =
eβA(θ)Γ(β + 1, β A(θ))

θβ[A(θ)]β
, (8)

where Γ(.) stands for an incomplete gamma function and A(θ) = 1+ θ + θt. By substituting
Equation (8) into Equation (6), the DCRRéE for the Lindley distribution is expressed
as follows

γR(β) =
1

1− β
log

(
eβA(θ)Γ(β + 1, β A(θ))

θβ[A(θ)]β

)
. (9)

The DCRRéE requires this phrase for the Lindley distribution.

3. The Bayesian Estimation

Herein, the Bayesian estimator of the DCRRéE for the Lindley distribution is obtained
using the gamma prior. The Bayesian estimator is derived under the selected loss functions,
and the Bayesian credible intervals are computed.

A random sample of size n taken from the PDF (3) and the CDF (4) can be used if θ
is unknown. Then, the likelihood function of the Lindley distribution given the sample
y = (y1, . . . , yn), is given by

l
(

θ
∣∣∣y) =

θ2n

(θ + 1)n e
−θ

n
∑

i=1
yi n

∏
i=1

(1 + yi).

Let us assume that the prior of θ has a gamma distribution with the parameters (a, b)
with the following PDF

π(θ) =
ab

Γ(b)
θb−1e−θ a, a, b > 0.

This is how the posterior PDF of θ given the data can be expressed as

π(θ
∣∣∣y ) = k

ab θ2n+b−1

(θ + 1)nΓ(b)
exp

{
n

∑
i=1

ln(1 + yi)− θ
n

∑
i=1

yi − aθ

}
, (10)

where

k−1 =
∫ ∞

0

ab θ2n+b−1

(θ + 1)nΓ(b)
exp

{
n

∑
i=1

ln(1 + yi)− θ
n

∑
i=1

yi − aθ

}
dθ.
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The Bayes estimator of γR(β) under the SE loss function, denoted by γ̂SE(β), is
obtained as follows:

γ̂SE(β) =
∫ ∞

0 γR(β)π(θ
∣∣∣y ) dθ

= k
1−β

∫ ∞
0 log

(
eβA(θ)Γ(β+1,β A(θ))

θβ[A(θ)]β

)
ab θ2n+b−1

(θ+1)nΓ(b) exp
{

n
∑

i=1
ln(1 + yi)− θ

n
∑

i=1
yi − aθ

}
dθ.

(11)

Based on the LINEx loss function, the Bayes estimator of γR(β) says γ̂LINEx(β) is
given by

γ̂LINEx(β) = −1
ν ln[

∫ ∞
0 e−v γR(β) π(θ

∣∣∣y ) dθ], ν 6= 0,

= −1
ν ln

[
k
∫ ∞

0

(
eβA(θ)Γ(β+1,β A(θ))

θβ[A(θ)]β

) −v
β−1

ab θ2n+b−1

(θ+1)nΓ(b) exp
{

n
∑

i=1
ln(1 + yi)− θ

n
∑

i=1
yi − aθ

}
dθ

]
.

(12)

Using the PR loss function, the Bayes estimator of γR(β) says γ̂PR(β) is given by

γ̂PR(β) =
[∫ ∞

0 (γR(β))2 π(θ
∣∣∣y ) dθ

]0.5

=

[
k

1−β

∫ ∞
0

{
log

(
eβA(θ)Γ(β+1,β A(θ))

θβ[A(θ)]β

)}2
ab θ2n+b−1

(θ+1)nΓ(b) exp
{

n
∑

i=1
ln(1 + yi)− θ

n
∑

i=1
yi − aθ

}
dθ

]0.5

.
(13)

As previously stated, the analytical solution to Integrations (11–13) is extremely
difficult to acquire due to complex mathematical forms. To approximate these integrations,
the MCMoC technique is used. Furthermore, using the method described in [31], we obtain
the Bayesian credible intervals of γR(β). A credible interval is the Bayesian equivalent of a
confidence interval. The upper (U) and lower (L) credible limits are the U and L endpoints
of a credible interval, respectively.

The probability that a credible interval will contain the unknown parameter θ is called
the “confidence coefficient”. If we suppose the L and U credible limits, respectively, for the
parameter θ, then P (L < θ < U) = 1− η, where (1− η) 100 0

0 is the confidence coefficient.

4. Numerical Illustrations and Results

For the Lindley distribution at β = 0.5, a numerical analysis is conducted in this part
to examine the performance of the Bayesian estimates of γR(β). In Bayesian literature, the
Metropolis–Hastings (MH) algorithm (see [32]) is one of the most well-known subclasses of
the MCMoC technique for simulating deviations from the posterior density and producing
good approximation results. MCMoC simulations are run for selected sample sizes and
loss functions. R 4.1.1 will be used to run the MH algorithm.

The MCMoC method is used to generate samples from the posterior distributions
and then to compute the DCRRéE’s Bayesian estimators under the intended loss functions.
MCMoC schemes come in a wide range of options. Gibbs sampling and the more general
Metropolis-within-Gibbs samplers are a significant subclass of the MCMoC methods.

To pull samples from the posterior density functions and then compute the Bayesian
estimators, we use the following MCMoC technique, see Algorithm 1.

The hyper-parameters of the gamma distribution are specified as a = 2 and b = 1.
Choose v = (−1, 1) for the LINEx loss function, which represents underestimation and
overestimation, respectively. Using a sample size of 5,000, n = 30, 50, 70, and 100 are
generated from the Lindley model. The true values of the parameter values are chosen as
θ = (0.8, 1.5 , 2). The actual value of the DCRRéE measure is elected as γR(β) = 2.433289127,
1.025114899. 0.38237199 where t = 0.5, and γR(β) = 2.31065, 0.90832. 0.27434 where
t = 1.5. Measures including the RABs and the ERs of the Bayes estimates (Bes) of the
DCRRéE, along with the width (WD) of the Bayesian credible interval, are computed.



Entropy 2021, 23, 1256 5 of 15

Algorithm 1: Algorithm of MCMC

Step 1. Set initial value of θ as θ(0).
Step 2. For i = 1, 2, . . . , N = 1000 repeat the following steps:

2.1: Set θ = θ (i−1).
2.2: Generate a new candidate parameter value θ̀ from N (θ, Sθ).

2.3: Generate r = min
(

π(θ̀ |x)
π(θ |x) , 1

)
, where π(·) is the posterior density in Equation (10).

2.4: Generate a sample u from the uniform distribution U (0, 1).
2.5: Accept or reject the new candidate θ̀.{

I f u ≤ r setθ (i) = θ̀

otherwise setθ (i) = θ.

Step 3. Obtain the Bayesian estimator of θ and compute the DCRRéE function γR(β) with respect
to the loss functions as follows:

γ̂R(β) =
1

N −M

N

∑
i=M+1

γR(β, θ(i))

where M = 0.2 N is the burn-in period. We also found that the acceptance rate is equal to 0.85.
The formulas of relative absolute biases (RABs) and the estimated risks (ERs) are given

RABs =

N
∑

i=M+1
|γ̂i(β)− γi(β)|

M− N
andERs =

N
∑

i=M+1
(γ̂i(β)− γi(β))2

M− N
.

4.1. Numerical Results

The results of this study are presented in Tables 1–3 for the DCRRéE estimates at
t = 0.5, and Tables 4–6 give the simulation results for the DCRRéE estimates at t = 1.5.
Figures 1–4 also provide the numerical results. Accordingly, we may draw the following
conclusions about the DCRRéE estimates.

• As the θ value grows, the DCRRéE estimates appear smaller for a similar value of t.
• The DCRRéE estimates decrease with an increasing value of t for a similar value of θ.

At t = 0.5, the following notes can be recorded:
• The estimated risk of γ̂LINEx(β) at v = −1 picks the lowest values for n = 50 and 70

while the estimated risk of γ̂LINEx(β) at v = 1 picks the lowest values at n = 100. In
addition, the width of the credible interval for γ̂LINEx(β) at v = −1 takes the lowest
values for n = 100 (see Table 1).

• The estimated risk of γ̂PR(β) has the lowest values for all n values, and the width
of the credible interval for γ̂PR(β) picks the lowest values for all values of n except
n = 70 (see Table 2).

• At actual value γR(β) = 0.38237199 (θ = 2.0), the estimated risk of γ̂LINEx(β) at
v = 1 for all n values except at n = 100 has the lowest values. Moreover, the width
of the credible interval for γ̂LINEx(β) at v = 1 obtains the lowest value at n = 70 (see
Table 3).

• We can see from Figure 1 that the estimated risk for γ̂PR(β) at the true value γR(β) > 1
for n = 30 has the lowest values when compared to the other estimates, except at the
true value of γR(β) = 0.38237.

• Figure 2 indicates that the estimated risks of γ̂LINEx(β) at v = 1 have the lowest value
at γR(β) = 2.43328 when compared to the other estimates for n = 100.
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Table 1. Measures of Accuracy for DCRRéE at θ = 0.8, t = 0.5, and γR(β) = 2.433289.

n
SE LINEx (v = 1) LINEx (v = −1) PR

BE RAB ER WD BE RAB ER WD BE RAB ER WD BE RAB ER WD

30 2.42926 0.00166 0.06132 0.94796 2.42550 0.00320 0.06121 0.94596 2.43302 0.00011 0.06146 0.95129 2.42450 0.00361 0.06088 0.94389

50 2.42149 0.00485 0.04538 0.78382 2.41824 0.00618 0.04552 0.78713 2.42475 0.00351 0.04528 0.78514 2.41744 0.00651 0.04537 0.78679

70 2.41950 0.00567 0.03941 0.75725 2.41658 0.00687 0.03951 0.75845 2.42242 0.00447 0.03934 0.75966 2.41587 0.00716 0.03939 0.75794

100 2.43023 0.00126 0.02889 0.66839 2.42763 0.00233 0.02894 0.66955 2.43284 0.00018 0.02885 0.66541 2.42699 0.00259 0.02887 0.66919

Table 2. Measures of Accuracy for DCRRéE at θ = 1.5, t = 0.5, and γR(β) = 1.02511.

n
SE LINEx (v = 1) LINEx (v = −1) PR

BE RAB ER WD BE RAB ER WD BE RAB ER WD BE RAB ER WD

30 1.02767 0.00250 0.02292 0.59123 1.02535 0.00023 0.022793 0.59016 1.03000 0.00477 0.02306 0.59175 1.02610 0.00096 0.022787 0.59015

50 1.03075 0.00550 0.02128 0.56636 1.02856 0.00336 0.02123 0.56555 1.03295 0.00764 0.02135 0.56662 1.02928 0.00406 0.02121 0.56545

70 1.01934 0.00563 0.02024 0.54244 1.01716 0.00776 0.02025 0.53970 1.02153 0.00350 0.02025 0.54470 1.01788 0.00706 0.02021 0.54031

100 1.02838 0.00319 0.01682 0.48992 1.02636 0.00121 0.01676 0.49011 1.03041 0.00516 0.01689 0.49149 1.02702 0.00186 0.01675 0.48942

Table 3. Measures of Accuracy for DCRRéE for θ = 2.0, t = 0.5, and γR(β) = 0.38237.

n
SE LINEx (v = 1) LINEx (v = − 1) PR

BE RAB ER WD BE RAB ER WD BE RAB ER WD BE RAB ER WD

30 0.39342 0.02888 0.01409 0.45858 0.39158 0.02408 0.01403 0.45810 0.39525 0.03368 0.01415 0.45534 0.39249 0.02646 0.01404 0.45710

50 0.38557 0.00835 0.01334 0.43146 0.38381 0.00377 0.01330 0.43208 0.38732 0.01294 0.01339 0.43187 0.38468 0.00604 0.01331 0.43033

70 0.38513 0.00721 0.01254 0.42933 0.38347 0.00287 0.01252 0.42705 0.38679 0.01156 0.01257 0.42750 0.38429 0.00503 0.01257 0.42820

100 0.38601 0.00952 0.01141 0.41235 0.38437 0.00522 0.01140 0.41399 0.38766 0.01383 0.01142 0.41399 0.38519 0.00736 0.01139 0.41346
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Table 4. Measures of Accuracy for DCRRéE for θ = 0.8, t = 1.5, and γR(β) = 2.31065.

n
SE LINEx (v = 1) LINEx (v = −1) PR

BE RAB ER WD BE RAB ER WD BE RAB ER WD BE RAB ER WD

30 2.34019 0.01279 0.05839 0.92243 2.33632 0.01111 0.05811 0.92058 2.34407 0.01446 0.05871 0.91961 2.33524 0.01064 0.05774 0.91789

50 2.29427 0.00709 0.04883 0.86754 2.29102 0.00850 0.04888 0.86787 2.29753 0.00568 0.04880 0.86563 2.29020 0.00885 0.04869 0.86675

70 2.29300 0.00764 0.03709 0.74947 2.29013 0.00888 0.03725 0.75022 2.29586 0.00640 0.03695 0.74925 2.28945 0.00918 0.03717 0.74970

100 2.28540 0.01093 0.03098 0.65564 2.28284 0.01204 0.03112 0.65423 2.28797 0.00982 0.03087 0.65897 2.28222 0.01230 0.03106 0.65275

Table 5. Measures of Accuracy for DCRRéE for θ = 1.5, t = 1.5, and γR(β) = 0.90832.

n
SE LINEx (v = 1) LINEx (v = −1) PR

BE RAB ER WD BE RAB ER WD BE RAB ER WD BE RAB ER WD

30 0.91976 0.01260 0.02292 0.56958 0.91744 0.01005 0.022792 0.56538 0.92208 0.01515 0.02306 0.57188 0.91819 0.01087 0.022788 0.56644

50 0.91339 0.00559 0.02011 0.54160 0.91124 0.00322 0.02092 0.53828 0.91555 0.00796 0.02021 0.54329 0.91194 0.00399 0.02091 0.55795

70 0.89959 0.00961 0.02005 0.54054 0.89749 0.01192 0.02081 0.53003 0.90169 0.00730 0.02011 0.53211 0.89820 0.01114 0.02076 0.54979

100 0.91480 0.00714 0.01771 0.51330 0.91285 0.00499 0.01765 0.51441 0.91675 0.00928 0.01779 0.51429 0.91349 0.00569 0.01764 0.51315

Table 6. Measures of Accuracy for DCRRéE at θ = 2.0, t = 1.5, and γR(β) = 0.27434.

n
SE LINEx (v = 1) LINEx (v = −1) PR

BE RAB ER WD BE RAB ER WD BE RAB ER WD BE RAB ER WD

30 0.28367 0.03401 0.01306 0.43538 0.28192 0.02763 0.01296 0.43471 0.28542 0.04039 0.01318 0.43649 0.28278 0.03077 0.01300 0.43461

50 0.27769 0.01221 0.01285 0.43401 0.27596 0.00591 0.012817 0.43286 0.27942 0.01853 0.01290 0.43440 0.27682 0.00903 0.01282 0.43410

70 0.28249 0.02972 0.01277 0.43031 0.28072 0.02326 0.01272 0.43063 0.28427 0.03620 0.01283 0.42760 0.28160 0.02646 0.01273 0.43075

100 0.28390 0.03486 0.01145 0.41154 0.28225 0.02883 0.01140 0.40894 0.28556 0.04089 0.01150 0.41205 0.28307 0.03182 0.01141 0.41037
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The following are the notes that may be found at t = 1.5:

• The estimated risk of γ̂LINEx(β) at v = −1 obtains the lowest values at n = 70 and 100
while the estimated risk of γ̂PR(β) has the lowest values for n = 30 and 50. The width
of the Bayesian credible interval for γ̂LINEx(β) at v = −1 is the smallest in comparison
with other estimates for n = 50 and 70 (see Table 4).

• At n = 30 and 100, the estimated risk of γ̂PR(β) has the lowest values, while the
estimated risk of γ̂SE(β) has the lowest values at n = 50 and 70. The width of the
Bayesian credible interval for γ̂LINEx(β) at v = 1 is the shortest compared to the others
via the SE and PR loss functions, except at n = 100 (see Table 5).

• We can see from Figure 3 that the estimated risk of γ̂PR(β), at n = 30 holds the lowest
values for all actual values of γR(β),, except at γR(β) = 0.27434.

• For a large sample size (n = 100), the estimated risks for γ̂LINEx(β) at v = 1 obtain the
lowest value at actual value of γR(β) = 0.27434, 0.90832, as shown in Figure 4.

• We conclude from Table 6 that the estimated risks of γ̂LINEx(β) at v = 1 provide the
lowest values for all values of n. Moreover, the width of the Bayesian credible intervals
for γ̂LINEx(β) at v = 1 takes the lowest values with respect to all possible values of n,
except at n = 30 and 70.

• Figures 5–7 represent trace plots, histograms, and convergences for γR(β) estimates
using the MH algorithm.

4.2. Application

Here, we demonstrate the technique described in the preceding section by using an
actual data set that represents the waiting times (in minutes) before receiving service for
100 bank customers. Reference [23] discussed the detailed statistics that showed the data
fitted the Lindley distribution. Figures 8 and 9 provide plots of fitted PDF and CDF for
the data under consideration. The Bayes estimates of the DCRRéE at t = 0.5 and 1.5 at the
intended loss functions are reported in Table 7.
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As expected, the DCRRéE estimators for the proposed loss functions decrease with
time, as seen in this example.
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5. Concluding Remarks

The Bayesian estimators of the DCRRéE for the Lindley distribution are investigated in
this study. The Bayesian estimators of the DCRRéE for the Lindley model are thought to be
produced by both symmetric and asymmetric loss functions. The MCMoC method is used
to calculate the Bayesian estimator and the Bayesian credible intervals. The behavior of the
DCRRéE estimators for the Lindley distribution is evaluated using some precision criteria.
Real-world data and simulation concerns are addressed. Regarding the outcomes of the
study, we conclude that for small actual values of the DCRRéE, the estimated risk and width
of the Bayesian credible intervals of the DCRRéE estimates under the linear exponential
loss function are often fewer than those based on the squared error and precautionary loss
functions. At t = 0.5, the width of the Bayesian credible intervals for the DCRRéE estimates
via the linear exponential loss function is less than the others via the squared error and
precautionary loss functions for a sample size of large values and large actual values of the
DCRRéE. However, at t = 1.5, the width of the Bayesian credible interval for the DCRRéE
estimates via the precautionary loss function is smaller than the equivalent estimates via
the squared error and linear exponential loss functions. For small DCRRéE values, the
Bayesian estimates via the linear exponential loss function are preferable to other estimates
under the squared error and precautionary loss functions. However, for a high true value
of the DCRRéE, the Bayesian estimates under the precautionary loss function are preferable
to the other estimates via the loss functions chosen.
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Acronyms & Abbreviations

BEs Bayes estimates
CDF Cumulative distribution function
DCR dynamic cumulative residual
DCRRéE dynamic cumulative residual Rényi entropy
ER Estimated Risk
LINEx Linear exponential loss function
L Lower credible limit
MCMoC Markov Chain Monte Carlo
MH Metropolis–Hastings
PDF Probability density function
PR Precautionary loss function
RABs Relative absolute biases
SE Squared error loss function
SF Survival function
U Upper credible limit
WD Width of credible intervals
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