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Abstract
Introduction Recently we demonstrated that genetic or
pharmacological suppression of the central ghrelin signal-
ing system, involving the growth hormone secretagogue
receptor 1A (GHS-R1A), lead to a reduced reward profile
from alcohol. As the target circuits for ghrelin in the brain
include a mesolimbic reward pathway that is intimately
associated with reward-seeking behaviour, we sought to
determine whether the central ghrelin signaling system is
required for reward from drugs of abuse other than alcohol,
namely cocaine or amphetamine.
Results We found that amphetamine—as well as cocaine-
induced locomotor stimulation and accumbal dopamine
release were reduced in mice treated with a GHS-R1A
antagonist. Moreover, the ability of these drugs to condition
a place preference was also attenuated by the GHS-R1A
antagonist.
Conclusions Thus GHS-R1A appears to be required not only
for alcohol-induced reward, but also for reward induced by
psychostimulant drugs. Our data suggest that the central
ghrelin signaling system constitutes a novel potential target for
treatment of addictive behaviours such as drug dependence.
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Introduction

Since its discovery in 1999 (Kojima et al. 1999), the
stomach-derived hormone ghrelin has been studied exten-
sively in the context of appetite and energy balance
regulation (Nogueiras et al. 2006). It seems clear that
ghrelin exerts its orexigenic and pro-obesity effects by
interacting with discrete hypothalamic cell groups that
include leptin-responsive circuits in the arcuate nucleus,
such as the neuropeptide Y cell group (Dickson and
Luckman 1997; Hewson et al. 2002; Nogueiras et al.
2006). Recently, however, we and others have reported that
ghrelin also activates key CNS pathways involved in
reward, that include the mesolimbic dopamine system
(Abizaid et al. 2006; Jerlhag et al. 2006) and, more
specifically, the cholinergic–dopaminergic reward link
(Jerlhag et al. 2007, 2008). By this route, ghrelin may
increase the incentive value of both natural and artificial
rewards and hence, increase reward-seeking behavior.

The emerging neurobiology of central ghrelin signaling
system indicates that it may serve as a common denomi-
nator to enhance search for rewards such as drugs of abuse
and rewarding foods. This is evidenced, in part, by human
function imaging studies in which ghrelin was shown to
alter the brain response to visual food cues, most markedly
in the ventral striatum, an area also activated by psycho-
stimulant drugs (see e.g. Wise and Bozarth 1987; Malik et
al. 2008). In rodents, ghrelin has been shown to increase
foraging for food (Keen-Rhinehart and Bartness 2004), to
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enhance cocaine-induced locomotor stimulation, to condi-
tion a place preference for cocaine, and to induce cocaine-
seeking behaviors (Wellman et al. 2005; Davis et al. 2007;
Tessari et al. 2007). Recently, we demonstrated that central
ghrelin signaling system is required for alcohol reward;
we found that the ability of alcohol to increase locomotor
activity, to induce accumbal dopamine release, and to
condition a place preference were abolished in ghrelin
receptor growth hormone secretagogue receptor 1A
(GHS-R1A) in knockout mice and also in mice treated
with two different GHS-R1A antagonists (Jerlhag et al.
2009). In the present study, such tests were also used to
determine whether the central ghrelin signaling system is
required for the rewarding properties of cocaine and
amphetamine in mice treated peripherally with a GHS-
R1A antagonist.

Materials and methods

Animals

Adult post-pubertal age-matched male NMRI mice (8–
12 weeks old and 25–40 g body weight; B&K Universal
AB; Sollentuna, Sweden) were used for studies of locomo-
tor activity, dopamine release, and conditioned place
preference (CPP) testing, as such studies are well docu-
mented in this strain (Jerlhag et al. 2006, 2007, 2008;
Jerlhag 2008). All mice were maintained at 20°C with 50%
humidity and a 12/12 h light/dark cycle (lights on at 7 a.m.).
Tap water and food (Normal chow; Harlan Teklad;
Norfolk, England) were supplied ad libitum, except during
the experimental setups. Studies were approved by the
Ethics Committee for Animal Experiments in Gothenburg,
Sweden

Drugs

Dex-amphetamine sulphase (RBI; Natick, USA) was dis-
solved in vehicle (0.9% sodium chloride solution) and was
administered intraperitoneally (i.p.) at a dose of 2 mg/kg
10 min prior to initiation of the experiment. Cocaine
(Sigma; St Louise, USA) was dissolved in the vehicle
(0.9% sodium chloride solution) and was administered i.p.
at a dose of 10 mg/kg 10 min prior to the initiation of the
experiment. Similar doses have been used previously to
induce an activation of the mesolimbic dopamine system,
as measured by locomotor activity and accumbal dopamine
release in rats (Wise and Bozarth 1987). The selected dose
of JMV2959 (synthesized at the Institut des Biomolécules
Max Mousseron, UMR5247, CNRS, Montpellier 1 and 2
Universities, France), a GHS-R1A antagonist, was deter-
mined previously (6 mg/kg, i.p.) (Jerlhag et al. 2009). This

dose was used in all studies and was always administered
10 min prior to drug exposure. Indeed, it has been
established that this compound, when administered periph-
erally, is a GHS-R1A antagonist and suppresses food intake
induced by ghrelin or by the GHS-R1A agonist, hexarelin
(Moulin et al. 2007; Salomé et al. 2009). Previous radio-
ligand binding studies have also established that JMV2959
is a GHS-R1A antagonist (Moulin et al. 2007). JMV2959
was dissolved in vehicle (0.9% sodium chloride solution).
All drug challenges were part of a balanced design with
regard to both the treatment order and the number of
subjects per treatment. For all drug challenges, 0.9%
sodium chloride solution was used as vehicle.

Locomotor activity experiments

Amphetamine- or cocaine-induced locomotor stimulation
was measured as most drugs of abuse cause locomotor
stimulation, an effect mediated, at least in part, by their
ability to enhance the extracellular concentration of
accumbal dopamine (Engel et al. 1988, 1992). Such
parameters have been suggested to be homologous effects
evolving from a common mechanism involving the dopa-
minergic reward system, implying that these parameters
reflect reward induced by drugs of abuse (Engel et al. 1988;
Imperato and Di Chiara 1986; Wise and Bozarth 1987). It
should, however, be emphasized that several other neuro-
stransmitter systems may mediate drug-induced locomotor
stimulation (Engel et al. 1992). Whereas CPP-testing
demonstrates drug-induced reward more directly, locomotor
stimulation provides an indirect, yet supportive measure.
Locomotor activity was recorded as described previously
(Jerlhag et al. 2006).

Locomotor activity was registered in eight sound-
attenuated, ventilated, and dimly lit locomotor boxes
(420×420×200 mm, Kungsbacka mät- och reglerteknik
AB, Fjärås, Sweden). Five by five rows of photocell beams,
at the floor level of the box, creating photocell detection
allowed a computer-based system to register the activity of
the mice. Locomotor activity was defined as the accumu-
lated number of new photocell beams interrupted during a
60-min period.

Mice were allowed to habituate to the locomotor activity
box 1 h prior to drug challenge. In separate experiments,
the effects of the i.p.-administered JMV2959 (6 mg/kg) on
amphetamine (2 mg/kg, i.p.) or cocaine (10 mg/kg, i.p.)
locomotor stimulation was investigated in mice. All mice
received drug treatment only twice (GHS-R1A antagonist/
vehicle and psychostimulant drug/vehicle). Neither water
nor food was available to the mice during the locomotor
experiments. The activity registration started 5 min after the
last injection and was subsequently measured for a 60-min
period.
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In vivo microdialysis and dopamine release measurements

For measurements of extracellular dopamine levels (that
reflect dopamine release), mice were implanted unilaterally
with a microdialysis probe positioned in the nucleus
accumbens (NAcc). The surgery was performed as de-
scribed thoroughly elsewhere (Jerlhag et al. 2006). In brief,
the mice were anesthetized with isofluran (Isofluran Baxter;
Univentor 400 Anaesthesia Unit, Univentor Ltd., Zejtun,
Malta), placed in a stereotaxic frame (David Kopf Instru-
ments; Tujunga, CA, USA), and kept on a heating pad to
prevent hypothermia. The scull bone was exposed and one
hole for the probe and one for the anchoring screw were
drilled. The probe was randomly alternated to either the left
or right side. The coordinates for NAcc were 1.5 mm
anterior to the bregma, ±0.7 lateral to the midline, and
4.7 mm below the surface of the brain surface (Franklin and
Paxinos 1996). The exposed tip of the dialysis membrane
(20,000 kDa cut off with an od/id of 310/220 μm,
HOSPAL, Gambro, Lund, Sweden) of the probe was
1 mm. All probes were surgically implanted 2 days prior
to the experiment. After surgery, the mice were kept in
individual cages (Macrolon III).

In separate experiments, the effects of JMV2959 (i.p.) on
amphetamine- or cocaine-induced accumbal dopamine
release using microdialysis in freely moving mice was
investigated. On the day of the experiment, the probe was
connected to a microperfusion pump (U-864 Syringe Pump;
AgnThós AB) and perfused with Ringer solution at a rate of
1.5 μl/minute. After 1 h of habituation to the microdialysis
set-up, perfusion samples were collected every 20 min. The
baseline dopamine level was defined as the average of three
consecutive samples before the first drug/vehicle challenge,
and the increase in accumbal dopamine was calculated as
the percent increase from baseline. After the baseline
samples, mice were injected with JMV2959 (i.p.), which
was followed by an amphetamine or cocaine (i.p.) injection
in separate experiments. The dopamine levels in the
dialysates were determined by HPLC with electrochemical
detection. A pump (Gyncotec P580A; Kovalent AB; V.
Frölunda, Sweden), an ion exchange column (2.0×100 mm,
Prodigy 3 μm SA; Skandinaviska GeneTec AB; Kungs-
backa, Sweden), and a detector (Antec Decade; Antec
Leyden; Zoeterwoude, The Netherlands) equipped with a
VT-03 flow cell (Antec Leyden) were used. The mobile
phase (pH 5.6), consisting of sulfonic acid 10 mM, citric
acid 200 mM, sodium citrate 200 mM, 10% EDTA, 30%
MeOH, was vacuum filtered using a 0.2-μm membrane
filter (GH Polypro; PALL Gelman Laboratory; Lund,
Sweden). The mobile phase was delivered at a flow rate
of 0.2 ml/min passing a degasser (Kovalent AB), and the
analyte was oxidized at +0.4 V (Blomqvist et al. 1993;
Westerink 1995).

After the completion of the microdialysis experiments,
the locations of the probe were verified (Jerlhag et al.
2006). Only mice with probe placement in the NAcc were
included in the statistical analysis.

Verification of probe placement

After the microdialysis experiments were completed, the
location of the probe was verified. The mice were
decapitated, probes were perfused with pontamine sky blue
6BX to facilitate probe localization, and the brains were
mounted on a vibroslice device (752 M Vibroslice;
Campden Instruments Ltd., Loughborough, UK). The
brains were cut in 50-μm sections, and the location of the
probe was determined by gross observation using light
microscopy. The exact position (some correct and some
misplaced) of the probe and/or guide cannula/e was verified
(Franklin and Paxinos 1996).

Conditioned place preference

To further evaluate the effects of GHS-R1A on the
rewarding effects of amphetamine or cocaine, CPP tests
were performed in mice. A two-chambered CPP apparatus,
with distinct visual and tactile cues, was used (Sanchis-
Segura and Spanagel 2006; Jerlhag 2008; Jerlhag et al.
2009). One compartment was defined by black- and
white-striped walls and by a dark laminated floor,
whereas the other had a white unlaminated floor and
walls of wooden texture. Compartments were illuminated
by 45 lux. The procedure consisted of pre-conditioning
(day 1), conditioning (days 2–5), and post-conditioning
(day 6). On day 1 (pre-conditioning), mice were i.p.
injected with vehicle and initial place preference was
determined during 20 min in order to determine which of
the two compartments could be labeled “least preferred”
for each mouse. Conditioning (20 min per session) was
done using a biased procedure in which amphetamine or
cocaine was paired to the least preferred compartment. In
this biased procedure, it should be more difficult to
obtain a positive CPP response. The mice received a
total of two i.p. injections per day where amphetamine or
cocaine was administered in the morning and vehicle
conditioning in the afternoon, or vice versa. After drug
injection, the mice were placed in the appropriate
compartment. On day 6, the mice were placed between
the two compartments and were thereafter given free
access to both compartments for 20 min. Prior to this test
session, the mice were acutely injected with JMV2959
(i.p.) or vehicle. As animals that receive vehicle (in both
compartments) are not drug-conditioned, and, therefore,
have no drug-induced CPP response to block using an
antagonist, such experiments were not conducted. Previ-
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ously, we have shown that JMV2959 has no effect per se
on CPP (Jerlhag et al. 2009). CPP was calculated as the
difference in percentage of total time spent in the drug-
paired (i.e., least preferred) compartment during the post-
conditioning and the pre-conditioning session.

Radioligand binding assays

In order to study possible affinity of JMV2959 to the
dopamine receptors (D1, D2S, and D2L), radioligand
binding assays were outsourced to Ricerca Biosciences,
LCC (Taipei, Taiwan 112; study no AA94614).

Statistical analyses

All locomotor activity data were evaluated by a two-way
ANOVA followed by Bonferroni post-hoc tests compar-
ing treatments. The microdialysis experiments were
evaluated by a two-way ANOVA followed by Bonfer-
roni post-hoc test for comparisons between different
treatments and specifically at given time points. The
CPP data were evaluated by a one-way ANOVA
followed by Bonferroni post-hoc tests comparing treat-
ments. Data are presented as mean ± SEM. A probabil-
ity value of P<0.05 was considered as statistically
significant.

Results

Effects of a GHS-R1A antagonist on amphetamine-induced
locomotor stimulation, accumbal dopamine release
and on its ability to condition a place preference in mice

As expected, amphetamine increased locomotor activity,
accumbal dopamine release, and induced a CPP. All of
these effects of amphetamine were attenuated by peripheral
administration of JMV2959 (Figs. 1a, b and 2a).
Amphetamine-induced locomotor stimulation (P<0.001)
was blocked by a single injection of JMV2959 (P<0.001)
in mice (F(3,28)=14.57, P=0.001). Amphetamine in-
creased accumbal dopamine release relative to vehicle
treatment (P=0.001), and this effect was attenuated by
pre-treatment with JMV2959 (P=0.01) (treatment F(3,29)=
13.31, P=0.001; time F(12,348)=15.98, P=0.001; treat-
ment × time interaction F(12,348)=7.03, P=0.001). This
difference was evident at time interval of 60 min (P<0.01).
Even though JMV2959 does not completely block the
amphetamine-induced dopamine release, this increase
fails to reach statistical significance compared to vehicle
treatment. The amphetamine-induced CPP was attenuated
by an acute single injection of JMV2959 (F(1,14)=6.82,
P=0.02).

Effects of a GHS-R1A antagonist on cocaine -induced
locomotor stimulation, accumbal dopamine release
and on its ability to condition a place preference in mice

In studies parallel to those described for amphetamine, we
found that JMV2959 also suppressed the effect of the
powerful psychostimulant drug cocaine on activation of the
mesolimbic dopamine system (Figs. 1c, d and 2b). Thus,
locomotor activity was greatly increased by cocaine
administration (relative to vehicle treatment) (P<0.001),
and this stimulation was attenuated by JMV2959 pre-
treatment (P<0.01) (F(3,28)=28.94, P=0.001). JMV2959
does not completely block the cocaine-induced locomotor
stimulation compared to vehicle administration (P<0.001).
Cocaine increased dopamine release in comparison to
vehicle treatment (P=0.001), and this increase was also
attenuated by JMV2959 (P=0.001) (treatment F(3,31)=
11.89, P=0.001; time F(12,372)=18.86, P=0.001; treat-
ment × time interaction F(12,372)=10.10, P=0.001). This
difference was evident at time intervals 20–180 min (P<
0.01 or P<0.001). Even though JMV2959 does not
completely block cocaine-induced accumbal dopamine
release, this increase failed to reach statistical significance
compared to vehicle treatment. The cocaine-induced CPP
was attenuated by an acute single injection of JMV2959
(F(1,13)=8.22, P=0.01).

Control experiments showed that neither i.p. injection,
volume infused, nor the GHS-R1A antagonist per se had
any effect on locomotor activity (Fig. 1a and c), accumbal
dopamine release (Fig. 1b and d), or CPP (Fig. 2a and b).

Probe placements

After the experiment, the location of the probe was verified
and only mice with probe placement in the NAcc were
included in the statistical analysis. It should also be
emphasized that in a few mice, the probe was located
outside the NAcc, and in these mice, no effect of
amphetamine/cocaine on accumbal dopamine release was
observed (Fig. 3). It should be emphasized that in a few
mice, the probe was located outside the NAcc shell, and in
these mice, no effect of amphetamine or cocaine on
accumbal dopamine release was observed (data not shown).
Given that only amphetamine and cocaine increase accum-
bal dopamine compared to vehicle, it appears less likely
that the probes causes structural defects within the NAcc
that may influence the possibility to detect dopamine
release.

Radioligand binding

The radioligand binding studies show that JMV2959
does not bind to human dopamine D1, D2L, and D2S
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receptors up to a concentration of 10 µM, whereas
JMV2959 does bind to the human GHS-R1A with an
IC50 of 32 nM (Moulin et al. 2007). These data support
the specificity of JMV2959 as a selective GHS-R1A
antagonist.

Discussion

The present study demonstrates that the ghrelin signaling
system, involving GHS-R1A, is required for indirect
measures of the rewarding properties of the psychostimu-
lant drugs, amphetamine and cocaine. Hence, we found that
the ability of these drugs to induce locomotor stimulation,
accumbal dopamine release, and to condition a place
preference is reduced in mice treated peripherally with a
GHS-R1A antagonist. These effects of drugs of abuse,
considered to constitute part of the addiction process, are

Fig. 2 The ghrelin receptor (GHS-R1A) antagonist (JMV2959)
attenuates amphetamine- and cocaine-induced conditioned place
preference (CPP). a The amphetamine-induced CPP (n=8) was
attenuated by an acute single i.p. injection of the GHS-R1A
antagonist, JMV2959 (n=8), in mice. b A cocaine-induced CPP in
mice pre-treated with vehicle (n=7) was obtained, and pre-treatment
with JMV2959 (n=8) attenuated this stimulation in mice (*P<0.05).
All values represent mean±SEM
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Fig. 1 Suppressed ghrelin signaling by ghrelin receptor (GHS-R1A)
antagonist (JMV2959) attenuates amphetamine, and cocaine-induced
locomotor stimulation and accumbal dopamine release. a Amphetamine-
induced locomotor stimulation was attenuated by a single i.p. injection
of JMV2959, but not by vehicle injection in mice (n=8 in each group;
***P<0.001, #P = n.s for Veh-Veh vs JMV-Amph). b The
amphetamine-induced increase in accumbal dopamine release was
absent in GHS-R1A antagonist (JMV2959, i.p.), but not in vehicle-
treated mice (n=8 in Veh-Veh (square), Veh-Amph (filled triangle), and
JMV-Veh (triangle) groups and n=9 in JMV-Amph (circle) group). This
difference was evident at time interval 60 min (**P<0.01, Bonferroni
post-hoc test). Even though JMV2959 does not completely block the
amphetamine-induced accumbal dopamine release, this increase fails to

reach statistical significance compared to vehicle treatment. c Cocaine-
induced locomotor stimulation was attenuated by a single i.p. injection
of JMV2959, but not by vehicle injection in mice (n=8 in each group).
(**P<0.01, ***P<0.001, ###P<0.001 for Veh-Veh vs JMV-Coc). d The
cocaine-induced increase in accumbal dopamine release was absent in
GHS-R1A antagonist (JMV2959, i.p.), but not in vehicle-treated mice
(n=8 in Veh-Veh (square) and JMV-Veh (triangle) groups, n=9 in Veh-
Coc (filled triangle) and n=10 in JMV-Coc groups (circle). This
difference was evident at time intervals 20–180 min (**P<0.01, ***P<
0.001). Even though JMV2959 does not completely block the cocaine-
induced accumbal dopamine release, this increase fails to reach
statistical significance compared to vehicle treatment
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intimately associated with its reinforcing properties (Wise
and Bozarth 1987). The GHS-R1A was administered
peripherally in the present study, but it seems likely that it
gains access to the CNS and acts at the level of the
mesolimbic dopamine system (Jerlhag et al. 2009). Taken
together with our recent studies showing that the central
ghrelin signaling system is required for alcohol- induced
locomotor stimulation, accumbal dopamine release, and
CPP (Jerlhag et al. 2009), these data support the idea that
GHS-R1A may play an important role in addiction
processes.

Supporting a role of ghrelin signaling in drug reinforce-
ment are data demonstrating that food restriction, a state
which is associated with elevated ghrelin levels, augments
cocaine, as well as amphetamine-induced locomotor stim-
ulation facilitates the acquisition of cocaine-seeking behav-
ior and enhances self-administration of cocaine or
amphetamine in rats (Carroll et al. 1979; Carroll and Stotz
1983; Bell et al. 1997; Carr 2002; Gualillo et al. 2002).
However, a role of stress should not be excluded.
Moreover, in rats, an elevated plasma level of ghrelin
enhances cocaine-seeking and augments cocaine-induced
reward, assessed by locomotor stimulation, as well as CPP
testing (Wellman et al. 2005; Davis et al. 2007; Tessari et
al. 2007). The finding that GHS-R1A is constitutively
active in the absence of ligand (Holst et al. 2003) makes it
difficult to determine to what extent drug-induced reward is
dependent on signaling by endogenous ghrelin, or by the
activity of the GHS-R1A per se.

The ability of psychostimulant drugs to activate the
mesolimbic dopamine system and thereby cause reinforce-
ment may be due to increased dopamine synthesis,
increased dopamine release, and/or enhanced activity of
the mesolimbic dopamine neurons. Neurotransmitters in
areas such as the NAcc and the ventral tegmental area
(VTA) collectively regulate this activation (Samson et al.
1991; White et al. 1995; Reith et al. 1997; Zhang et al.
1997). Here it was shown that GHS-R1A, possibly at the
level of the mesolimbic dopamine system, mediates the
stimulatory, dopamine releasing, and CPP properties of
psychostimulant drugs. In the VTA, GHS-R1A is expressed
on dopaminergic neurons (Abizaid et al. 2006), and it has
been suggested that GHS-R1A regulates the activity of
tegmental dopamine neurons via heterodimeraziation of the
GHS-R1A to the dopamine D1 receptor, as well as by the
constitutive activity of the GHS-R1A (Holst et al. 2003;
Jiang et al. 2006). By this route, GHS-R1A may modulate
the ability and sensitivity of the mesolimbic dopamine
neurons to be activated by psychostimulant drugs. The
possibility that GHS-R1A influences the synthesis and
release of dopamine should also be considered. In the
NAcc, the dopamine released by amphetamine and cocaine
activates dopamine receptors, and it should therefore be
considered that the GHS-R1A antagonist attenuates
psychostimulant-induced reinforcement by inhibiting the
dopamine receptors in the NAcc. This appears less likely
since JMV2959 did not bind to any of the dopamine
receptors (D1, D2L and D2S) in concentrations up to

Fig. 3 Verification of probe
placement. A coronal mouse
brain section showing ten rep-
resentative probe placements
(vertical lines) in the NAcc of
mice used in the present study
(Franklin and Paxinos 1996).
Ten representative placements
are illustrated, but all other
placements were within the
NAcc shell. The probe is not
shown to scale, and the outer
diameter of the probe was
310 μm. Placements outside this
area were not included in the
statistical analysis. The number
given in the brain section
indicates millimeters anterior (+)
from bregma
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10 μM, whereas it binds to the GHS-R1A with an IC50 of
32 nM (Moulin et al. 2007). GHS-R1A in the NAcc may
also be of importance for psychostimulant-induced loco-
motor stimulation, dopamine release, and CPP even though
they do not appear to regulate alcohol consumption
(Schneider et al. 2007). Thus, it should be considered that
the GHS-R1A antagonist might reduce the psychostimulant-
induced reward via interruption of the reported heterodimer-
aziation of the GHS-R1A to the dopamine D1 receptor (Jiang
et al. 2006). The possibility remains, however, that down-
stream mechanisms independent of the mesolimbic dopa-
mine system also may have important roles for the rewarding
properties of cocaine and amphetamine.

Our collective findings regarding the role of the central
ghrelin signaling system, including the GHS-R1A, in
alcohol (Jerlhag et al. 2009), as well as amphetamine- and
cocaine-induced rewards may also have clinical relevance
since hyperghrelinemia is found in individuals with
substance use disorder, for example, after methamphet-
amine use and in alcohol-use disorder, specifically in those
with high craving scores (Kim et al. 2005; Kraus et al.
2005; Addolorato et al. 2006; Hillemacher et al. 2007;
Kobeissy et al. 2008). Furthermore, one study has demon-
strated that a single-nucleotide polymorphism in the GHS-
R1A gene is associated with high alcohol consumption
(Landgren et al. 2008). Collectively, these findings rise
important questions regarding the physiological role of
ghrelin influencing not only food intake and appetite, but
also clearly having a broader role in reward induced by
addictive drugs such as alcohol, amphetamine, and cocaine.
Our data suggest that the central ghrelin signaling system,
including the GHS-R1A, constitutes a novel potential
target for treatment of addictive behaviors such as drug
dependence.
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