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Abstract: Background: Retroelements (REs) are transposable elements occupying ~40% of the human
genome that can regulate genes by providing transcription factor binding sites (TFBS). RE-linked
TFBS profile can serve as a marker of gene transcriptional regulation evolution. This approach
allows for interrogating the regulatory evolution of organisms with RE-rich genomes. We aimed to
characterize the evolution of transcriptional regulation for human genes and molecular pathways
using RE-linked TFBS accumulation as a metric. Methods: We characterized human genes and
molecular pathways either enriched or deficient in RE-linked TFBS regulation. We used ENCODE
database with mapped TFBS for 563 transcription factors in 13 human cell lines. For 24,389 genes
and 3124 molecular pathways, we calculated the score of RE-linked TFBS regulation reflecting the
regulatory evolution rate at the level of individual genes and molecular pathways. Results: The major
groups enriched by RE regulation deal with gene regulation by microRNAs, olfaction, color vision,
fertilization, cellular immune response, and amino acids and fatty acids metabolism and detoxication.
The deficient groups were involved in translation, RNA transcription and processing, chromatin
organization, and molecular signaling. Conclusion: We identified genes and molecular processes
that have characteristics of especially high or low evolutionary rates at the level of RE-linked TFBS
regulation in human lineage.

Keywords: Human genome evolution; transcription factor; retrotransposons; molecular pathways;
gene ontology; ChIP-seq; omics approach in genetics
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1. Background

Retroelements (REs) are transposable elements that occupy ~40% of the human genome [1,2]
and regulate the expression of human genes by providing functional transcription factor binding
sites (TFBS) [3–6], being one of the major forces of regulatory innovation [3–5]. RE inserts are far less
conserved than the surrounding unique genomic regions [1]. RE-linked transcriptional regulation of
human genes, therefore, can indicate quickly transforming gene regulatory modules [7–9] (Figure 1).
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Figure 1. RE insertion in the proximity of transcription start sites can bring new TFBS and drastically
alter gene expression.

The evolution of gene regulatory networks is one of the hot topics in current genetics [10,11]. At
the level of individual genes, it can be investigated by analyzing structural and functional properties.
Structural features include mutations or polymorphisms in gene regulatory regions [12] and inserts
of REs [11,12]. Functional features may deal with the binding of transcriptional factors [13], DNA
modification (e.g., methylation [14,15] or hydroxymethylation [16]) and chromatin rearrangement
patterns [17,18], such as histone modifications [19].

Modern OMICS technologies enable direct interrogation of those features, e.g., screening
mutations and polymorphisms by direct high throughput sequencing [20], or identifying TFBS, DNA
and chromatin modifications by different versions of sequencing-followed immunoprecipitation
techniques [21]. Bioinformatic approaches become key for the comprehensive analysis of “big data”
generated by these methods [22–25].

A more profound level of data analysis may cope with groups of genes aggregated by some
specific patterns, e.g. participation in molecular pathways [26,27], apparent common gene expression
traits [28], or involvement in complex gene signatures [29]. Here, the approaches like pathway activation
strength (PAS) calculation [30,31] or quantization of Gene Ontology (GO) clustering features [32,33] may
be appropriate to assess oscillations of gene networks in response to any specific condition [34,35].

On the interface of studying both structural and functional features of gene evolution, a
conceptually new method was recently published that analyzes the impact of RE-linked regulation
for each gene [36]. It is based on a simple rationale to measure the proportion of gene regulatory
items hosted by REs. Higher ratios are thought to indicate relatively quickly evolving regulatory
modules, and vice versa. For every gene, a 10kb neighborhood of the transcriptional start site (TSS)
was investigated, as TSS-proximal regions are thought to be enriched in functional regulatory modules,
such as promoters and enhancers [37]. In its first application, proportions of RE-linked TFBS were
calculated for all human genes based on the published experimental chromatin immunoprecipitation
sequencing (ChIP-Seq) data [6] for hematological cancer cell line K562. ChIP-Seq makes it possible to
precisely measure the binding of transcriptional factors with DNA, with greater number of sequencing
reads (=hits) suggesting stronger binding with transcriptional factors at the same locus, and vice
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versa [38]. This approach of combining ChIP-Seq data and REs mapping was also for both types of
data analysis, i.e. for the levels of individual genes and molecular pathways [36].

To assess the RE-associated regulatory charge for individual genes, a quantitative measure was
introduced (1) termed Gene RE-linked TFBS Enrichment score (GRE score; Supplementary dataset 1).
Conceptually, GRE for an individual gene is the sum of RE-specific TFBS hits mapped in a
10kb-neighborhood of its TSS, that is, normalized on the average content of RE-specific TFBS hits for all
genes under study (Supplementary dataset 1). For every gene, GRE makes it possible to measure the
regulation by RE-linked TFBS. However, this metric has the following limitation: Different genes have
different regulation mechanisms and may have very different numbers of TFBS hits (both RE-linked
and not) in their TSS neighborhood. The previous value (GRE score) shows if a gene is enriched or
deficient by RE-linked TFBS hits relative to other genes, but the same gene may also be enriched in
total (also non-RE) hits.

It is important, therefore, to have a double-normalized value showing if gene regulation
is specifically enriched in RE-linked hits relative to its total hits. To this end, a universal
gene-specific metric (2) termed Normalized Gene RE-linked TFBS Enrichment score (NGRE) was proposed
(Supplementary dataset 1), equal to the sum of RE-specific hits for a gene under investigation,
double-normalized to the (i) average number of RE-specific hits for all genes and (ii) balanced total
number of hits (not only RE-linked) for the same individual gene (formulas are given in Supplementary
dataset 1) [36].

Similarly, at the level of molecular pathways, analogous additive values were proposed [36], termed
Pathway Involvement Index (PII) and Normalized Pathway Involvement Index (NPII) (for formulas, see
Supplementary dataset 1). PII is needed to assess the total impact of RE-linked TFBS on the regulation of
an individual molecular pathway. The bigger PII suggests a higher impact of RE-linked hits on the overall
regulation of a molecular pathway, and vice versa. However, PII is not informative to assess the importance
of RE-linked regulation of a pathway in the context of its total regulation. To this end, the next metric
termed NPII was proposed. The NPII (Normalized PII) is needed to estimate the relative RE-linked impact on
the regulation of a whole molecular pathway. Higher NPII indicates a higher relative impact of RE-linked
TFBS in the total regulation of a molecular pathway, and vice versa (Supplementary dataset 1) [36].

NGRE and NPII values were designed to estimate the relative impacts of REs in the regulation of
individual genes and molecular pathways, respectively. Bigger NGRE and NPII evidence, respectively,
a greater RE-linked regulatory impact for an individual gene or for a molecular pathway and, therefore,
faster evolution of the corresponding gene regulatory network [36].

Several groups of molecular processes appeared highly enriched in the NGRE/NPII characteristics
of their members. These dealt with the immunity and response to pathogens, negative transcriptional
regulation, ubiquitination and proteasomal activity, extracellular matrix organization, regulation of
STAT signaling, fatty acids metabolism, GTPase activity, protein targeting to Golgi, development, and
functioning of perception and reproductive systems. In contrast, the most deficient in RE regulation
processes related to the conservative pathways of embryo development [36]. However, these recent
results were obtained for only one human cell line and could relate to the cell type- or tissue-specific
patterns rather than to the evolutionary context of TFBS reshaping [39].

To distinguish cell type-specific and general evolutionary features, in this study we investigated
into the distributions of RE-linked hits for all 13 human cell lines TFBS-profiled for 563 DNA-binding
proteins during ENCODE project [40] and representing eight different tissues/organs from the different
individuals (Supplementary file 2, Figure 2A). We found that 71% of totally mapped TFBS overlapped
with the RE sequences, thus confirming RE’s status as the major source of TFBS for human cells. All
the different cell lines investigated showed highly correlated patterns of NGRE distributions in pairwise
comparisons, with correlation coefficients varying 0.5–0.95 with a median of ~0.85. The degree of
RE-linked regulation for the individual genes was, therefore, roughly uniform in the different human
tissues. We did the analysis on two evolutionary scales, first roughly corresponding to mammalian
radiation and second to common human ancestry divergence with New World monkeys. The major
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processes enriched by integral RE-linked regulation dealt with olfaction, color vision, spermatogenesis and
fertilization, particular aspects of immune and hormonal responses, intracellular molecular trafficking,
amino acids, vitamins and fatty acids metabolism, xenobiotic metabolism, and detoxication. In contrast,
the deficient pathways were involved in protein synthesis and ribosome biogenesis, RNA transcription
and processing, nuclear chromatin organization, cell cycle, apoptosis, cell contacts, embryo development,
most signaling pathways, cellular stress response, oxidative phosphorylation in mitochondria, and some
other aspects of immunity. Among the top enriched cohort we found an approximate three times higher
number of known genes for noncoding RNAs than in the bottom cohort of the same size. The pathway of
gene silencing by microRNAs was also the top enriched pathway according to GO analysis.
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Figure 2. Comparison of NGRE and NPII scores between different cell lines for all REs. Colors denote
human organs of cell lines origin. (A) Anatomical map of cell line origins investigated in this study.
(B) Distribution of Pearson correlation coefficients of NGRE score of K562 cell line with NGRE scores of
the 12 other cell lines investigated. (C) Distribution of Pearson correlation coefficients of NPII score
of K562 cell line with NGRE scores of the 12 other cell lines. (D) Distribution of all pairwise Pearson
correlation coefficients of NGRE scores of all 13 cell lines. (E) Distribution of all pairwise Pearson
correlation coefficients of NPII scores of all 13 cell lines.
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2. Methods

2.1. Identification of RE-Specific Transcription Factor Binding Sites

Complete genome binding profiles of 563 investigated transcription factor proteins were extracted
from the ENCODE database [41] for 13 human cell lines (K562, HepG2, HEK293, GM12878, MCF-7,
A549, HeLa-s3, SK-N-SH, HCT116, Ishikawa, HEK293T, MCF-10A, GM12891) according to the
standard ENCODE ChIP-seq protocol [6]. The reference human genome assembly 2009 (hg19) was
indexed via Burrows–Wheeler algorithm using BWA software, version 0.7.10 [42]. Concatenation
of fastq files with single-end or pairwise reads, alignment to the reference genome and filtering
were done using BWA, Samtools (version 1.0), Picard (version 1.92), Bedtools (version 2.17.0) and
Phantompeakqualtools (version 1.1) software [42] Aligned TFBS reads for each cell line were mapped
on the RE sequences annotated by RepeatMasker (version 3.2.7) [43] and downloaded from the UCSC
Browser [44] (RepeatMasker table). TFBS occurrence data were extracted from the bedGraph files [45]
containing conservative IDR-thresholded peaks according to the standard ENCODE ChIP-seq analysis
pipeline [46]. The folds change over control profiles for TFBS as well as the profiles for p-value to
reject the null hypothesis that the signal at that location is present in the control were built using Macs
software (version 2.1.0) [46] based on the alignment data. The list of transcription factors investigated
here and raw ENCODE data files for each cell line is shown in Supplementary file 2.

Quality control of TFBS peaks analyzed in this study was performed using Irreproducible
Discovery Rate correction according to ENCODE recommendations [46].

2.2. Evaluation of Evolutionary Age of Mapped REs

For each family of REs, average divergence from the consensus sequence was used as a measure
of its evolutionary age. REs with an average divergence less than 8% were considered as evolutionary
younger fraction, concerning the evolution of human lineage since its divergence from New World
monkeys [47]. Another group contained all REs and roughly reflected genome shaping by REs since
the origin of major eutherian clades [47]. Gene and molecular pathway enrichment by RE-linked TFBS
was calculated separately for all and young REs. Average divergence from the consensus sequence was
calculated using Repeatmasker software.

2.3. Measuring Gene Enrichment by RE–linked TFBS

The coordinates of human protein-coding genes were downloaded from the USCS Browser [44]
(RefGenes table, genome assembly hg19). For each gene and cell line, all individual REs overlapping
with the 10 kb-long neighborhood of its reference transcription start site were selected for further
analysis. The 10-kb neighborhood covered an interval starting 5 kb upstream and ending 5 kb
downstream the transcription start site. For every known gene in every cell line, we calculated its GRE
and NGRE scores according to the formulas shown in Supplementary dataset 1. In total, we calculated
GRE and NGRE scores for 24 389 human genes.

2.4. Measuring Molecular Pathway Enrichment by RE–Linked TFBS

Gene architecture data of the molecular pathways were extracted from the following databases:
BioCarta [48] (downloaded on March 2015), KEGG [49] (downloaded on June 2015), NCI [50]
(downloaded on March 2015), Reactome [51] (downloaded on March 2015) and Pathway Central [52]
(downloaded on March 2015). Data on molecular pathways structure were downloaded in .xml and
.biopax formats from these databases and implemented in our computational algorithm [30]. In total,
3123 pathways were investigated. For each pathway in every cell line, we calculated PII and NPII
scores according to the formulas shown in Supplementary dataset 1.
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2.5. Analysis of Cell Line Patterns of RE-Linked TFBS.

To screen for correlations of RE-linked TFBS distribution patterns among the cell lines under
investigation, we first calculated Pearson correlation coefficients of gene-specific GRE values for each
cell line under investigation except K562, with GRE values of previously investigated cell line K562 [36].
In this study, TFBS profiles for 260 TFs were studied for the K562 cell line. Second, we calculated all
pairwise Pearson correlation coefficients of GRE values among all 13 cell lines under investigation
(including K562). Similarly, the set of Pearson correlation coefficients was also calculated for the NGRE
values as well. GRE and NGRE scores were calculated for the groups of all REs. Pairwise correlation
for GRE and NGRE and the numbers of transcription factors investigated in each cell line are shown in
Supplementary file 3. The entries in the main diagonal show numbers of transcription factors for each
cell line; the intersections of the cell line vertical and horizontal rows above the main diagonal show
Pearson correlation coefficients among the GRE scores for these two cell lines; and intersections of the
cell line vertical and horizontal rows below the main diagonal show Pearson correlation coefficients
among the NGRE scores. The same set of pairwise correlations for pathway scores of all REs, PII
and NPII, are shown in Supplementary file 4. Similarly, the entries in the main diagonal show the
numbers of transcription factors; intersections of the cell line vertical and horizontal rows above the
main diagonal show Pearson correlation coefficients among the PII scores; and intersections of the
cell line vertical and horizontal rows below the main diagonal show Pearson correlation coefficients
among the NGRE scores.

2.6. Gene Ontology Enrichment Analysis

Gene Ontology analysis of genes that are enriched or deficient in RE-linked TFBS regulation
(RRE-enriched and RRE-deficient genes, respectively) was performed using DAVID (version 6.8)
software [53] and Gorilla (version 1.0) software [54] using human genes IDs extracted from USCS
Genome Browser [55]. The p-values specifying the significance of observed GO-terms enrichment
were calculated using a modified Fisher’s exact test [56]. The cut-off for p-values was set as 0.05. The
enrichment values of GO-terms and Annotation Clusters were calculated as fold changes of their
occurrences in the sample and in the human genome [56].

2.7. Significance of Correlations

The statistical significance of correlations was calculated as a Pearson correlation coefficient with
a p-value using the Seaborn (version 0.9.0) package [57].

2.8. Significance of Gene Ontology Enrichment Analysis

To assess the confidence of the observed patterns for RE-impacted functional processes, we
generated 500 sets of randomly permutated GRE and NGRE scores across the cell lines tested
by randomly rearranging gene names. For each perturbation, we extracted a set of GRE-NGRE
distribution-based 1219 top and bottom genes. These gene sets were profiled by DAVID software
and top-100 GO terms were selected for each set by the lowest p-value for each random permutation.
Finally, we compared the distributions of p-values for the top-100 GO terms for the permutated
and real gene sets: real RRE-enriched and RRE-deficient genes were respectively compared with the
distributions of RRE-enriched and RRE-deficient genes in random permutations. The overall data
analysis pipeline is schematically depicted in Supplementary file 5.

All computational methods and all the codes used are freely available upon request to the authors.
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3. Results

3.1. Mapping of RE-Specific TFBS

From the ENCODE project repository, we extracted experimental TFBS data based on the
sequencing of immunoprecipitated DNA for 563 transcription factor proteins [6,58,59]. The sufficient
amount of data including mapping TFBS for at least three transcription factors was available for 13
human cell lines (Supplementary file 2): myelogenous leukemia K562, transformed B cells GM12891,
transformed lymphoblasts GM12878, cervix adenocarcinoma HeLa S3, endometrial adenocarcinoma
Ishikawa, original and transformed human embryonal kidney HEK293 and HEK293T, breast cancer
MCF-7 and MCF-10A, lung adenocarcinoma A549, hepatocyte carcinoma HepG2, colon carcinoma
HCT116, and neuroblastoma SK-N-SH. These cell lines, therefore, represented eight cancerous or
transformed human tissues/organs: blood, cervix, kidney, adrenal gland, mammary gland, lung, liver,
and colon. Statistics for the TFBS data extracted and mapped on REs for these cell lines is shown in
Table 1.

Table 1. Overall TFBS statistics. Note the significant proportion of round numbers for mapped TFBS
because of IDR thresholds used in the standard ENCODE peak called pipeline [46].

Cell
Line

Number
of TFs

Profiled

Number of
Mapped

TFBS

Number of
TFBS

Mapped on
SINEs

Percentage
of TFBS

Mapped on
SINEs

Number of
TFBS

Mapped on
LINEs

Percentage
of TFBS

Mapped on
LINEs

Number of
TFBS

Mapped on
LR/ERVs

Percentage
of TFBS

Mapped on
LR/ERVs

K562 265 78,021,500 25,078,428 32.1 22,646,141 29 10,394,662 13.3
HepG2 175 51,982,065 16,406,062 31.6 140,104,77 27 6,493,562 12.5
HEK293 177 53,100,000 19,214,015 36.2 15,708,687 29.6 6,089,813 11.5
GM12878 127 37,688,353 10,185,415 27 9,927,943 26.3 4,727,719 12.5

MCF-7 80 23,851,396 7,039,271 29.5 7,499,703 31.4 3,297,443 13.8
A549 44 13,044,409 3,930,407 30.1 3,569,214 27.4 1,667,464 12.8

HeLa-S3 15 4,500,000 1,112,669 24.7 1,036,667 23 566,618 12.6
SK-N-SH 15 4,500,000 874,572 19.4 958,401 21.3 473,342 10.5
HCT116 4 1,200,000 402,872 33.6 333,771 27.8 181,562 15.1
Ishikawa 4 1,200,000 268,209 22.4 266,191 22.2 141,530 11.8
HEK293T 17 5,100,000 129,7870 25.4 1,725,589 33.8 618,745 12.1
MCF_10A 3 900,000 214,458 23.8 215,576 24 103,925 11.5
GM12891 7 2,100,000 559,260 26.6 433,194 20.6 253,577 12.1

In total, 277,187,723 TFBS hits could be mapped on the human genome for all these cell lines. Of
them, 199,925,024 (72.1%) overlapped with the RE sequences, thus confirming that REs serve as the
major source of TFBS in human cells.

Considering previous reports, this proportion may seem high [60]. However, in our analysis, all
multimapped TFBS reads were filtered out according to the standard ENCODE ChIP-seq mapping
and filtering pipeline [42], so the results represented uniquely mapped TFBS reads. To confirm
this TFBS proportion, we also validated the method used by parallel mapping of all human RE
sequences extracted from USCS Genome Browser [55] on the human genome. In a good agreement
with previously published data [1], REs mapped by the same approach occupied ~45% of human
DNA, genome assembly hg19. We therefore found no technological drawbacks here and suggest
that the proportion of 71% RE-linked TFBS is correct at least for the ENCODE primary cell culture
datasets used.

However, this proportion was somewhat lower for the TFBS mapped in a 10-kb neighborhood of
gene transcriptional start sites (TSS): among 43,042,026 totally mapped TFBS, only 61.4% overlapped
with REs. This overall trend was representative for all cell lines under investigation (Table 2). The
TSS-proximal TFBS hits were unevenly distributed among the major classes of REs: ~30% were
attributed to SINEs; ~17%–to LINEs and ~7%–to LTR retrotransposons and endogenous retroviruses.
For the total fraction of RE-linked TFBS hits (not only gene-proximal), these proportions were,
respectively, 28%, 26% and 12%.
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Table 2. Gene neighborhood-linked TFBS statistics.

Cell
Line

Number
of TFs

Profiled

Number of
Mapped

TFBS

Number of
TFBS

Mapped on
SINEs

Percentage
of TFBS

Mapped on
SINEs

Number of
TFBS

Mapped on
LINEs

Percentage
of TFBS

Mapped on
LINEs

Number of
TFBS

Mapped on
LR/ERVs

Percentage
of TFBS

Mapped on
LR/ERVs

K562 260 12,547,055 4,667,810 37.2 2,508,956 20 1,081,084 8.6
HepG2 175 8,803,748 3,023,414 34.3 1,559,929 17.7 669,907 7.6
HEK293 177 8,074,128 3,235,573 40.1 1,569,002 19.4 587,798 7.3
GM12878 127 5,626,411 1,699,882 30.2 970,626 17.3 400,502 7.1

MCF-7 80 3,067,441 1,029,118 33.5 598,982 19.5 238,005 7.8
A549 44 2,035,359 662,458 32.5 358,084 17.6 142,842 7

HeLa-S3 15 720,963 193,365 26.8 109,683 15.2 47,759 6.6
SK-N-SH 15 679,254 139,230 20.5 90,313 13.3 36,751 5.4
HCT116 4 202,223 71,590 35.4 38,293 18.9 16,878 8.3
Ishikawa 4 194,053 52,211 26.9 28,867 14.9 12,768 6.6
HEK293T 17 518,287 162,440 31.3 115,555 22.3 42,242 8.2
MCF_10A 3 145,892 43,930 30.1 25,500 17.5 10,304 7.1
GM12891 7 427,212 94,464 22.1 48,947 11.5 21,515 5

These data evidence that TSS-proximal TFBS are peculiar because they have a ~1,2-fold lower
proportion of RE-linked hits (Table 1).

The distribution of TFBS hits for the different transcriptional factor proteins varied among the
different cell lines (Supplementary file 6, color scale shows depth of TFBS mapping; blank spaces mean
an absence of TFBS data for the respective transcriptional factor in the context of a given cell line in the
ENCODE dataset).

3.2. Calculation of Gene- and Pathway-Specific Characteristics of RE-Linked TFBS

For 25075 known individual human genes, we calculated the RE-linked TFBS absolute and
normalized enrichment scores GRE and NGRE, respectively (Supplementary tables 1 and 7). For
3126 molecular pathways, we calculated the RE-linked TFBS absolute and normalized enrichment
scores PII and NPII, respectively (Supplementary tables 1 and 8). All RE enrichment scores were
calculated both for all and evolutionary young RE groups. The REs having a mean divergence from
their consensus sequence of 8% and less were considered evolutionary young. This 8% divergence value
roughly corresponds to the radiation of human ancestry from the New-World monkeys evolutionary
clade [47]. It should be noted that for the most extensively profiled cell line K562, as much as 44%
of genes were not impacted by evolutionary young REs and had zero GRE scores. To compare, for all
Res, only 1,5% of human genes had zero GRE scores. A similar trend was seen in all the cell lines
investigated here.

3.3. Comparison of RE-Linked TFBS Distribution Patterns among the Cell Lines

We next compared NGRE scores for all individual genes among the different cell lines investigated
in this study (Figure 2). For comparisons with the previously published profiles of leukemia K562
cells [36], the NGRE scores were strongly correlated among the cell lines with a Pearson correlation r
varying from 0.6 to 0.95 with a median value of ~0.9 (Figure 2B). Similarly, the molecular pathway-based
NPII scores were also significantly correlated (r varying from 0.75 to 0.95 with median ~0.85), Figure 2C.
NGRE and NPII correlations were calculated for all REs since RE-linked TFBS enrichment values were
non-zero for the majority of genes.

The correlations between K562 and other cell lines were not tissue-specific, as there were no tissue
type-specific patterns observed in the distributions of the correlation coefficients (Figure 2A-C). For
example, at the NGRE level, myelogenous leukemia cells K562 were equally strongly correlated (r~0.95)
with the transformed lymphoblasts GM12878 cells and with the kidney HEK293, lung adenocarcinoma
A549 and hepatocyte carcinoma HepG2 cells (Figure 2B). At the level of molecular pathways, the
highest NPII score correlations with K562 were also seen for the same cell lines in addition to mammary
gland carcinoma cells MCF-7 (Pearson r varying 0.9–0.95, Figure 2C). Finally, for all possible pairwise
comparisons between all the cell lines investigated here, we observed unimodal distribution of Pearson
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correlations varying from ~0.5–0.95 with a median of 0.88, both at the gene and the pathway levels
(Figure 2D and E, respectively).

These findings strongly suggest that all 13 tested cell lines representing eight different human
tissues are strongly congruent in RE-linked TFBS regulation of human genes and molecular pathways.

3.4. Genes and Molecular Pathways Enriched or Deficient in all RE-Linked TFBS Regulation

We next attempted to identify genes and molecular pathways enriched or deficient in RE-linked
TFBS regulation (RRE-enriched and RRE-deficient genes/pathways). To this end, 24,389 human genes
and 3123 pathways under investigation were examined respectively on scatter plots with an abscissa
axis showing the GRE score for genes or PII for pathways, and, respectively, ordinate axis showing the
NGRE score for genes and NPII for pathways (Figures 3 and 4, respectively). This kind of presentation
enables to visually distinguish genes/pathways that have a higher or lower RRE impact. Among the
entries with the same GRE /PII scores, those having higher NGRE /NPII metrics will be enriched in
RRE, end vice versa: Those with lower NGRE /NPII will be RRE-deficient.

For both types of graphs, we observed very similar distribution trends among the different cell
lines (Figures 3 and 4). At the pathway level, PII and NPII scores were statistically significantly
correlated for all the cell lines (Pearson r~0.58; Figure 4). Correlation was also strong at the gene level
(GRE /NGRE), but in 12/13 of the cell lines tested we observed unusual yet very similar V-shaped
distributions (Figure 3). This shape was remarkable and represented two rays of higher and lower
slope coming from a zero point. The upper and lower rays accumulated, respectively, in relatively
RRE-enriched and RRE-deficient genes.

We concluded, therefore, that different cell lines demonstrate highly similar patterns of RE-linked
TFBS regulation at both the gene and pathway levels, as also suggested by the strong correlations
among the cell lines (previous section). To operate with the universal values representing all cell
lines tested, we next introduced the aggregated scores equal to the mean GRE, NGRE, PII and NPII
values for all cell lines investigated, respectively (Figure 3A,B, Figure 4A,B). The distributions of the
aggregated values were similar to those for the individual cell lines (Figures 3 and 4).

To formalize the identification of the top RRE-enriched and deficient genes and pathways, we did
the following. For the gene level, 1000 random sets each containing 500 genes were examined and a
regression line (polynomial curve of first degree) was calculated using the Least Squares method [61].
Then two regression lines with the highest and lowest slope were selected. Then, 5% (1219) genes lying
above the highest slope regression line with the maximal Euclidean distance to this regression line
were considered as RRE-enriched. Similarly, 5% of the genes lying below the lowest slope regression
line with maximal Euclidean distance from it were considered as RRE-deficient (Figure 3).

At the level of molecular pathways, a regression line (polynomial curve of first degree) was
calculated using the Least Squares method [61] for the entire set of 3123 molecular pathways. Five
percent (156) of pathways with maximal Euclidean distance lying above the regression line were
considered as RRE-enriched, and 5% with maximal Euclidean distance lying below the regression line
were considered as RRE-deficient pathways (Figure 4). We, therefore, identified 1219 top and 1219
bottom genes and 156 top and 156 bottom molecular pathways according to a measured aggregated
RE-linked TFBS regulation in all13 human cell lines tested (Supplementary dataset 9 and 10).
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Figure 3. Comparison of GRE and NGRE scores across cell lines for all REs. (A) Comparison 

of mean GRE and mean NGRE scores. Each dot represents a single gene; GRE and NGRE 

Figure 3. Comparison of GRE and NGRE scores across cell lines for all REs. (A) Comparison of mean
GRE and mean NGRE scores. Each dot represents a single gene; GRE and NGRE scores were averaged
across all cell lines. Genes enriched in RRE (regulation by retroelements) are shown as red dots. Genes
deficient in RRE are shown as green dots. (B) Comparison of mean GRE and mean NGRE scores. Both
scores were averaged across cell lines. Color depth is congruent with the number of single dots (each
dot represents a single gene) in one grain. Univariate distributions of GRE and NGRE are shown in
plot margins. (C) Comparison of GRE and NGRE scores for individual cell lines.
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Figure 4. Comparison of PII and NPII scores across cell lines for all REs. (A) Comparison of mean PII
and mean NPII scores. Each dot represents a single pathway; PII and NPII scores were averaged across
all cell lines. Pathways enriched in RRE (regulation by retroelements) are shown as red dots. Pathways
deficient in RRE are shown as green dots. (B) Comparison of mean PII and mean NPII scores. Both
scores were averaged across cell lines. Color depth is proportional to the number of single dots (each
dot represents a single pathway) in one grain. Univariate distributions of PII and NPII are shown in
plot margins. (C) Comparison of PII and NPII scores for individual cell lines.
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3.5. Functional Characteristics of Top RRE-Enriched and Deficient Genes (all REs)

For the selected 1219 top and 1219 bottom genes, we performed Gene Ontology (GO) analysis
using DAVID software [62,63] to identify if they are enriched by the clusters of genes included in any
biological processes. The data on the top GO annotation clusters with a p-value < 0.05 are shown in
Supplementary dataset 11. In total, 141 GO annotation terms were identified for the RRE-enriched
genes, versus as much as 1022 (~7 times more) terms for the fraction of RRE-deficient genes. This
finding may represent a phenomenon that more biological processes in human cells are evolutionary
conserved than quickly evolving.

We manually curated the identified annotation terms and could classify them into 27 major
groups (Table 3). The significantly RRE-enriched groups of the processes dealt with the metabolism
of amino acids, lipids and metals, detoxication and response to xenobiotics, with sensory perception,
neurotransmission and fertilization. The RRE-deficient groups of processes were more numerous and
featured protein translation, RNA transcription, intracellular signaling, cell adhesion and interaction,
cell cycle progression, programmed cell death, metabolism of nucleic acids, carbohydrates, response
to phorbol acetate, protein modifications, stress response and general virus response mechanisms,
maintaining chromatin organization, electron transfer chain, and mitochondria functioning.

Table 3. RRE-enriched and deficient intracellular processes according to Gene Ontology (GO) and
molecular pathway analysis (all REs).

ID Group of Processes RRE Enrichment by
Pathway Analysis

RRE Enrichment by GO
Analysis

Overall
Status

Enriched
pws

Deficient
pws

Enriched
GO terms

Deficient
GO-terms

1 Posttranscriptional
silencing by small

RNAs

1 0 1 0 RRE
enriched

2 DNA repair 2 0 5 0 RRE
enriched

3 Amino acids, Peptides
and Polyamines

Metabolism

20 5 13 8 RRE
enriched

4 Lipid Metabolism 14 7 11 0 RRE
enriched

5 Detoxication,
Metabolism of

Xenobiotics and Rare
Molecules

13 0 4 0 RRE
enriched

6 Sensory Perception
and

Neurotransmission

7 0 10 0 RRE
enriched

7 Fertilization 1 0 9 0 RRE
enriched

8 Cellular Immune
Response (T cells and

NK cells)

11 0 7 6 RRE
enriched

9 Nucleic Base,
Nucleosides and

Nucleotides
Metabolism

6 9 0 24 RRE
deficient

10 DNA metabolism and
Chromatin structure

0 4 0 151 RRE
deficient

11 Translation and
Protein Quality

Control

0 12 8 130 RRE
deficient

12 Intracellular Signaling 22 94 5 48 RRE
deficient
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Table 3. Cont.

ID Group of Processes RRE Enrichment by
Pathway Analysis

RRE Enrichment by GO
Analysis

Overall
Status

Enriched
pws

Deficient
pws

Enriched
GO terms

Deficient
GO-terms

13 Response to Viruses 0 3 0 17 RRE
deficient

14 Vitamin Metabolism 4 0 0 0 RRE
enriched

15 Hormones 6 0 0 0 RRE
enriched

16 Molecular Transport 10 0 0 0 RRE
enriched

17 Sulfur Metabolism
and Linked Redox

Reactions

5 0 0 0 RRE
enriched

18 Metal Metabolism 0 0 6 0 RRE
enriched

19 Response to Phorbol
Acetate

0 0 0 3 RRE
deficient

20 Electron Transfer
Reactions

0 0 5 17 RRE
deficient

21 Mitochondria 0 0 5 17 RRE
deficient

22 RNA Synthesis and
Degradation

0 0 0 139 RRE
deficient

23 Cell Adhesion and
Interaction

0 0 0 15 RRE
deficient

24 Cell Cycle and Mitosis 0 0 0 55 RRE
deficient

25 Cell Death 0 0 0 41 RRE
deficient

26 Protein Localization
and Modification

0 0 0 19 RRE
deficient

27 Response to Physical
and Chemical Stress

0 0 0 24 RRE
deficient

28 Carbohydrates
Metabolism

5 3 0 9 Ambiguous
Pattern

29 Immunity 36 16 23 45 Shown
separately

30 Other/Too General
Terms

0 0 13 17 N/A

Fifty annotation terms were linked with immunity; they were distributed differently depending on
their functional roles. For example, immune cells migration/activation and cellular immune response
by T- and NK cells were RRE-enriched, whereas B cells-related terms were RRE-deficient (Table 4).
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Table 4. RRE-enriched and deficient immunity-linked processes according to Gene Ontology (GO) and
molecular pathway analysis (all REs).

Group of Processes RRE Enrichment by Pathway
Analysis

RRE Enrichment by GO
Analysis Overall Status

Enriched pws Deficient pws Enriched GO
terms

Deficient
GO-terms

Autoimmunity 4 0 0 0 RRE enriched

Blood Clotting 2 0 0 0 RRE enriched

Innate Immunity 8 0 0 5 Ambiguous

Inflammation 3 5 0 0 Ambiguous

Cellular Immune Response (T
cells and NK cells)

11 0 7 6 RRE enriched

Activation of
Antigen-Presenting Cells by

T-helper cells

2 7 0 0 RRE deficient

Other/Too General Terms 6 1 8 11 Ambiguous

Immune Cells Migration and
Activation

0 0 7 0 RRE enriched

Activity and maturation of B
cells

0 0 0 6 RRE deficient

In addition, another line of GO data analysis performed using Gorilla software [64] returned only
the annotation terms that could pass significantly more stringent threshold. In this way, a unique yet
extremely strongly statistically significant RRE-enriched annotation cluster (p < 10−9; Figure 5A) was
for gene silencing by microRNAs, whereas the top two RRE-deficient processes were for the Regulation
of stress-activated MAPK cascade and Regulation of JNK cascade (p < 10−3; Figure 5B).

We next compared the microRNA (miR) contents of the RRE-enriched and -deficient gene sets
(Table 5). The enriched group had 177 miR genes versus only 72 miR genes in the deficient group.
Provided that the total content of miR genes in the human genome is 1865, a hypothesis can be
accepted that the RRE-enriched group is also enriched in microRNA genes (p < 10−17) and that the
RRE-deficient group is not enriched (p = 0.01). Similarly, the content of long non-coding RNA (lncRNA)
genes also differed significantly among the gene sets (150 in the enriched versus only 18 in the deficient
group; Table 5). With the total number of 1505 lncRNA genes in the human genome, this statistically
supports the hypothesis that the RRE-enriched group is also enriched in lncRNA genes (p < 10−16)
and that the RRE-deficient group is not enriched (p < 10−15). These findings clearly suggest that the
regulation by RE-linked TFBS was particularly strongly recruited in the recent evolution of microRNA-
and lncRNA-related mechanisms.

Table 5. RRE-enriched and deficient microRNA and lncRNA genes (all REs).

Gene set MiRs Genes, totally Hypergeometric
p-value

Hypothesis Tested

RRE-enriched 177 1219 2.416 × 10−18 miRNA are
enriched

RRE-deficient 72 1219 0.0138 miRNA are not
enriched

Totally—1865 miRNA genes in 25,075 genes of the human genome

Gene set lncRNAs Genes, totally Hypergeometric
p-value

Hypothesis tested

RRE-enriched 150 1219 1.9500× 10−17 lncRNA are
enriched

RRE-deficient 18 1219 2.42× 10−16 lncRNA are not
enriched

Totally—1505 lncRNA genes in 25,075 genes of the human genome
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3.6. Characteristics of Top RRE-Enriched and Deficient Molecular Pathways (all REs)

We next examined the selected 156 top and 156 bottom molecular pathways sorted by
RRE-enrichment as described above (shown in Supplementary file 10). As before, we manually
curated the identified sets of molecular pathways and classified them into functional groups (Table 3).

The RRE-enriched pathways were connected with the metabolism of amino acids, vitamins,
lipids, sulfur and carbohydrates, molecular transport, response to and production of hormones,
detoxication and response to xenobiotics, sensory perception and neurotransmission, and fertilization.
The RRE-deficient pathways were related to protein translation, intracellular signaling including cell
adhesion and interaction, cell cycle progression and programmed cell death, metabolism of nucleic
acids, general virus response mechanisms, and chromatin organization. These functional groups,
accordingly, showed a remarkable overlap of ~74% of the mentioned items for the comparisons at the
gene and pathway levels (Table 3).

As before, many [4] differential pathways dealt with immunity, thus showing differential trends
depending on their functional roles. Consistently, with the gene level of data analysis, cellular immune
response by T- and NK cells were RRE-enriched (Table 4). Other RRE-enriched immune pathways
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regulated blood clotting, innate immunity and autoimmunity mechanisms. The RRE-deficient pathways
operated with the general inflammation mechanisms and with the activation of antigen-presenting
cells by T-helpers.

The top five RRE-enriched and -deficient pathways sorted by NPII representing the above processes
are shown in Figure 6.Cells 2019, 8, x 15 of 30 
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3.7. Consensus Molecular Processes according to Gene- and Pathway- Based Assays (all REs)

Comparison of the results obtained at the gene and molecular pathway levels is outlined in
Table 3. As mentioned above, the results obtained using these two alternative methods were highly
congruent. The following molecular processes showed consensus regulation patterns using both types
of data analysis. Processes with the RRE-enriched regulation: (1) posttranscriptional silencing by small
RNAs; (2) DNA repair; metabolism of (3) amino acids and (4) lipids; (5) detoxication and metabolism
of xenobiotics; (6) sensory perception and neurotransmission; (7) fertilization; (8) T- and NK-cellular
immune response.

More specifically, the posttranscriptional silencing by small RNAs (1) was represented by a single
pathway and one GO term featuring gene regulation by microRNAs. Note also that according to
GO analysis, the microRNA regulation was statistically the most strongly enriched cluster in the
RRE-enriched subset. The content of microRNA and long non-coding (lnc) RNA genes in this subset
was statistically also significantly enriched (p < 10−16).

The DNA repair (2) cluster was represented by the Protein kinase pathway in nonhomologous
end joining and by the GO terms of Mitotic recombination, DNA synthesis involved in DNA repair,
Meiosis, and Strand displacement.

The metabolism of amino acids (3) was represented by the pathways of D-arginine and D-ornithine
metabolism, aspartate, asparagine, lysine, diphtamide, carnitine biosynthesis and cysteine, proline,
hydroxyproline, beta-alanine, tryptophan and L-kynurenine catabolism, glutamate removal from
folates, and conjugation of salicylate and benzoate with glycine. The GO terms were for the proline
metabolic and tryptophan catabolic processes.

The metabolism of lipids (4) had pathways of bile secretion, bile salt and organic anion SLC
transporters, fatty acids cycling pathway, acyl-CoA hydrolysis, alpha-linolenic acid metabolism,
alpha-oxidation of phytanate, beta-oxidation of unsaturated fatty acids, lipoxin biosynthesis, ether
lipid metabolism pathway, synthesis of (16–20)–hydroxyeicosatetraenoic, epoxyeicosatrienoic and
dihydroxyeicosatrienoic acids, and phosphatidylinositol acyl chain remodeling pathway. The GO
terms were for lipid catabolic process, carboxylic ester hydrolase activity, arachidonic acid metabolism,
epoxygenase and monooxygenase activity, and lipase activity.

The detoxication and metabolism of xenobiotics (5) cluster included pathways of CYP2E1 reactions,
drug metabolism by cytochrome P450, nicotine, heme and bupropion degradation, caffeine
metabolism, flavin-containing monooxygenase (FMO) oxidation of nucleophiles, formaldehyde
oxidation, S-reticuline metabolism, aflatoxin activation and detoxification. The GO terms were for
cellular response to xenobiotic stimulus, xenobiotic metabolic process and epoxygenase P450 pathway.

The cluster of sensory perception and neurotransmission (6) processes has molecular pathways
involved in olfactory signaling and transduction, visual signal perception via cones and GABA A
(rho) receptor activation, dopamine receptors pathway and mechanism of acetaminophen activity, and
toxicity pathway. The GO terms here were for the sensory perception of smell, odorant binding and
olfactory receptor activity.

The fertilization (7) was represented by a unique pathway of interaction with the zona pellucida
and by several GO terms: fertilization, sperm-egg recognition, sperm flagellum, positive regulation of
sperm motility, binding of sperm to zona pellucida, and single fertilization.

The T- and NK-cellular immune response (8) pathways regulated the phosphorylation of CD3
and T-cellular receptor zeta chains, downstream signaling in naive CD8 T-cells (alpha, beta T-cell
proliferation), and CD28 co-stimulation in T-cell homeostasis. The GO terms were for the regulation of
leukocyte-mediated cytotoxicity, natural killer cell-mediated immunity and its regulation.

Finally, the processes with the RRE-deficient regulation were: (9) nucleotide and DNA metabolism;
(10) maintenance and modulation of chromatin structure; (11) protein translation and ribosome
biogenesis; (12) intracellular signaling pathways; and (13) cellular mechanisms of antiviral response.

Here, the nucleotide and DNA metabolism (9) pathways controlled adenine and adenosine salvage,
cleavage of the damaged purines, UMP biosynthesis, UDP-N-acetyl-D-galactosamine biosynthesis,
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GDP-L-fucose biosynthesis from GDP-D-mannose, and NADH repair. The GO terms were found for
ATP metabolism, adenine transport, GTP binding, purine nucleosides and ribonucleotides metabolism,
and pyrimidine binding.

The maintenance and modulation of chromatin structure (10) clade comprised pathways of PRC2
methylation of histones and DNA, HDACs histone deacetylation, arginine methyltransferases (RMTs)
methylation of histone arginine residues, G2/M DNA damage checkpoint, and HDAC proteasomal
degradation. The GO terms were found for the CENP-dependent centromere formation, for telomere
formation and capping, lamin binding with chromatin, purine NTP-dependent helicase activity, histone
exchange, histone lysine H3-K4 and H3-K9 methylation, acetylation and deacetylation, and for signal
transduction in response to DNA damage.

The protein translation and ribosome biogenesis (11) pathways account for ribosomal and
transfer RNA transcription, processing including RNA modifications such as wybutosine and
7-3-amino-3-carboxypropyl-wyosine biosynthesis, spliceosomal biogenesis and assembly, ribosomal
assembly, tRNA aminoacetylation, ribosomal scanning, initiation, elongation and termination of
translation for nonsense mediated decay. The identified GO terms fully functionally matched these
molecular pathways.

The intracellular signaling pathways (12) formed the biggest group of molecular processes including
94 various pathways and 48 GO terms. These included all major aspects of human intracellular
signaling (Table 3).

The cellular mechanisms of antiviral response (13) included pathways of host cell interaction with
retroviruses, including APOBEC3-mediated resistance to HIV-1 infection. The GO terms were
related to the assembly of viral capsids, viral transcription and translation, and IRES-dependent
and cap-independent viral translational initiation.

All these categories were represented by different numbers of enclosed pathways and GO terms
(Table 3). Schematically, these processes linked with enriched or deficient RRE-regulation are shown in
Figure 7 in relation with the number of enclosed features. Fourteen other groups of processes (50%)
were identified as either RRE-enriched or deficient using only one of the methods used (either gene- or
pathway-based), and only one group (~4% of the total amount of groups considered) for the metabolism
of carbohydrates showed ambiguous trends in these two types of analyses (Table 3).

3.8. Randomness Test of GRE and NGRE-Based Data

In order to assess the confidence of the observed patterns of RE-impacted intracellular processes,
we generated 500 random permutations, averaged across cell lines, of GRE and NGRE value sets for
all genes tested by randomly rearranging gene names. For each iteration, we created a GRE-NGRE
scatter plot and extracted 1219 top and 1219 bottom genes as described above. Next, we analyzed
these randomly generated gene sets using DAVID software, and top-100 GO terms were selected by
the lowest p-value for each random permutation. Finally, we compared the distribution of p-values for
the real and random gene sets (Figure 8A for RRE-enriched and Figure 8B for RRE-deficient genes).
This randomness analysis showed that the RRE-deficient molecular processes identified here are
nonrandom, because random and real distributions did not intersect (Figure 8B). Interestingly, a major
part of RRE-enriched GO-terms overlapped with the random distribution (Figure 8A), although there
was a specific peak of outstandingly non-random 10 GO terms among the RRE-enriched items, which
had smaller p-values than each of the random items in 500 permutations. Since none of the 500 random
permutations generated GO-terms with p-values lower than those observed for the real RRE-enriched
or RRE-deficient genes, the overall q-values of confidence for both groups were smaller than 0.002,
which indicates high confidence level of the molecular processes identified.
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3.9. Functional Characteristics of Top RRE-Enriched and Deficient Genes (Evolutionary Young REs)

Similarly, we analyzed the top RRE-enriched and deficient molecular processes by using the
fraction of evolutionary young human retrotransposons. We first identified the top 673 RRE-enriched
and 673 RRE-deficient genes. A smaller number of top genes compared to all REs was taken because
only 44% of genes had non-zero GRE scores and could be properly analyzed. For the genes selected,
we performed GO analysis using DAVID software. The data on the top GO annotation clusters with
a p-value of <0.05 are shown in Supplementary dataset 12. In total, 55 GO annotation terms were
identified for the RRE-enriched genes, versus as much as 730 (~13 times more) terms for the fraction of
RRE-deficient genes. As in the case of all REs, there were more evolutionary conserved than quickly
evolving intracellular molecular processes identified.

We manually curated the identified annotation terms and classified them into 24 major groups
(Table 6). Similarly to all REs, the significantly RRE-enriched groups were connected with sensory
perception and neurotransmission, immune system, metabolism of lipids, detoxication, and response
to xenobiotics. The RRE-deficient groups of processes were also generally in line with all REs and
included protein translation, RNA transcription, intracellular signaling, cell adhesion and interaction,
cell cycle progression, programmed cell death, metabolism of nucleic acids and carbohydrates, protein
modifications, stress response and processes interfering with viral life cycle, maintaining chromatin
organization, oxidative phosphorylation, and mitochondrial functioning. Immunity processes had
contradictory trends and were represented by 15 annotation terms (Table 7).

Table 6. RRE-enriched and deficient intracellular processes according to Gene Ontology (GO) and
molecular pathway analysis (evolutionary young REs).

ID Group of Processes
RRE Enrichment by
Pathway Analysis

RRE Enrichment by GO
Analysis

Overall
Status

Enriched
pws

Deficient
pws

Enriched
GO terms

Deficient
GO-Terms

1 Lipids metabolism 22 8 2 0
RRE

enriched

2 Signaling 28 40 8 31
RRE

deficient

3 Immune System 18 14 3 12
Shown

Separately

4 Cell cycle 1 6 0 62
RRE

deficient

5 Cell death 7 6 0 35
Ambiguous

Pattern

6
Amino acids and

polyamines metabolism 13 5 0 0
RRE

enriched

7
Metabolism and

detoxication of xenobiotics 8 0 2 0
RRE

enriched

8 Sulfur-linked reactions 6 0 0 0
RRE

enriched

9 Vitamins metabolism 10 0 0 0
RRE

enriched

10
Carbohydrates and related

molecules metabolism 9 5 0 6
Ambiguous

Pattern

11

Nucleic base, nucleotides
and nucleosides

metabolism 5 3 0 14
Ambiguous

Pattern

12
Transport of small

molecules 4 0 0 0
RRE

enriched

13 Blood Clotting 3 0 0 0
RRE

enriched

14
Cytosketeton, cell adhesion

and migration 0 18 0 16
RRE

deficient

15 Endocytosis 0 4 0 0
RRE

deficient



Cells 2019, 8, 130 21 of 29

Table 6. Cont.

ID Group of Processes
RRE Enrichment by
Pathway Analysis

RRE Enrichment by GO
Analysis

Overall
Status

Enriched
pws

Deficient
pws

Enriched
GO terms

Deficient
GO-Terms

16
Translation and protein

quality control 0 23 0 105
RRE

deficient

17 Viruses 0 7 0 18
RRE

deficient

18
Signal perception and

neurotransmission 0 0 22 0
RRE

enriched

19
RNA Synthesis and

Degradation 0 0 0 80
RRE

deficient

20
DNA metabolism and

chromatin 0 0 0 66
RRE

deficient

21
Protein Localization and

Modification 0 0 0 20
RRE

deficient

22
Response to Physical and

Chemical Stress 0 0 0 15
RRE

deficient

23
Oxidative Phosphorylation

in Mitochondria 0 0 0 19
RRE

deficient
24 Other/Too General Terms 18 12 18 231 N/A

Table 7. RRE-enriched and deficient immunity-linked processes according to Gene Ontology (GO) and
molecular pathway analysis (evolutionary young REs).

Group of
Processes

RRE Enrichment by Pathway
Analysis

RRE Enrichment by GO
Analysis Overall Status

Enriched pws Deficient pws Enriched GO
terms

Deficient
GO-terms

Innate
immunity 5 2 0 9 Ambiguous

Pattern

Inflammation 3 3 0 0 Ambiguous
Pattern

T-cells
mediated
immunity

4 3 0 0 RRE enriched

Other/Too
General Terms 5 0 3 3

Alternative analysis using Gorilla software showed that only RRE-deficient genes were organized
into a distinct network (processes of nervous system and reproductive organs development), whereas
no statistically significant processes were found for RRE-enriched genes at the level of confidence
p < 10−3. Figure 9).
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Figure 9. Hierarchically ordered GO annotated terms detected by Gorilla software for RRE-deficient
genes for evolutionary young REs.

3.10. Characteristics of Top RRE-Enriched and Deficient Molecular Pathways (Evolutionary Young REs)

Results of analysis and manual curation (Table 6) of the top 152 RRE-enriched and 152
RRE-deficient molecular pathways for evolutionary young REs (shown in Supplementary file 13) were
congruent with the results for all REs.

The RRE-enriched pathways featured the metabolism of amino acids, polyamines, vitamins, lipids,
sulfur and carbohydrates, molecular transport of small molecules, detoxication and response to
xenobiotics, blood clotting, cell cycle progression, and cell death. The RRE-deficient pathways, in
turn, related to protein translation and maturation, intracellular signaling including cell adhesion and
interaction, cell cycle progression and programmed cell death, metabolism of nucleotides and nucleic
bases, amino acids, polyamines, lipids, carbohydrates, and virus life cycle mechanisms. Overlap of
processes at the level of genes (GO terms analysis) and pathways was ~50%, that is lower than in the
case of all REs (Table 3, Table 6).

Unexpectedly, the same groups of immunity processes were identified for RRE-enriched and
deficient pathways: those linked with innate immunity, T-cell mediated immunity and inflammation.
In the first two groups, more pathways were RRE-enriched than RRE-deficient (Table 7).

3.11. Consensus Molecular Processes according to Gene- and Pathway- Based Assays (Evolutionary
Young REs)

We compared RRE-enriched and deficient groups of processes identified using Gene Ontology
terms and molecular pathway analysis (Table 6, Table 7 and Figure 10). The following RRE-enriched
processes were identified by evolutionary young REs: (1) metabolism of lipids, (2) detoxication
and metabolism of xenobiotics. The processes with the RRE-deficient regulation were: (3) cell
cycle; (4) cytoskeleton, cell adhesion and migration; (5) protein translation and ribosome biogenesis;
(6) intracellular signaling pathways; and (7) processes of viral life cycle.
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Figure 10. RRE-enriched and RRE-deficient molecular processes for evolutionary young Res.

The compositions of these groups are identical to those observed for all REs, except for a new
RRE-deficient group “cytoskeleton, cell adhesion and migration”. It included pathways of cell adhesion,
cell-cell junction, cell migration, myoblast fusion, and actin cytoskeleton reorganization.

All these groups were supported by different numbers of activated pathways and GO terms
(Table 6). Schematically, these intracellular processes linked with enriched or deficient RRE-regulation
by evolutionary young REs and are shown in Figure 10 in relation to the number of features. Twelve
other groups of processes (50%) were identified as ambiguously being RRE-enriched or deficient
using only one of the methods used (either gene- or pathway-based), and four groups (~17% of the
total amount of groups considered) showed ambiguous trends in both methods (Table 6). Analysis of
immunity consensus processes also did not reveal concordant trends by GO and pathway analysis
(Table 7).

4. Discussion

In this study, for the first time, we combined two independent types of data analysis to identify
the molecular processes impacted by the RE-linked TFBS regulation in 13 cell lines representing eight
human tissues, on two different evolutionary time scales. The gene level analysis was performed
by classifying Gene Ontology (GO) annotation features, and the pathway level analysis was done by
interrogating a high-throughput Oncobox molecular pathway database. These approaches identified
different sets of molecular processes being either enriched or deficient in the RE-linked TFBS regulation.
Based on RE families’ mean divergence from the respective consensus sequences, we set two different
evolutionary time scales for this type of analysis. First, at the level of mammalian radiation (reflected by
all REs), and second, at the level of radiation of human ancestry and New-World monkeys (reflected by
evolutionary young REs). Of them, for all REs, 13 types of processes (46%) coincided for the two types of
analysis and 14 processes (50%) were specific for only one of the above methods used. One process (4%)
had contradictory trends at the gene and pathway levels. The consensually regulated processes were
RRE-enriched: posttranscriptional silencing by small RNAs, DNA repair, metabolism of amino acids
and lipids, detoxication and metabolism of xenobiotics, sensory perception and neurotransmission,
fertilization, and T- and NK-cellular immune response. The RRE-deficient processes were related



Cells 2019, 8, 130 24 of 29

to: nucleotide and DNA metabolism, maintenance and modulation of chromatin structure, protein
translation and ribosome biogenesis, intracellular signaling pathways, and cellular mechanisms of
antiviral response.

At more recent evolutionary scale, only eight processes (33%) showed congruent results for the
two approaches used, whereas most of the processes had ambiguous trends. These results most likely
suggest that the method of RRE-analysis used here has different utility for the different evolutionary
time scales. For the deeper evolutionary horizon (mammalian radiation), the results were more robust
and reproducible than for the fleet horizon (human–New-World monkeys radiation).

The molecular pathways investigated here represent processes that are cumulatively differentially
impacted at the level of gene expression regulation by retrotransposons. Retrotransposons are
considered pacemakers of eukaryotic genome evolution [9] and were shown to be the major
source of transcription factor binding sites (TFBS) for the mammalian DNA [1, 5, 7]. SNPs and
nucleotide substitutions mediate continuous but relatively slow changes in the mammalian genetic
landscapes [65]. In contrast, insertion of a retrotransposon has potential to dramatically transform
the genomic background by immediately providing a totally new sequence of up to 10 kb long,
which is non-homologous and non-orthologous to the pre-integration locus as in the case of human
REs [66]. These newcomer elements contain numerous functional TFBS that can donate to a new
genetic neighborhood, including genes [67]. Moreover, following mutations and epigenetic landmarks
can further transform these TFBS profiles, thus enhancing the evolution of gene regulation [24]. A
higher proportion of RE-linked TFBS, therefore, can be considered a marker of faster evolution of gene
regulation, and vice versa. Our data, therefore, point to the genes and molecular processes that can be
regarded as having especially high or especially low rates of evolution in terms of gene expression
regulation on different evolutionary time scales.

In many aspects, our results concerning the regulatory evolution of human molecular pathways
are congruent with the previous findings obtained using different methods. For example, the processes
of ribosome biogenesis and protein synthesis, as well as nucleotide and DNA metabolism, are highly
evolutionary conserved in all domains of life [68,69]. Here, we showed that the regulatory evolution
rate of these processes in human lineage is also relatively slow. Contrarily, the regulatory networks
of DNA repair evolve quickly according to our results, which is in accord with high redundancy
and promiscuity of DNA repair enzymatic systems [70] that need to be tightly regulated especially
in long-living organisms to prevent proliferative disorders [71]. We show that the evolution of
immune response shows contradictory trends: T- and NK-cellular immune responses (intercellular
antiviral response) are evolving rapidly, whereas the mechanisms of intracellular antiviral defense
are changing slowly. This pattern is in line with the previous finding that cellular immune
response to viruses (especially adaptive T-cell mediated response) is a more recent evolutionary
innovation [72]; its regulatory evolution, therefore, can go faster. Similarly, the regulation of amino
acids and lipids metabolism also changes relatively quickly, which can relate to changes in nutritional
adaptation during evolution [69]. An extremely fast evolutionary signature was observed for the
mechanisms of posttranscriptional silencing by small RNAs. This silencing is a primary mechanism
repressing newly integrated REs and other intracellular pathogens [73]. Its regulatory networks are
permanently evolving, reflecting an intragenome evolutionary arms race between host genes, REs and
invasive pathogens.

Here, we investigated the gene regulatory evolution features at the level of transcription factor
binding sites. However, targeted profiling of the additional functional landmarks of the human genome
such as covalent histone modifications, DNA methylation and nucleosome positioning, can provide
further avenues for studying the regulatory potential and evolutionary impact of transposable elements.
Regulation by histone modification can be activating and repressive; therefore, the investigation of
RE-driven regulatory evolution for different histone marks could provide a complex and integrative
pattern of epigenetic evolution. Another direction of future works could be the comparison of molecular
evolution at the level of gene regulation (such as studied in this report) with the evolution of the
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gene/protein structure. Moreover, these exploratory approaches could be applied to a broad number
of model organisms not limited to mammalian or vertebrate species. The feasibility of using the same
computational approach in various organisms depends on (i) availability of epigenomic data such as
of TFBS and histone modification sites and on (ii) knowledge of molecular pathways in the organisms
under investigation. For example, we presume that human molecular pathways can be used only for
closely related species such as higher primates. Certain modifications of the pathway contents may
expand their utility also on the other mammalian species. For example, we expect that the investigation
of mouse regulatory evolution in comparison to humans will be possible only when orthologous genes
will be considered. The analysis of more distantly related organisms such as zebrafish, drosophila
or Arabidopsis, would, therefore, require revision of molecular pathway databases in addition to
complete sets of epigenomic data.

The current computational approach has an important limitation: its resolution of evolutionary
time is relatively low, concerning here only two key points (radiation of New World monkeys and
radiation of major eutherian clades). Future research can improve time-precision by considering more
evolutionary important events, that can be selected individually for the different species. Comparative
analysis of the same evolutionary horizon (such as the origin of Amniotes) for two or more species
could provide new insights into our understanding of molecular determinants governing phenotypic
macroevolution. Furthermore, the concept of regulatory evolutionary clock (or, shortly, regulatory
clock) can be tested in the future by comparing scores of RE regulatory load for multiple organisms
with established dates of evolutionary divergence. Another limitation of our approach can be the
simultaneous interrogation of many different TFs (here we investigate DNA binding patterns of 563
TFs) to calculate one characteristic value for each gene. Further research concerning TFs grouped by
tissue specificity and mechanism of action can provide a more detailed view of RE-directed evolution.
Finally, we believe that further applications of the analytic approach discovered here for various model
organisms will shed light on the general evolution of eukaryotic regulatory networks.

5. Conclusions

In this study, we extracted human molecular processes undergoing a relatively fast and slow
evolution of their transcriptional regulation under the impact of newly integrating REs. Processes
were identified for different evolutionary timescales: (1) radiation of New World monkeys and
(2) radiation of major eutherian clades. The most quickly evolving processes were concerning gene
regulation by noncoding RNAs including microRNAs, olfaction, color vision, fertilization, T- and
NK-cellular immune response, amino acids and fatty acids metabolism, and detoxication. Groups of
the relatively slow regulatory evolution were connected with protein biosynthesis, RNA transcription
and processing, nuclear chromatin organization, and intracellular molecular signaling. Finally, we
propose a quantitative measure of the rate of regulatory evolution that can be calculated reproducibly
in different organisms.
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