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ABSTRACT
We report the first complete mitochondrial genome of an important pest of timber, the drywood ter-
mite Cryptotermes havilandi. The gene content and synteny of the mitochondrial genome of C. havi-
landi is identical to that of other termite species reported to date. It is composed 13 protein-coding
genes, two ribosomal RNA genes, and 22 transfer RNA genes. Our phylogenetic tree, that includes the
mitochondrial genomes of 14 species of Kalotermitidae, including C. havilandi, resolves the phylogen-
etic position of C. havilandi within Kalotermitidae.

ARTICLE HISTORY
Received 17 November 2020
Accepted 2 January 2021

KEYWORDS
Kalotermitidae; termite
mitochondrial genome;
isoptera; drywood termites

Main text

Cryptotermes havilandi Sj€ostedt, 1900 (Isoptera:
Kalotermitidae) is an important pest of structural lumber and
sheltered wood (Su and Scheffrahn 2000). Although it is now
distributed across the tropical and subtropical regions,
C. havilandi originated from Africa, and has been introduced
outside its native range largely by the intermediary of human
transportation (Evans 2011; Evans et al. 2013). It is now inva-
sive in various Caribbean islands, Guiana, Surinam, Brazil,
Madagascar, the Comores, and India (Evans et al. 2013).
Despite its economic importance, the mitochondrial genome
of C. havilandi has not been sequenced yet. Here, we provide
the first complete mitochondrial genome sequence of a
C. havilandi extracted from the sample CAM101 collected on
7th of April 2015 in an abandoned wooden house in
northern Cameroon, Africa (N04�4202500 E009�4300800), by
the authors.

We sequenced C. havilandi (GenBank: MW208858) mito-
chondrial genome using Illumina HiSeq2000. The genome
was assembled using the clc suite of programs as described
by Bourguignon et al. (2015). The total length of the com-
plete mitochondrial genome of C. havilandi is 15,559bp. As in
other mitochondrial genomes of termites previously
sequenced (Cameron and Whiting 2007; Cameron et al. 2012;
Bourguignon et al. 2015, 2016, 2017; Wu et al. 2018; Wang
et al. 2019), the mitochondrial genome of C. havilandi is com-
posed of 13 protein-coding genes (following the order: nad2,

cox1, cox2, atp8, atp6, cox3, nad3, nad5, nad4, nad4l, nad6,
cytb, and nad1), two ribosomal RNA genes (rnl and rns) and
22 transfer RNA genes (following the order: Ile, Gln, Met, Trp,
Cys, Tyr, Leu(UUR), Lys, Asp, Gly, Ala, Arg, Asn, Ser(AGN), Glu, Phe,
His, Thr, Pro, Ser(UCN), Leu(CUN), and Val). The GC-content is
34%. Our results confirm that termite mitochondrial genomes
are stable in gene content and preserved their synteny.

To shed light on the phylogenetic position of C. havilandi
within the Kalotermitidae, we reconstructed a phylogenetic
tree that included all mitochondrial genomes of
Kalotermitidae sequenced to date, including the mitochon-
drial genome of C. havilandi, and three outgroups:
Zootermopsis angusticolis (Isoptera: Archotermopsidae),
Porotermes adamsoni (Isoptera: Termopsidae) and
Coptotermes sepangensis (Isoptera: Rhinotermitidae)
(Figure 1). All genes were aligned separately using MAFFT
v. 7.3 (Katoh and Standley 2013), concatenated, and the
phylogenetic tree was reconstructed using MrBayes v. 3.2.1
(Ronquist et al. 2012). The parameters of the phylogenetic
analysis were set as described by Bourguignon et al. (2017).
Overall, our phylogenetic tree confirms the monophyly of
Cryptotermes, within which C. havilandi is nested.

The genus Cryptotermes includes several invasive species
that cause major economic losses in the world (Evans et al.
2013). Surprisingly, very few studies have used molecular
markers to study the population genetics of Cryptotermes spe-
cies. In this paper, we provide the mitochondrial
genome of one of the most important termite pest. The new
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mitochondrial genome presented here will help to understand
how the major termite pests have been introduced around
the world.
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