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Abstract

Background: Since December 2019, the coronavirus disease 2019 (COVID-19) has spread quickly among the
population and brought a severe global impact. However, considerable geographical disparities in the distribution
of COVID-19 incidence existed among different cities. In this study, we aimed to explore the effect of
sociodemographic factors on COVID-19 incidence of 342 cities in China from a geographic perspective.

Methods: Official surveillance data about the COVID-19 and sociodemographic information in China's 342 cities
were collected. Local geographically weighted Poisson regression (GWPR) model and traditional generalized linear
models (GLM) Poisson regression model were compared for optimal analysis.

Results: Compared to that of the GLM Poisson regression model, a significantly lower corrected Akaike Information
Criteria (AICc) was reported in the GWPR model (61953.0 in GLM vs. 43218.9 in GWPR). Spatial auto-correlation of
residuals was not found in the GWPR model (global Moran’s I =—0.005, p = 0.468), inferring the capture of the
spatial auto-correlation by the GWPR model. Cities with a higher gross domestic product (GDP), limited health
resources, and shorter distance to Wuhan, were at a higher risk for COVID-19. Furthermore, with the exception of
some southeastern cities, as population density increased, the incidence of COVID-19 decreased.

Conclusions: There are potential effects of the sociodemographic factors on the COVID-19 incidence. Moreover,
our findings and methodology could guide other countries by helping them understand the local transmission of
COVID-19 and developing a tailored country-specific intervention strategy.
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Background

The coronavirus disease 2019 (COVID-19) pandemic,
caused by the severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), began in December 2019 and has
spread quickly among the population [1]. Since the out-
break of COVID-19 in Wuhan, Hubei Province, Chinese
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government has taken unprecedented measures in re-
sponse to the serious public health issue [2]. Since then,
the COVID-19 epidemic in China has been basically
brought under control, with a total of 80,744 confirmed
cases as of March 25th, 2020 [3], after which almost all
of the newly confirmed cases are the imported cases
from abroad. Still, COVID-19’s impact is global, with ap-
proximately 29 million confirmed cases and over 820,
000 deaths among 188 countries by the end of Septem-
ber 14th, 2020 [4]. Therefore, to prevent and control the

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-021-06128-1&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:pll_paper@126.com

Zhang et al. BVIC Infectious Diseases (2021) 21:428

pandemic, it is crucial to study the features and risk fac-
tors for COVID-19. Although numerous researchers
have already conducted studies on the epidemiological
characteristics, clinical diagnosis and treatment methods
for COVID-19 [5-9], few have reported on the geo-
graphical distribution of COVID-19 in relation to the
sociodemographic factors of different regions.

In medical research, most studies utilize conven-
tional regression models, such as ordinary least square
regression and generalized linear models (GLM) [10-
12]. However, these conventional regression models
generate bias by producing average parameters over
the whole studied regions without considering the po-
tential geographical variation. Geographically weighted
regression (GWR) is a powerful approach to explore
the possible geographical variations of mortality and
incidence of infectious diseases and other health
problems across space [13, 14]. The geographically
weighted Poisson regression (GWPR), extended from
GWR, was initially developed to model small-scale
mortality that followed the Poisson distribution. Re-
cently, GWPR is increasingly used to explore the rela-
tionships between the incidence or mortality of
diseases and geographically changing factors [15-18].

Therefore, the main issues addressed in this study are
as follows: a) to describe the geographical characteristics
of COVID-19 incidence across different cities in China;
b) to explore the spatially varying relationship of
COVID-19 incidence to distances to Wuhan, GDP,
health resources, and population density.

Methods

Data sources and data setting

Using the available surveillance data on COVID-19 in
China, we conducted a geographic epidemiological study
with the city as the basic geographical unit. Data on the
confirmed cases of COVID-19 as of March 25th, 2020 in
each city was extracted from reports of the National
Health Commission of the People’s Republic of China
and Provincial health committees [3]. From the 2019
China Statistical Yearbooks [19], we also extracted data
on the gross domestic product (GDP), population of in-
habitants, land area, and health resources indicators (in-
cluding number of health personnel per 1000 people,
number of hospital beds per 1000 people, and number
of health institutions per 1000 people) in each city of
China.

Each city’s population density was calculated by divid-
ing the population of inhabitants per year by local land
area. There is a 3-level administrative structure in China,
consisting of the province, city, and district/county. Ac-
cording to the Ministry of Civil Affairs of the People’s
Republic of China, we divided China into 346 cities.
However, due to the lack of information on COVID-19
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in Hong Kong, Macau, Taiwan, and Dongsha Islands,
only 342 cities were incorporated in the analysis.

The study’s basic geographic unit was cities, of which
the geographic location was defined as the geographic
coordinates ((i.e., latitude/longitude) of the city center
where the governmental agencies locates. The geo-
graphic information on China cities, including the longi-
tude, latitude, and distance to Wuhan, was acquired
from the Google Earth (https://www.google.com/earth/).

Data analyses
The incidence of COVID-19 in each city was measured
as the number of confirmed cases per million people. A
principal component analysis was performed to extract a
synthesized variable by using software SPSS 20.0 with
three indicators related to health resources, including
the number of health personnel per 1000 people, num-
ber of hospital beds per 1000 people, and number of
health institutions per 1000 people. The Kaiser-Meyer-
Olkin value and Bartlett’s test of sphericity were used to
evaluate the reliability of principal component analysis.
In the study, the Kaiser-Meyer-Olkin value was 0.665
and the P-value of Bartlett’s test of sphericity was <
0.001. The first principal component with a variance
contribution of 81.12%, was adopted to represent the
comprehensive conditions of health resources for differ-
ent cities in China. GDP was used as a proxy for the so-
cioeconomic status of each studied city. The synthesized
health resources variable, GDP, population density as
well as distance to Wuhan of each city were defined as
explanatory variables in this study. The ArcGIS 10.2
software [20] (Environmental Systems Research Institute,
Inc., Redlands, CA, US) was used to map the geographic
distributions of COVID-19 incidence and explanatory
variables by city. Patients’ identification number, area
codes as well as research variables (such as incidence,
GDP, and population density) were input in Excel soft-
ware as data, sorted and further imported into ArcGIS.
The area codes were obtained from the database of the
Regulation of the Ministry of Civil Affairs of the People’s
Republic of China, then the data table was linked to the
map file using the area codes to draw the visual map.
The traditional GLM Poisson regression analysis was
performed by R 3.5.3 software based on the assumption
that the COVID-19 incidence follows the Poisson distri-
bution. The fitting formula of the analysis is expressed
as

InO; = B, + B, (DEN) + B,(GDP) + B, (DIST)
+ B,(HEA) + ¢

where O; denotes the incidence of COVID-19 in city i,
Bo is the global intercept, B; (j=1,2,3,4) are model pa-
rameters corresponding to explanatory variables. DEN is
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the average population density (100 inhabitants/km?) of
city i. GDP is the gross domestic product (100 million
Renminbi Yuan) of city i. DIST is the straight-line dis-
tance (100 km) of the municipal building of city i to the
municipal building of Wuhan. HEA is the synthesized
variable obtained through principal component analysis
to reflect health resources of city i, and ¢; is the error
term of city i.

In the GWPR model, coefficient changes with geo-
graphic locations, which means the GWPR model can
capture the spatial data’s instability and find the local as-
sociation between the dependent variable and explana-
tory variables. The formula of the GWPR model is
expressed as

InO; = By (u;, vi) + B, (w;, vi) (DEN)
+ B, (ui, vi) (GDP) + B;(w;,v;) (DIST)
+ [54(ui,vi) (HEA) + &

where (u;,v;) denotes the two-dimensional coordinates
of each city, and the definitions of other model parame-
ters are similar to those in the GLM Poisson regression
model mentioned above. The GWR 4.0 software
(https://gwr4.software.informer.com/download) was used
to calibrate the GWPR model with the iterative
reweighted least-squares method. A distance-based
weighting scheme was used to allocate weights to each
city by taking samples within a defined neighbourhood
into calculation and by giving more weights to nearby
samples than faraway samples. The kernel type and
function for geographic weighting to estimate local coef-
ficients for each city and bandwidth size was adaptive
bisquare. The best bandwidth size was determined auto-
matically using the golden section search method, based
on the lowest corrected Akaike Information Criteria
(AICc). Because the spatial auto-correlation is an im-
portant issue in the GLM Poisson regression model,
each observation’s spatial auto-correlation is therefore
expected to be removed after adjusting for the non-
stationary effect in the GWPR model. To assess the
spatial auto-correlation of both the GLM Poisson regres-
sion model and the GWPR model, Moran’s I coefficient,
which ranges from -1 to 1 [21], was used. When
Moran’s I equals to zero, it signifies no spatial auto-
correlation. In this study, the AICc and Moran’s I coeffi-
cient were used to measure how good the fit of the
GWPR model and GLM is.

The complete analysis is as follows. Firstly, a trad-
itional GLM Poisson regression analysis was performed
using R 3.5.3 software, to estimate the effects of explana-
tory variables on COVID-19 incidence in China’s 342
cities. Considering that spatial auto-correlation might
not be adjusted by the traditional GLM Poisson regres-
sion model, all explanatory variables were taken into the
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GWPR model in the GWR 4.0 software to explore the
geographical disparities in the effects of both independ-
ent and dependent variables. Lastly, ArcGIS 10.2
software was used to display the distribution of the
COVID-19 incidence and sociodemographic factors on
the map of China and to intuitively reflect the geograph-
ical differences in the relationship between sociodemo-
graphic factors and COVID-19 incidence.

Results

By March 25th, 2020, 80,744 confirmed cases of
COVID-19 were diagnosed in 342 cities across China,
with an incidence of 57.9 per million. Among the
studied cities, Wuhan has the highest incidence of
COVID-19 (4512.8/1000000 people), while some cities
in the west have the lowest incidence (few confirmed
cases) (Shown in Fig. 1). The top ten cities with the
highest incidence are shown in Table 1. According to
the global Moran’s I statistic (Moran’s 1=0.039, p <
0.05), the incidence of COVID-19 had positive auto-
correlation or clustered patterns all over China.

Considerable geographical disparities were found in
the distribution of our explanatory variables among the
studied cities. Compared with the western cities, China’s
central and eastern cities have a higher socioeconomic
standing (Fig. 2a), denser population (Fig. 2b) and better
health resources (Fig. 2c). The distance between Wuhan
and each studied city is presented in Fig. 2d. A more de-
tailed description of these study variables is provided in
Table 2.

The GLM Poisson regression model shows that the
intercept and four explanatory variables are all at a sig-
nificant level of 1% (Table 3). The distance of each stud-
ied city to Wuhan is negatively associated with the
incidence of COVID-19. When the distance increases by
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Fig. 1 Spatial distribution of the COVID-19 incidence in China
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Table 1 Summary of top ten cities with the highest incidence

Page 4 of 8

Area Confirmed Incidence(1/ GDP(100 million Population density(100 inhabitants/km?) Health Distance(100
cases 1000000 Renminbi Yuan) resources km)
inhabitants)
Wuhan City 50,006 4512.7696 14847.29 129315 1.9202 0
Ezhou City 1394 1293.4950 1005.3 6.7525 —0.9887 0.6075
Xiaogan 3518 715.0407 1912.895 5.5256 —0.2475 0.5229
City
Suizhou City 1307 589.6152 1011.185 2.3004 —-0.7336 1.5029
Huanggang 2907 4592417 2035.203 36261 0.2521 0.5647
City
Huangshi 1015 4108147 1587.333 5.391 —0.6438 0.8283
City
Xianning 836 328.7068 1362417 2.608 —0.6501 0.8362
City
Jingmen 928 3203867 1847.89 23351 —0.4865 2.0705
City
Jingzhou 1580 282.6375 2082.184 3.9249 —0.0049 2.0005
City
Yichang city 931 225.1049 4064.181 1.Xie J, Tong Z, Guan X, Du B, Qiu H. Clinical —0.1021 2.8901
Characteristics of Patients Who Died9481
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Fig. 2 Spatial distribution of the exploratory variables in China

Population density(100
¥ inhabitants/square km)

0.952200
2.096600
3.734200
6.378700
65.230800

Distance(100km)
[J0.000000 - 5.235000
[15.235001 - 7.595900
[7.595901 - 10.048500
10.048501 -
W14.242701 -

14.242700
35.960000




Zhang et al. BVIC Infectious Diseases (2021) 21:428

Page 5 of 8

Table 2 Summary of descriptive statistics of the independent variables and dependent variables

Confirmed Incidence(1/1000000 GDP(100 million Population density(100 Health Distance(100
cases inhabitants) Renminbi Yuan) inhabitants/km?) resources km)
Min 0 0 0.2698 0.0035 —1.1593 0
X506 6 22616 689.1571 1.2439 —0.6445 5.5985
Median 17 51335 1368.0092 2.7069 —0.2368 8.5439
X759 47 10.7601 2704.9100 5.7640 0.2907 13.0946
Max 50006 4512.7696 32679.8700 65.2308 5.9946 35.9600

Min minimum value, X»sg, first quantile, X,sq, third quantile, Max maximum value

100 km, the incidence of COVID-19 decreases approxi-
mately by a factor of 0.7818. Furthermore, local popula-
tion density and health resources in each city also show
an inverse correlation with the incidence of COVID-19,
suggesting that higher population density and better
health resources might reduce the incidence of COVID-
19. Interestingly, a higher GDP is associated with an in-
creased incidence, although the correlation is very weak
(the coefficient is 0.0002). After controlling for all ex-
planatory variables using the GLM Poisson regression
model, residuals still exhibit positive spatial auto-
correlation (global Moran’s I=0.128, p <0.001), indicat-
ing that GLM Poisson analysis is inadequate to address
the non-stationary spatial relationships.

Further fitting GWPR model with spatially varying
intercept and explanatory variables (Table 4) found a
significantly lower AICc than fitting GLM Poisson re-
gression model (43,218.9 in GWPR vs. 61,953.0 in GLM,
respectively). No spatial auto-correlation of residuals was
found in the model (global Moran’s I=-0.005 p =
0.468), inferring that the spatial auto-correlation had
been captured by the GWPR model.

Figure 3 shows the spatial varying coefficients of four
explanatory variables in the GWPR model. The eco-
nomic indicator GDP is positively associated with the in-
cidence of COVID-19, with higher coefficients in the
central and northern cities (Fig. 3a). As population dens-
ity increases, the incidence of COVID-19 for most of the
cities decreases with exception of the southeastern cities
(Fig. 3b). Health resources also have a negative impact
on the incidence of COVID-19, with higher coefficients
in the central and eastern cities and lower coefficients in

Table 3 Summary statistics of traditional GLM Poisson
regression model

Variable Coefficient Standard Error Z-value p-value
Intercept 1.7903 0.0076 2346176 <0.001
GDP 0.0002 0.000002 1069084  <0.001
Population density —0.0373 0.0013 —29.2232 < 0.001
Health resources  —0.3770 0.0087 —434426  <0.001
Distance -0.7818 0.0017 —462.6279 <0.001

Corrected Aikake information criterion (AlCc): 61953.0

the western and northeastern cities (Fig. 3c). A higher
distance between Wuhan and the studied cities might
decrease the risk of COVID-19, with the coefficient ran-
ging from -1.0596 to —0.6655 among different cities
(Fig. 3d).

Discussion

To explore the potential risk factors of COVID-19, GIS
(Geographic Information System) was used to visualize
the geographic distributions of COVID-19 incidence in
relation to the sociodemographic factors including GDP,
population density, distance to Wuhan, and health re-
sources. In this study, the local GWPR model and trad-
itional GLM Poisson regression model were compared
to find the optimal fitting model for exploring the asso-
ciation between the sociodemographic factors and
COVID-19 incidence. The results revealed that com-
pared with the GLM Poisson regression model, calibra-
tion of the GWPR model obviously results in an
improved model fitting.

According to the GLM Poisson regression model and
the GWPR model, cities with a higher GDP might have
an increased risk for COVID-19. A recent study found
that the rapid spread of COVID-19 worldwide tended to
appear first in the most economically developed regions
where high-level international trade and commercial ac-
tivities were prevalent. Following the initial spread of
COVID-19 along international trade routes between the
developed regions, the virus spreads later to the develop-
ing areas [22]. In our study, a higher coefficient was ob-
served in the midlands and northern cities than in the
southern cities of China in the GWPR model. A possible
explanation for this phenomenon is that the southern
cities have more robust economy than the northern cit-
ies. The economic improvement might exert a more ex-
tensive and significant influence on the northern cities,
it accordingly increase the infection density of COVID-
19 [23]. Further investigation is required for more de-
tailed causes.

Our result also revealed that with the distance to Wu-
han increasing, the incidence of COVID-19 decreases
among all of the studied cities based on both GLM Pois-
son regression model and GWPR model. The spatial
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Table 4 Summary statistics of local GWPR model
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Variable Minimum Mean Standard Deviation Maximum
Intercept 14348 1.7321 0.1577 2.0355
GDP 0.000198 0.000235 0.000021 0.000293
Population density —-0.1095 -0.0411 0.0415 0.0260
Health resources —0.8335 -0.5141 0.1696 —0.1046
Distance —-1.059 —0.8139 0.1010 —0.6655

Corrected Aikake information criterion (AlCc): 43218.9

varying coefficients shows a decreasing trend from the
southeast to the northwest in the GWPR model. Since
more than 5 million people had already left Wuhan be-
fore it was officially sealing off, we were unable to track
where exactly these people had gone. Therefore, the dis-
tance to Wuhan could be used in part to represent this
massive human migration. Obviously, cities located at a
greater distance to Wuhan will experience less or even
no contact with the infectious sources, which hinders
the spread of COVID-19. On the contrary, in cities near
Wuhan with convenient transportation system and a
high degree of trafficking, their residents were more
likely to contact with the infectious sources, which will

promote the spread of COVID-19. Consistent with our
current and previous findings [24], other studies have
also revealed the aggregation characteristics of the virus
and reminded us the importance of shutdown of the epi-
demic areas and isolation of the infectious sources [25].
According to the GWPR model, the coefficients of
health resources were negative in 342 cities and showed
a degressive trend from the southeast to the northwest,
indicating that better health resources might mitigate
the spread of COVID-19. Better health resources could
help identify the sources of infection and enable sus-
pected patients and close contacts to gain better access
to quarantine measures, which in turn prevents the
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Fig. 3 Spatial distribution of the coefficients of exploratory variables in the GWPR model
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spread of COVID-19 and reduce it’s incidence. Other
studies have also emphasized the importance of control-
ling the sources of infection and cutting off the routes of
transmission [26]. However, it is worth noting that
health resources were more lacking in the western cities
than in the central and eastern cities of China. Previous
reports have also confirmed the substantial regional dis-
parities of both availability and accessibility to health re-
sources in China [27]. Fortunately, since the outbreak of
COVID-19, Chinese government has undertaken tre-
mendous efforts in constructing new medical facilities,
mobilizing the country’s vast and robust medical forces
and accelerating the delivery of medical supplies, and as
a consequence, has quickly brought the epidemic under
control. This concurs with our findings. In order to ef-
fectively control the spread of COVID-19, we urge all
governments to ramp up the amount of available and ac-
cessible medical and health resources in various regions.
China’s situation could provide a guide to other coun-
tries on how to prepare for possible local outbreaks, es-
pecially for resource-limited countries [28].

With regard to the population density, both GWPR
model and GLM Poisson regression model showed a
negative association between population density of each
city and the incidence of COVID-19. In the GWPR
model, this effect decreases from the north, which has a
lower population density, to the south, which has a
higher population density. Interestingly, in paradox,
COVID-19 incidence is higher in cities with a lower
population density. This unique virus spreading pattern
in China is possibly due to the following reasons: First,
many usually highly populated large cities are much less
populated during the Spring Festival in China due to
massive migration of people from highly populated large
cities to less populated medium and small cities as well
as rural areas for the sake of family reunion. Second,
after the outbreak of COVID-19 in Wuhan, many resi-
dents of highly populated large cities, including Wuhan,
undertake “evasive activity” to return to less populated
small cities or rural areas. Notably, a study from the
United State reported that household size, rather than
overall population density, is more strongly associated
with the prevalence of COVID-19 [29]. Moreover, an-
other study considered that the population density is a
more useful predictor of COVID-19 infections and mor-
tality for metropolitan areas, but not for rural areas [30].
Thus, it is necessary to deeply explore the relationship
of population density to the incidence of COVID-19.

To be noted, this study has some limitations. First, the
observed differences may be subject to many unobserved
and unavailable confounding factors such as age, gender,
nationality, and other natural factors, all of which were
not accounted in the multivariate analysis. Second, be-
cause this study is based on surveillance data, the causal
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relationship between sociodemographic characteristics
and the incidence of COVID-19 could not be demon-
strated. Third, due to different policies and measures in
response to COVID-19 in each country, our results
could not be extrapolated to other countries. Neverthe-
less, to the best of our knowledge, this study is the first
to combine the COVID-19 surveillance and sociodemo-
graphic data into GIS and analyze the possible risk fac-
tors of COVID-19 incidence in China from the spatial
perspective, filling the gap of knowledge of this geo-
graphical region.

Conclusions

Our results show that local GWPR model is a better fit-
ting model to investigate the effects of sociodemographic
factors on COVID-19 than the traditional GLM Poisson
regression model. Cities with a higher GDP, limited
health resources, and a shorter distance to Wuhan, were
at a higher risk for COVID-19. Moreover, the relation-
ship between the population density and COVID-19 in-
cidence might be mediated by the peculiar set of
circumstances during the spread of the virus in China,
i.e., the Spring Festival and Spring Transportation in
China. In conclusion, these findings shed light on the ef-
fect of sociodemographic factors on COVID-19 inci-
dence from the geographic perspective and have
important public health policy implications for COVID-
19 management and prevention in China. In addition,
the study could be used as a guide for other countries to
understand the local spread of COVID-19.
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