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Abstract

Host–microbe interactions have been implicated in the pathogenesis of chronic fatigue syn-

drome (CFS), but whether the oral microbiome is altered in CFS patients is unknown. We

explored alterations of the oral microbiome in Chinese Han CFS patients using 16S rRNA

gene sequencing and alterations in the functional potential of the oral microbiome using

PICRUSt. We found that Shannon and Simpson diversity indices were not different in CFS

patients compared to healthy controls, but the overall oral microbiome composition was dif-

ferent (MANOVA, p < 0.01). CFS patients had a higher relative abundance of Fusobacteria

compared with healthy controls. Further, the genera Leptotrichia, Prevotella, and Fusobac-

terium were enriched and Haemophilus, Veillonella, and Porphyromonas were depleted in

CFS patients compared to healthy controls. Functional analysis from inferred metagenomes

showed that bacterial genera altered in CFS patients were primarily associated with amino

acid and energy metabolism. Our findings demonstrate that the oral microbiome in CFS

patients is different from healthy controls, and these differences lead to shifts in functional

pathways with implications for CFS pathogenesis. These findings increase our understand-

ing of the relationship between the oral microbiota and CFS, which will advance our under-

standing of CFS pathogenesis and may contribute to future improvements in treatment and

diagnosis.

Introduction

Bacteria colonize the oral cavity soon after birth and become stable in several niches within

this ecosystem. These oral bacterial communities, or microbiome, contain around 1000 differ-

ent species and are highly complex[1]. The oral microbiome is the second most complex bacte-

rial community in the body after the colon[2]. The oral microbiome is associated with both

oral diseases, such as such as tooth decay[3], endodontic infections[4], gingivitis[5], and
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periodontitis[6], and also with non-oral diseases[7–9]. In a population-based nested case-con-

trol study[10], Porphyromonas gingivalis and Aggregatibacter actionmycetemcomitans, mem-

bers of the oral microbiome, were associated with an increased risk for pancreatic cancer,

while the phylum Fusobacteria and its genus Leptotrichia were associated with decreased risk

for pancreatic cancer. Further, changes in the composition of bacteria present in the oral

microbiome are associated with intestinal dysbiosis in murine models of colitis[11]. Additional

evidence has demonstrated that the oral microbiome plays an important role not only in dis-

ease states but also in human health, including in immune response, metabolism, and nutrient

digestion[12, 13].

Chronic fatigue syndrome (CFS), recently redefined as systemic exertion intolerance dis-

ease[14], is characterized by serious fatigue that is not alleviated by rest and lasts for more than

6 months[15]. CFS is a systemic disease; in the diagnosis criteria of CDC1994[15], CFS

involves multiple systems, including the nervous, digestive, and skeletal systems. CFS is

accompanied by symptoms such as sore throat, tender lymphadenopathy, and impaired mem-

ory or concentration[16]. Efforts made to discover the mechanisms that cause CFS have

included research on genetics, immune responses, infections, and endocrine[17]; however,

despite these efforts, the cause of CFS remains unknown.

Although the etiology of CFS is still unknown, current evidence suggests that the cause of

CFS involves a complex interplay between genetic, environmental, and microbial factors. CFS

is a systematic disease that can occur with inflammatory symptoms[18]; for example, oral

mucosal inflammation is commonly described in patients with CFS[15]. While alterations of

gut microbiota have been associated with CFS[19–21], alterations to the oral microbiota in

CFS patients have not been studied. The oral microbiome is worth exploring because this

microbial community may contribute to CFS symptoms and because oral microbiome bacteria

may be a source of noninvasive biomarkers for CFS. Therefore, to understand whether alter-

ations occur in the oral microbiome of CFS patients, we conducted a comprehensive assess-

ment of oral microbiome community composition and individual taxon abundance by

bacterial 16S rRNA gene sequencing in CFS patients and matched controls. In addition, an

analysis performed using PICRUSt[22] predicted the bacterial metagenome functional content

from the 16S rRNA gene survey. This study will reveal alterations in oral microbiome compo-

sition and function in CFS patients in the Chinese Han population.

Materials and methods

Volunteer recruitment and sample collection

CFS patients were recruited from Southwest Hospital outpatients that fulfilled the Fukuda cri-

teria of CFS [1] from January 2015 to April 2015. Patients with medical illnesses such as epi-

lepsy, inflammatory bowel disease, type 1 diabetes, chronic obstructive pulmonary disease,

psoriasis, rheumatoid arthritis, and lupus erythematosus were excluded. Age, sex, and body

mass index were matched in healthy controls that were recruited from the Chongqing Physical

Examination Center. Healthy control subjects were also excluded based on the following crite-

ria: subjects who had similar symptoms to a CFS diagnosis, and subjects with viral infections,

active bacterial, fungal, or oral disease such as gingivitis and/or periodontitis. Healthy control

subjects had not taken antibiotics, probiotics, prebiotics, or synbiotics in the previous 2

months before oral saliva samples were collected.

Participant’s saliva samples were collected in a sterile 1.5 mL tube as previously described

[23] and within 15 min of preparation, were stored at -80˚C for further sequencing analysis.

To collect unstimulated saliva and obtain sufficient numbers of bacteria, participants were

asked to collect saliva in their mouth for 3 min and then drool into a tube. The study was
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performed according to the Declaration of Helsinki and approved by the Institutional Ethics

Committee at the Third Military Medical University (Chongqing, China). Written informed

consent was obtained from all participants before enrollment in this study.

DNA extraction, bacterial 16S rRNA gene amplification, and sequencing

analysis

The frozen oral saliva samples were thawed and processed using the Soil DNA Kit (Omega

Bio-tek, Norcross, GA, U.S.) according to the manufacturer instructions. PCR amplification of

the 16S rRNAV3-V4 hypervariable regions was performed using primers 338F (5'- ACTCCT
ACGGGAGGCAGCA-3') and 806R (5'- GGACTACHVGGGTWTCTAAT-3')[24]. Equimolar

concentrations of purified amplicons were pooled and used for paired-end sequencing

(2 × 300) on an Illumina MiSeq platform according to the standard protocols at Shanghai

Majorbio Bio-pharm Technology. Raw sequence reads were deposited into the NCBI Sequence

Read Archive (SRA) database (accession number: SRP120025, URL: https://www.ncbi.nlm.

nih.gov/sra/?term=SRP120025%5BAccession%5D).

Bioinformatics and statistical analysis

Raw data obtained from the sequencer were demultiplexed and quality-filtered using QIIME

(version 1.9.1)[25]. First, the reads were truncated at any site that received an average quality

score < 20 over a 50 base pair sliding window. Second, primers were matched to allow only

two nucleotide mismatches, and reads containing ambiguous bases were removed. Third,

sequences that overlapped for a length longer than 10 base pairs were merged according to

their overlap sequence. Operational taxonomic units (OTUs) were clustered with 97% similar-

ity cutoff using UPARSE (version 7.1 http://drive5.com/uparse/). Subsequently, chimeric and

single sequences were identified and removed using UCHIME. The taxonomy of each 16S

rRNA gene sequence was analyzed by RDP Classifier algorithm against the Human Oral

Microbiome Database reference set (version 13) using a 70% confidence threshold.

Based on the OTUs table, diversity indices (Shannon, Simpson) and coverage were calcu-

lated using Mothur[25] and R software. Permutational MANOVA (’Adonis’ function, vegan

package, R)[26] of the unweighted UniFrac distance was used to test differences in overall oral

microbiome composition between CFS patients and healthy controls. Violin graphs and heat-

map diagrams were generated to illustrate bacterial community diversity and composition

using R software (ggplot2 package). Composition analysis was used to quantify the relative

abundance at the phylum and genus levels. Bacterial OTUs assigned with one sequence read

were removed prior to composition analysis. Linear discriminant analysis effect size (LEfSe)

[27], which identifies the differences between two or more groups by both statistical signifi-

cance and biological relevance, was adopted using the Kruskal-Wallis sum-rank test to find

features with significant differential abundance between groups. LEfSe analysis was performed

online (http://huttenhower.sph.harvard.edu/galaxy) with an alpha value of 0.05 and a thresh-

old on the logarithmic linear discriminant analysis (LDA) score for discriminative features of

3.0 as the critical value for all biomarkers. Two-sided p-values of 0.05 were adopted for statisti-

cal significance.

We adopted a machine-learning approach to identify CFS patients from healthy controls.

For these analyses, we used taxon abundances based on OTUs at different levels. Logistic

regression was used to classify CFS patients and area under the curve (AUC) was used to evalu-

ate the performance; all these calculations were completed in the software package R. We used

PICRUSt[22] to predict bacterial metagenome content from 16S rRNA gene-based microbial

compositions and make functional inferences from the Kyoto Encyclopedia of Gene and
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Genomes (KEGG) [28] catalog. Statistical analysis of metagenomic profiles (STAMP)[29] was

used to find differences in KEGG functions between the two groups. Spearman’s rank correla-

tion was used to examine associations between KEGG pathways and genera significantly asso-

ciated with CFS patients (LDA > 3.0). All statistical tests were two-sided, and a p-value < 0.05

was considered statistically significant. All analyses were carried out using R software 3.3.0.

Results

Participants for studies of oral bacteria

Among the 91 participants (46 CFS patients and 45 healthy controls), there were no differences

in age (37.43 ± 7.53 vs. 36.98 ± 7.23, p = 0.31), sex (male/female) (32/14 vs. 30/15, p = 0.94), or

BMI (24.53 ± 3.23 vs 23.86 ± 3.58, p = 0.35). Many patients (38/45) identified similar infectious

diagnosis; for example, in CFS patients an acute, often flu-like symptom was followed by the

onset and eventual CFS diagnosis. In other patients no initiating event was recorded, and their

CFS onset was gradual.

Overview of 16S rRNA sequencing on participants: Sequences, quality

analyses, and taxa identified

Sequencing the 16s rRNA gene from the oral cavity of our 91 subjects yielded 2,753,405 raw

sequences, which ranged from 18,615 to 44,950 reads of 420–460 base pairs with an average

length of 445 base pairs. After quality trimming and chimera checking were performed, single

read sequences were removed. Because the sequencing depth per sample could affect the analy-

sis, sequencing equaling based on the minimal reads of all subjects was performed. After these

quality control checks, 15,340 high-quality reads per sample remained for further analysis. The

coverage in two groups for all samples was about 99.6%, suggesting that most characters have

been captured and sequencing depth for the investigation of CFS-associated oral microbiota is

sufficient.

Alterations of overall composition between CFS patients and healthy

controls

Following sequence quality checks, bacterial richness was assessed based on the Shannon and

Simpson diversity indices, which indicate the mean richness in bacterial diversity. We found

similarities between CFS patients and healthy controls in their oral microbiota, but the healthy

controls demonstrated slightly higher, diversity (not statistically significant) (Fig 1). To find

whether the overall microbiome composition was altered in CFS patients in comparison to

healthy controls, we performed a permutational MANOVA based on unweighted UniFrac

phylogenetic distances. By this metric, we found a significant difference in composition

between CFS patients and healthy controls (p< 0.01).

CFS patients have differences in the relative abundances of some bacterial

phyla in their oral bacterial community compared to healthy controls

Analyses of operational taxonomic units (OTUs) from the oral cavity of CFS patients and

healthy controls revealed that their bacteria clustered within five main bacterial phyla: Actino-
bacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria (Fig 2). However, of all the

phyla with relative abundance greater than 1%, only Fusobacteria was altered significantly in

CFS patients compared to healthy controls. Comparisons of bacterial genera between CFS

patients and healthy controls uncovered results that were more complex than those observed

at the phyla level. At the genus level, the five most abundant genera in CFS patients were
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Neisseria (19.77%), Veillonella (9.81%), Fusobacterium (9.39%), Streptococcus (9.28%), and Pre-
votella_7 (9.06%), which all together accounted for 57.31% of the oral bacterial community in

CFS patients. The five most abundant genera in healthy controls were Neisseria (18.75%),

Fig 1. Comparison of Shannon (A) and Simpson (B) diversity indices determined for CFS patients and healthy controls.

https://doi.org/10.1371/journal.pone.0203503.g001

Fig 2. Compositions of the oral microbiota from CFS patients and healthy controls. The overall compositions of the oral microbiota from CFS patients and

healthy controls are represented as bar plots at the phylum level (A) and the genus level (B).

https://doi.org/10.1371/journal.pone.0203503.g002

Alterations of oral microbiome in CFS patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0203503 September 11, 2018 5 / 14

https://doi.org/10.1371/journal.pone.0203503.g001
https://doi.org/10.1371/journal.pone.0203503.g002
https://doi.org/10.1371/journal.pone.0203503


Veillonella (13.97%), Haemophilus (9.04%), Streptococcus (8.52%), and Prevotella_7 (8.35%),

which accounted for 58.63% of the oral bacteria in healthy controls. Of these, Veillonella abun-

dance was significantly different between CFS patients and healthy controls, with 9.81 ± 8.26%

and 13.97 ± 8.91% respectively (p = 0.02) (Fig 2). In addition, many of the genera with a rela-

tive abundance greater than 1% were significantly different in CFS patients compared to

healthy controls. For example, Fusobacterium, Prevotella, Leptotrichia, and Campylobacter had

increased abundance in CFS patients compared to healthy controls, whileHaemophilus, Por-
phyromonas, andMoraxella had decreased abundance in CFS patients compared to healthy

controls.

We further explored these significant differences using LEfSe analysis. LEfSe analysis uti-

lizes the Kruskal-Wallis sum-rank test to detect features in a community that have significantly

different abundances, and then it employs LDA to estimate the effect size of each differentially

abundant feature[27]. The output of this analysis is a cladogram that visually depicts the differ-

ences between the oral cavity microbiota of CFS patients and healthy subjects (Fig 3A), and a

bar graph that represents bacteria at different levels that have an LDA score > 3.0 (Fig 3B).

The LEfSe results identified the following groups as different in the oral microbiota between

CFS patients and healthy controls: Fusobacteria in the phylum level; Epsilonproteobacteria,

Fusobacteriia, Gammaproteobacteria, and Negativicutes in the class level; Campylobacterales,
Fusobacteriales, Pasteurellales, and Selenomonadales in the order level; Bacteroidaceae, Campy-
lobacteraceae, Family_XI, Fusobacteriaceae, Pasteurellaceae, Porphyromonadaceae, Pseudomo-
nadaceae, and Veillonellaceae in the family level; Alkalibacillus, Bacteroides, Campylobacter,
Fusobacterium, Gemella,Haemophilus, Moraxella, Porphyromonas, Prevotella, Prevotella_2,

Pseudomonas, and Veillonella in the genus level (Fig 3).

Fig 3. LEfSe analysis identified the most differentially abundant taxa between healthy controls and CFS patients. (A) Green indicates taxa that are enriched in

healthy controls; red indicates taxa enriched in CFS patients; yellow indicates taxa that do not change between the groups. The size of each dot is proportional to its

effect size. (B) Taxa enriched in the oral microbiome of CFS patients have a a positive LDA score (red), and taxa enriched in healthy controls have a negative LDA score

(green). Only taxa with LDA> 3 are shown. The letter in front of the strains indicates the taxon level; p = phylum, c = class, o = order, f = family, g = genus).

https://doi.org/10.1371/journal.pone.0203503.g003
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Machine learning and bacterial metagenome content prediction

We wanted to further explore the diagnostic capabilities of the bacterial taxa that were signifi-

cantly different between CFS patients and healthy controls. For these analyses we chose Fuso-

bacteria, Gammaproteobacteria, Veillonellaceae, and Fusobacterium because they represented

different taxon levels that had high LDA scores and considerable differences between groups.

To assess the diagnostic ability of each taxa, we used the area under ROC (receiver operating

characteristic curve) Curve (AUC). All taxa had in AUC values of around 0.7 (0.73, 0.72, 0.65,

and 0.68) (Fig 4), which may indicate that a single taxon is not sufficient to diagnosis CFS. It

may be that including more taxa in the analysis will increase the diagnostic capabilities of the

microbiome (Fig 4).

To predict functions presented in the microbiome from their metagenome, we employed

the PICRUSt algorithm[30]. Of the 236 KEGG pathways tested, 40 pathways differed in abun-

dance between CFS patients and healthy controls. These 40 pathways represented different

pathway levels. Specifically, no pathways in level 1, 6 pathways in level 2, and 55 pathways in

level 3 were found to be significantly different between CFS patients and healthy control sub-

jects. The level 2 pathways that distinguished CFS patients were “Biosynthesis of Other

Fig 4. Receiver operating characteristic (ROC) curves for Fusobacteria, Gammaproteobacteria, Veillonellaceae, and Fusobacterium were used to predict CFS

patients.

https://doi.org/10.1371/journal.pone.0203503.g004
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Secondary Metabolites,” “Energy Metabolism,” “Environmental Adaptation,” “Enzyme Fami-

lies,” “Metabolic Diseases,” and “Metabolism of Other Amino Acids” (Fig 5). Some genera

were associated with pathways in different levels; for example, Prevotella, which was enriched

in CFS patients, was associated significantly with many level 2 pathways. Prevotella was posi-

tively associated with carbohydrate metabolism, cell motility, and immune system disease, and

negatively associated with biosynthesis of other secondary metabolism, enzyme families, and

nucleotide metabolism (Fig 5).

KEGG functional pathways related to metabolism were altered in the microbiota of CFS

patients. Notably, fatigue is a symptom of CFS, and metabolism is thought to play a key role in

CFS pathogenesis. Therefore, we further analyzed the association between bacterial genera

identified by LEfSe to have a LDA> 3.0 and KEGG pathways related to metabolism[31]. Most

genera correlated with KEGG pathways that relate to metabolism (Figs 5 and 6); however, the

functions in genera enriched or depleted in CFS patients were inconsistent and complex,

which mirrors the complexity of CFS pathogenesis (Figs 5 and 6).

Discussion

Due to the implication of the microbiota in human health and disease states, not only has the

microbiota been a target for therapeutic interventions for a range of diseases, but therapeutic

effects have been observed[32–34]. Previous studies focused on gut microbiota[19–21], which

is most numerically dominant microbial community in humans. However, the oral cavity,

which also teems with a large microbial community that plays an important role in human

health, has recently attracted the attention of the research community.

Fig 5. Heatmap of bacterial taxa associated with CFS that are related to several gene categories. Red indicates a positive correction, green indicates a negative

correction, and white indicates no correction. �0.01< p� 0.05; ��0.001< p� 0.01; ���p� 0.001.

https://doi.org/10.1371/journal.pone.0203503.g005
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While alterations of gut microbiota have been associated with CFS[19, 20], alterations to

the oral microbiota in CFS patients had not yet been studied. Previous studies have reported

that the human oral cavity microbiome is more affected by shared environment than by genet-

ics[35], and the main phyla found in the oral microbiome are Actinobacteria, Bacteriodetes,

Firmicutes, and Proteobacteria, which can vary among individuals, but corresponds to our

results. Here we found, similar to studies of CFS patients’ intestinal microbiota, alterations in

the oral cavity microbiota in CFS patients compared to healthy controls. Specifically, we found

significant enrichment of the Fusobacteria phyla in CFS patients. Further, many genera were

either depleted or enriched in CFS patients in comparison to healthy controls. Despite these

observations, Shannon and Simpson diversity indices did not reveal differences between the

two groups. We also examined associations between these altered genera and KEGG pathways

and found some trends existed in the functional potential between the microbiota of CFS

patients and healthy controls. Analysis of inferred metagenomes indicated that the microbiota

in CFS patients may have different functions in the categories of “Biosynthesis of Other Sec-

ondary Metabolites,” “Energy Metabolism,” “Environmental Adaptation,” “Enzyme Families,”

“Metabolic Diseases,” and “Metabolism of Other Amino Acids”.

Differences have been observed in the human intestinal microbiota of CFS patients[19, 20,

36]. Notably, the composition of fecal microbiota is vastly different from the composition of

the oral microbiota, thus alterations we observed to the oral microbiota are substantially differ-

ent from what has previously been reported for alterations to the intestinal microbiota of CFS

patients. In comparison to published studies on alterations to intestinal microbiota in CFS

patients, the alterations we observed in the oral cavity are less significant. For example, the

Fig 6. Heatmap of bacterial taxa associated with CFS that are related to several gene categories. Red indicates a positive correction, green indicates a

negative correction, and white indicates no correction. Only KEGG pathways that relate to metabolism and only genera that have an LDA> 3.0 were

included in the heatmap. �0.01< p� 0.05; ��0.001< p� 0.01; ���p� 0.001.

https://doi.org/10.1371/journal.pone.0203503.g006
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intestinal microbiota of CFS patients has a significantly decreased Shannon diversity index[19]

in comparison to healthy controls, which we did not observe in the oral microbiota. In addi-

tion, the specific taxa that changed in the intestinal microbiota were different from those that

changed in the oral microbiota. For example, in a LEfSe analysis of CFS patients, the intestinal

microbiota of CFS patients was enriched with Oscillospira, Lactococcus, and Anaerotruncus
from the Firmicutes phylum, and Coprobacillus and Eggerthella from the Actinobacteria phy-

lum. Further, 18 genera with members mainly belonging to the Firmicutes phylum were

depleted compared to healthy controls[19]. In another study[20], the intestinal microbiota

from Norwegian CFS patients had increased proportions of Lactonifactor and Alistipes, and

decreased proportions ofHoldemania and Syntrophococcus, while the intestinal microbiota

from Belgian CFS patients showed increased Lactonifactor and decreased Asaccharobacter.
Thus, CFS patients experience alterations to microbiota in both the oral cavity and intestine,

but the alterations that occur in the oral cavity and intestine of CFS patients are different.

However, we did find some genera whose altered proportions existed in both the oral cavity

and the intestinal tract. For example, Haemophilus was decreased in both our oral study and

Giloteaux’s study of the intestinal microbiota of CFS patients[19]. Haemophilus, along with

Veillonella and Prevotella, have also been found altered in oral lesions[37] and in the oral

microbiome of human immunodeficiency virus positive individuals[38]. While the pathogene-

sis of CFS remains unknown, altered microbiota, including intestinal and oral cavity, may play

an important role in its etiology. Because we found many genera altered in CFS patients, the

associations of these alterations and whether they all have equal significance in CFS etiology

requires further exploration.

CFS is an agnogenic disease, whose symptoms involve many systems[15] and systemic

inflammatory factors[18]. Thus, CFS patient oral microbiome alterations may be only one

clinical index of CFS pathogenesis. It may be that oral microbiome alterations increase the

severity of symptoms and thus lead to or accelerate changes in inflammatory factors. Yet the

reverse may also be true, CFS-induced oral symptoms may result in oral microbiome alter-

ations. However, regardless of the causal relationship between oral microbiome alterations

and oral CFS symptoms, these two features along with alterations in inflammatory factors[18,

19] are associated with infections. Thus, infections may also contribute to CFS symptoms,

although further research is required to test this hypothesis.

In addition, we found that the 16s rRNA bacterial profile of healthy controls in our study

was slightly different from other published studies [38]. These discrepancies may be due to dif-

ferences in subject ethnicity, and methods among others [39]. Saliva microbiome profiles are

not significantly affected by the collection method or DNA extraction protocols [40], thus we

matched our healthy control and CFS subjects samples in order to identify differences in their

oral microbiome.

We adopted a supervised machine learning approach to identify CFS patients based on

their oral microbiome, a method that has been used in several microbiome studies to distin-

guish patients from healthy controls[19, 41–43]. Using this approach, we classified patients

with medium degree of accuracy (AUC ROC value approximately 0.7). To increase the AUC

ROC value, future studies may combine inflammatory factors and intestinal microbiome with

oral microbiome. The sample size is an additional confounding factor that may affect the accu-

racy of this analysis, along with ethnics and some methods differences[39]; thus, a large cohort

of CFS and healthy controls is still needed. With these improvements, this type of approach

could be further explored and serve as a complement to other non-invasive methods to distin-

guish patients with a variety of disease, including CFS.

We used PICRUSt to predict genomic functions present in the oral microbiome and found

a difference in functions that were present in the oral microbiome of CFS patients compared
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to healthy controls. A correlation analysis between predicted functions and genera with LDA

greater than 3.0, identified these genera to have different functions. For example, Prevotella,

which is enriched in CFS patients, had the most significant correlations with KEGG pathways.

Given how significantly Prevotella is altered in CFS patients, Prevotellamay play a role in CFS

pathogenesis, or acts as an indicator of oral microbiota alterations in CFS. Furthermore, of

gene pathways analyzed, those related immune system and infectious diseases were signifi-

cantly associated with many genera that had altered abundance in CFS patients, especially Pre-
votella, Haemophilus, and Veillonella (p� 0.001). This might suggest these three genera are

especially important to CFS pathogenesis.

Because fatigue is the main symptom of CFS, we were particularly interested in correlations

involving pathways that related to metabolism. Analyzing these pathways in detail revealed sig-

nificant differences in carbohydrate metabolism, energy metabolism, xenobiotics biodegrada-

tion and metabolism, and glycan biosynthesis and metabolism. However, we note that some

changes were minor, which may be due to the complexity of CFS, how the diagnosis is based

on symptoms, and how in each case the symptoms may have a different source. Despite this

complexity, alterations in predicted function exist in the oral microbiome of CFS patients, and

these alterations correspond to CFS symptoms—especially severe fatigue.

Our study had a few limitations, particularly related to the complex symptoms of CFS. Our

study only identified oral microbiome variation between CFS patients and healthy controls

but did not identify confounding factors such as disease severity, disease duration, and medical

treatments received. We did not include any patients who had improved illness after treat-

ment, or samples pre- and post-treatment, which limited conclusions we can draw from this

study. Additionally, the causal relationship and mechanism of reported disease-associated

microbes requires further exploration. No other studies have investigated oral microbiome

alterations in CFS patients, thus further studies are required to confirm our results. While we

predicted the metagenome based on our 16s rRNA gene sequencing, this analysis would have

been improved with complete metagenomic data to determine the actual gene content of bac-

teria altered by disease. Other diseases with similar symptoms could also be included as a sub-

group for future analysis to deepen our understanding of the relationship between oral

microbiome alterations and CFS symptoms.

In summary, here we examined changes in the human oral microbiome in CFS patients

and confirmed that the oral microbial composition of CFS patients has minor but significant

differences from that of healthy controls. These genera with altered abundance are correlated

with KEGG pathways, notably pathways that relate to metabolism. This study provides new

insights into CFS pathogenesis, and we think that understanding the relationship between dis-

ruption of the oral microbiome and CFS symptoms may lead to improvements in treatment

and diagnosis.
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