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The spectral, spatial and contrast 
sensitivity of human polarization 
pattern perception
Gary P. Misson  1,2 & Stephen J. Anderson2

It is generally believed that humans perceive linear polarized light following its conversion into 
a luminance signal by diattenuating macular structures. Measures of polarization sensitivity 
may therefore allow a targeted assessment of macular function. Our aim here was to quantify 
psychophysical characteristics of human polarization perception using grating and optotype stimuli 
defined solely by their state of linear polarization. We show: (i) sensitivity to polarization patterns 
follows the spectral sensitivity of macular pigment; (ii) the change in sensitivity across the central field 
follows macular pigment density; (iii) polarization patterns are identifiable across a range of contrasts 
and scales, and can be resolved with an acuity of 15.4 cycles/degree (0.29 logMAR); and (iv) the human 
eye can discriminate between areas of linear polarization differing in electric field vector orientation 
by as little as 4.4°. These findings, which support the macular diattenuator model of polarization 
sensitivity, are unique for vertebrates and approach those of some invertebrates with a well-developed 
polarization sense. We conclude that this sensory modality extends beyond Haidinger’s brushes to the 
recognition of quantifiable spatial polarization-modulated patterns. Furthermore, the macular origin 
and sensitivity of human polarization pattern perception makes it potentially suitable for the detection 
and quantification of macular dysfunction.

Many animal species are sensitive not only to light intensity and wavelength but also to the polarization infor-
mation contained within light1. Linearly polarized light consists of electromagnetic waves with parallel electric 
field vectors (e-vector), and the ability of some animals to discriminate between different e-vector orientations is 
thought to aid their vision, navigation, camouflage, predation and social communication (reviewed in Horvath2). 
The biophysical basis by which this is achieved varies between species and is not fully understood, although it 
is generally agreed that polarization vision has its origin in front-end photoreceptors that exhibit a differential 
polarization response3,4. In some species, sensitivity to polarized light may be further enhanced through the oper-
ation of higher-order polarization-opponent and spatial integration mechanisms5.

Whilst humans lack any dedicated receptors or higher-order neurons for polarization vision, they are capable 
of perceiving linearly polarized light6. It has long been believed that this particular human sense was rudimentary 
and limited to the perception of Haidinger’s ‘brushes’7,8, the short-lived hourglass-shaped pattern of orthogonal 
yellow and blue hues perceived near the locus of fixation when one’s gaze is directed at a uniform field of linearly 
polarized white light. The phenomenon is wavelength-sensitive, closely following the absorption spectrum of 
macular pigment8–10, and is sensitive to corneal birefringence11–13.

More recent evidence14 shows that human polarization sensitivity is not limited to the perception of 
Haidinger’s brushes: non-uniform polarization-modulated stimuli yield percepts that are markedly different from 
the classic ‘brush’ configuration seen with uniform fields of polarized light. This ability can best be described 
as polarization pattern perception, a particular characteristic of which is the preservation of edge boundaries 
between two adjacent areas of different linear polarization. This edge-preserving property allows the design of 
stimuli that could be utilised in a full psychophysical characterisation of human polarization vision, including 
one- and two-dimensionally modulated patterns and optotypes.

The precise mechanism of human polarization perception is unclear. As humans do not possess any special-
ised polarization-sensitive mechanisms15, it is hypothesised that this perceptual feat originates from the con-
version of linearly polarized light into a luminance contrast signal by a diattenuating structure (or structures) 
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within the eye6. Various candidate structures have been proposed, including the arrangement of absorbing mac-
ular pigment molecules within radially symmetric photoreceptor cell axons7,16, the birefringent properties of the 
photoreceptor cell axons17, and the distribution and cylindrical geometry of short-wavelength sensitive cones18. 
Evidence that human polarization vision is tied in some way to macular pigment includes: (i) the near perfect 
match between the wavelength of light yielding peak sensitivity to Haidinger’s brushes and the peak absorption 
characteristics of macular pigment10,19,20; and (ii) the confinement of Haidinger’s brushes to the central two to 
three degrees of the visual field7,8, although there is no quantitative data supporting this.

Human polarization perception provides no known biological or behavioural advantage. However, the inti-
mate relationship that appears to exist between macular pigment and polarized light perception may afford the 
opportunity to develop novel and clinically useful measures of macular function. This is important because mac-
ular disease is one of the major causes of blindness throughout the developed world, and treatment is currently 
only effective in early stages of disease progression.

Our aim in this paper was to employ polarization-modulated grating patterns and optotypes in order to 
quantify fully the spectral characteristics, spatial characteristics and resolution of human polarization pattern 
perception.

Materials and Methods
The following standard polarization parameters are used in this study: polarization orientation (ψ), elliptic-
ity (χ)21 and degree of polarization (DOP). These are defined, together with calibration methodology, in the 
Supplementary Material. Other study-specific parameters are defined below.

Participants. A total of nine adults (5 males and 4 females, aged 27–62 years) consented to participate in the 
study, with five participants for the spectral sensitivity measures and six for both the visual field and contrast sen-
sitivity measures. All had normal visual fields, normal colour vision and normal or corrected-to-normal monoc-
ular logMAR acuities of 0.0 or less. Participants provided informed consent and all procedures were approved by 
the UK NHS Health Research Authority and Ethics Committee (IRAS no. 224715). All experimental procedures 
were in accordance with the tenets of the Declaration of Helsinki.

Polarization stimuli. Stimulus generation. Stimuli were generated by computer and displayed on a con-
ventional 5” 800 × 480 pixel HDMI LED-backlit thin-film transistor liquid crystal display (LCD, from Waveshare 
Electronics, Shenzhen, China). To generate an isoluminant, isochromatic polarization stimulus with a variable 
polarization angle, the front polarizing filter of the LCD was removed and the resultant delaminated LCD (dLCD) 
cell was illuminated with an appropriate light source14. To assess spectral sensitivity the light source was a con-
stant intensity monochromator, while for all other measures the light source was that of the original LCD, but 
with a blue filter inserted between the light source and the back polarizing filter – particular details of the light 
source are reported in the relevant sections below. Note that luminance contrast measures were completed with 
the front polarizer in place.

Stimulus calibration. The polarization output of the dLCD was measured for greyscale values (r = g = b = [0, 
255]) using standard polarimetric methods (see Supplementary Material). It was thus possible to assign a state of 
polarization generated by the dLCD to a given greyscale value. Note that the degree of polarization of all greyscale 
values exceeded 94%. Polarization ellipticity was low at the ends of the greyscale range (χ < 5° for greyscales 0–33 
and 220–255), reaching a maximum of 14° for intermediate greyscale values (153). There is a clearly defined 
non-linear relationship between greyscale and polarization angle orientation ranging from 43° to 130° for grey-
scale value of 0 to 255 respectively (Supplementary Material, Figure S1a), which allows a precise polarization 
orientation value generated by the dLCD to be assigned to any particular input greyscale value.

Luminance was measured with a Minolta photometer (model CS100-A), and the gamma-corrected display 
was linear over the range of contrasts used.

Contrast calibration, polarization angle, polarization angle contrast. An image comprising adjacent areas of dif-
ferent greyscales creates a luminance difference on the intact display (LCD) and a polarization difference on the 
delaminated display (dLCD). For a given pattern the luminance difference on the LCD can be expressed using a 
conventional luminance contrast measure, such as Weber (CW) or Michelson (CM) contrast (see below). The same 
pattern on the dLCD is isoluminant but can be quantified as if displayed on a conventional LCD using a polari-
zation equivalent luminance contrast parameter (polarization equivalent contrast, PEQC). This can be converted 
to a polarization angle difference (Δψ°) or an angular contrast value (polarization angle contrast, PC = Δψ°/90°), 
according to the method outlined in the Supplementary Material.

Procedure. Details specific to each experiment are outlined in the relevant sections below. The general proce-
dure was to measure contrast thresholds for discriminating the orientation of visual patterns (either square-wave 
modulated gratings or Landolt C optotypes) using a four-alternate forced-choice (4-AFC) paradigm in a modified 
version of the Freiburg Visual Acuity and Contrast Test (FrACT Version 3.9.822). FrACT uses the best parameter 
estimation by a sequential testing (best PEST) algorithm for adaptive threshold determination, with each run 
consisting of 24 trials. Stimulus orientation was randomised between trials, and participants made their response 
selection at their own pace using a dedicated, hand-held directional keypad. Auditory feedback was given for an 
incorrect response. For all measures the ambient room illumination was 42 lux.

The stimulus display screen was mounted on an optical bench and viewed at a distance of 50 cm, with the par-
ticipant’s head stabilized using a chin and forehead rest. This arrangement allowed viewing normal to the screen, 
eliminating the possibility of luminance confounds from oblique viewing. If required, a participant’s refractive 
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error was corrected to 50 cm using non-birefringent glass lenses. At this distance, the full display screen sub-
tended 12° horizontally by 8° vertically.

The contrast of grating patterns was defined as Michelson contrast (CM):

= − +C (Lmax Lmin)/(Lmax Lmin),M

where Lmax and Lmin are the luminances of the bright and dark bars respectively. The contrast of the Landolt C 
optotypes was defined as Weber contrast (CW):

C (L L )/(L ),W O B B= −

where LO is the luminance of the optotype and LB is the luminance of the immediately adjacent background. For 
all participants, the experiments were completed in the order listed below.

Spectral sensitivity. To measure spectral sensitivity, the dLCD was incorporated into a Maxwellian viewing sys-
tem, giving an 8° diameter circular stimulus display. The light source was a diffraction grating monochromator 
(with effective output of 420–800 nm and 10 nm full width at half maximum bandwidth; model K3031505 from 
Cecil Instruments Ltd, Cambridge, UK) with white LED primary illumination. A variable neutral density filter 
placed between the primary source and spectrometer input window allowed adjustment of spectrometer output 
luminous intensity. Wavelength and intensity of the monochromator output were determined for each test wave-
length using a solid-state spectrometer (from Ocean Optics Ltd, USA, model HR2000+), which was also used to 
confirm equiluminance for representative test greyscales at each wavelength increment. Monochromator output 
luminous intensity was adjusted to be constant for all test wavelengths (200 photon counts per ms; 10ms integra-
tion time) by adjusting the variable density input filter.

Monocular adaptive contrast thresholds for discriminating the orientation of a square-wave grating were 
measured for test wavelengths varying in 10 nm increments from 435 nm to 535 nm. A grating of 5 cycles per 
degree (cpd) was used because: (i) this periodicity is near the optimum for perception; and (ii) it ensured that a 
sufficient number of cycles were present within the 1 degree viewing aperture required for the spatial distribu-
tion experiment described below. Grating orientation was randomised between trials in one of four orientations 
(horizontal, vertical, right oblique or left oblique), and each datum was calculated from the mean of three runs 
(3 × 24 trials in total). In two participants, additional measures were completed for test wavelengths between 550 
and 800 nm, using 25 nm increments.

Spatial sensitivity and resolution to polarized light. To determine the spatial sensitivity and resolution of human 
polarization perception, the dLCD was mounted on the optical bench at a viewing distance of 50 cms. Waveband 
output of the dLCD was modified by inserting a blue filter (Lee filter # 075, ‘evening blue’; peak transmission 
440–460 nm, from Lee Filters Ltd, UK) between the back face of the liquid crystal cell and the integral light source 
to generate a light output peaking at 460 nm. The spectral characteristics (see Supplementary Material) of the 
device were confirmed using a spectrometer and were not altered by the insertion of the front polarizer. The mean 
luminance of the display with and without the front polarizer in place was 4 cd/m2 and 5 cd/m2, respectively. The 
CIE coordinates of the display with or without the polarizer were x = 0.143 and y = 0.025.

To quantify the spatial distribution of sensitivity to polarized light, the front polarizer was omitted and a mask 
with a central 1° diameter circular aperture was placed over the face of the dLCD. Fixation points were marked on 
the screen in a regular 1° interval grid pattern. Participants were asked to maintain fixation at a given grid-point 
during each test run, up to a maximum of 5° from the test aperture. Equivalent contrast threshold of a 5 cpd grat-
ing stimulus was determined using FrACT for the right (dominant) eye of all participants.

For determining sensitivity to grating patterns, the mask had an 8° square aperture and testing was performed 
both with and without the front polarizer in situ for luminance and polarization measures respectively. Binocular 
contrast thresholds for discriminating the orientation of square-wave gratings were assessed in a 4-ACF paradigm 
using FrACT, as described above, for grating periodicities ranging from 1 to 18 cpd. The gratings were presented 
in one of four random orientations on each trial (horizontal, vertical, right oblique or left oblique). Using the 
same paradigm, but in a separate experiment, binocular polarization contrast thresholds for discriminating the 
orientation of Landolt C optotypes were assessed for letter sizes varying from 10 to 200 arcminutes diameter, 
corresponding to a visual acuity range of 0.0–1.6 logMAR. The Landolt C opening was presented in one of four 
random positions on each trial (up, down, right or left). For both sets of measures, each datum was determined 
from the mean of three runs (3 × 24 trials in total).

Data availability. The datasets of the current study used to generate the figures are given in Supplementary 
Material. Complete data sets are available from the corresponding author upon request.

Results
Spectral sensitivity. The solid symbols in Fig. 1 are the normalized polarization equivalent contrast sensi-
tivity measures for discriminating the orientation of a 5 cpd grating, plotted as a function of stimulus wavelength. 
The results were averaged across five observers. Note that sensitivity extended from near the lower wavelength 
limit of visual perception to approximately 540 nm, peaking at 460 nm. The target was not visible for test wave-
lengths greater than 540 nm, as confirmed with measures completed on two observers.

Also shown in Fig. 1 are the normalized absorption spectra of macular pigment, in situ s-cones and s-cone 
photopigment23. While there is no similarity between the polarization sensitivity measures and either the s-cone 
pigment or s-cone photoreceptor absorption spectra, there is a clear correspondence between our sensitivity 
measures and the macular pigment absorption spectrum.
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Spatial distribution of sensitivity to polarized light. Figure 2(a–f ) shows, for six observers, 
two-dimensional grey-scale maps of normalized log sensitivity across the central visual field for discriminating 
the orientation of a polarization-modulated grating of 5 cpd periodicity. In each panel, the origin of co-ordinates 
indicates foveal viewing and darker shades represent higher sensitivities. Note that sensitivity was highest with 
foveal viewing and declined sharply with retinal eccentricity at a similar rate in each quadrant of the visual field. 
The target stimulus was not visible at retinal eccentricities greater than 3°.

Figure 3(a) shows the distribution of polarization pattern perception averaged across the six observers (from 
Fig. 2). Using the same display resolution, a two-dimensional grey-scale map of typical human macular pigment 
density is shown in Fig. 3(b), where the origin indicates the fovea and darker shades indicate higher pigment 
density. It was generated by projecting into two-dimensional space a typical one-dimensional profile of macular 
pigment density – the parameters chosen for this projection fall within the range of density measures given by 
Berendschot and van Norren24, and are detailed together with the calculation method in the Supplementary 
Material. Consistent with numerous reports on the spatial distribution of macular pigment25,26, Fig. 3(b) shows 
that the concentration of pigment peaks in the centre of the macula and decreases rapidly to undetectable levels at 
3° to 4° eccentricity. Note the correspondence between our quantitative data on the spatial distribution of polari-
zation sensitivity (Fig. 3a) and a typical normalized distribution of macular pigment density (Fig. 3b).

Spatial resolution for grating patterns and Landolt C optotypes. The solid symbols in Fig. 4a 
show the contrast sensitivity measures, averaged across six observers, for discriminating the orientation of 
polarization-modulated square-wave gratings as a function of grating periodicity (cpd). For comparison, sensi-
tivity measures are also shown for luminance-modulated gratings (open symbols). All measures were obtained 
using a backlighting filtered to a waveband peaking at 460 nm, chosen to approximate the maximum spectral 
sensitivity of human polarization vision (see Supplementary Material Figure S2). Note that, over the range of val-
ues assessed, contrast sensitivity for polarization-modulated patterns is an order of magnitude less than that for 
luminance-modulated patterns. When plotted on logarithmic co-ordinates, an exponential function provided an 
excellent fit (R2 > 0.95) to the decline in sensitivity at higher spatial frequencies27 (continuous line through each 
data set). Extrapolating the functions to a contrast sensitivity of one (100% contrast) yields a spatial acuity of 25.8 
cpd (0.07 logMAR, ~6/7.5+ Snellen equivalent) for luminance-modulated patterns and 15.4 cpd (0.29 logMAR, 
~6/12+) for polarization-modulated patterns. Note that these acuities were recorded using a mean display lumi-
nance of ≤5 cd/m2.

In Fig. 4b the contrast sensitivity measures for polarization-modulated patterns are replotted in terms of the 
minimum detectable polarization angle difference (Δψ°, see Supplementary Material for details and Figure S1). 
The smallest angular difference observed was 4.4°, a value similar to e-vector angle discrimination values reported 
for several invertebrate species28.

Contrast sensitivity, averaged across six observers, for resolving polarization-modulated Landolt C letters is 
shown in Fig. 5. Under the conditions of our experiment, sensitivity was maximal for letters corresponding to a 
logMAR acuity of approximately 1.4 (~6/150 Snellen equivalent), and declined for both smaller and larger letters. 
The smallest polarization-defined letter that could be resolved corresponded to an acuity of 0.6 logMAR (~6/24 
Snellen equivalent).

Discussion
In quantifying the spatial contrast sensitivity and spatial resolution of human polarization perception, we show 
that polarization-modulated patterns are not only identifiable across a range of contrasts and scales, but they 
can be resolved with an acuity approaching that for luminance-modulated patterns (Fig. 4). We also show that 
the perception of polarization patterns is dependent on the absorption properties and spatial extent of macular 

Figure 1. Spectral characteristics of polarization pattern perception. The solid symbols are the normalized 
polarization equivalent monocular contrast sensitivity measures for discriminating the orientation of a 5 cpd 
grating, plotted as a function of stimulus wavelength (nm). The results were averaged across five observers; the 
error bars show ± 1 sem. Also shown are the normalized absorption spectra of: (i) macular pigment (yellow 
continuous line); (ii) in situ s-cones (blue dash line); and (iii) s-cone photopigment (purple dot line), as 
published in Stockman et al.23.
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pigment (Figs 1, 2 and 3). Given these findings, we suggest that polarization-modulated stimuli may be a highly 
efficient and directed means of assessing central retinal (macular) function in health and disease.

Polarization pattern perception: comparison with Haidinger’s brushes. The results of the pres-
ent study make it clear that human polarization perception is not confined to the phenomenon of Haidinger’s 
brushes. The Haidinger effect is perhaps the simplest manifestation of human polarization sensitivity and its 
biophysical basis has been discussed at length elsewhere, with general agreement that the effect is due to selec-
tive absorption by oriented macular pigment molecules6. In Fig. 1 we show that the spectral characteristics of 
polarization-modulated patterns are almost identical to those detailed by Bone19 for Haidinger’s brushes: the 
spectral characteristics of both stimulus types show a clear qualitative correspondence with the absorption spec-
tra of macular pigment. In Figs 2 and 3a we show that sensitivity to polarization-modulated patterns declines to 
zero at retinal eccentricities beyond 3°, which is consistent with the known areal extent of Haidinger’s brushes7,8,20 

Figure 2. Distribution of polarization pattern perception in visual space. Two-dimension grey-scale maps for 
six observers (a–f) of monocular normalized log sensitivity across the central visual field for discriminating the 
orientation of a polarization-modulated grating of 5 cpd presented in a 1° diameter aperture. In each panel the 
origin of co-ordinates indicates foveal viewing and darker shades represent higher sensitivities (grey-scale range 
0–1). Axes are in degrees of eccentricity from central fixation, where positive values indicate temporal (T)/
superior (S) visual field and negative values indicate nasal (N)/inferior (I) visual field.
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and matches typical values for the spatial distribution of macular pigment density (Fig. 3b). In short, the similar-
ities reported here between polarization pattern perception and the Haidinger effect, both critically dependent 
on the presence of a radially diattenuating macula, support the view14 that they are manifestations of the same 
phenomenon of human polarization sensitivity.

Apart from the diattenuating properties of the macula, polarization contrast sensitivity may also be influenced 
by the ocular media. Light scatter from media opacities (e.g. cataracts) may depolarize the incident light, thus 
reducing polarization pattern perception. Ocular retardation, predominantly the result of corneal birefringence29, 
varies between individuals30 and may need to be considered in any quantitative interpretation of macular diat-
tenuation. This may be particularly relevant for measuring macular pigment optical density using polarization 
perception13. In our study, however, we note there was little inter-observer variability in on-axis (central viewing) 
measures (Fig. 4), and conclude that, for the participants of this study, inter-individual variations in the partici-
pants’ ocular media had limited effect on polarization contrast sensitivity.

Quantification of human polarization pattern perception. The contrast sensitivity function (CSF) 
for polarization-modulated gratings peaked near 2 cpd and declined to a projected minimum at 15.4 cpd (see 
Fig. 4a). This acuity is within a factor of two of that projected for luminance-modulated gratings, as determined 
under the same experimental conditions (i.e. a blue display screen of mean luminance ≤ 5 cd/m2).

The decline in sensitivity for polarization-modulated gratings was qualitatively, though not quantitatively, 
similar to that measured for luminance-modulated gratings (compare open and closed symbols in Fig. 4a), which 
is to be expected if both stimulus types were detected via a common neural mechanism. In support of this we 
note that the CSF for polarization-modulated gratings is similar in peak frequency and general shape to previ-
ously measured CSFs for luminance-modulated gratings illuminated by blue light-emitting diodes (see Fig. 6 in 
Ramamurthy et al.31). The results presented in Fig. 4a can be interpreted in terms of the macular response: the 
luminance signal needs to be approximately one order of magnitude less than the polarization signal to generate 
the same macular response. This relationship between polarization and luminance contrast sensitivities (pCS, 
LCS) is shown in Fig. 6, where the data fits the geometric expression LCS = 9.56 x pCS1.19 (R = 0.98).

Together with the spectral characteristics and sensitivity profile of polarization pattern perception, these 
findings provide further support for the radial diattenuator model of polarization sensitivity. This model pos-
its that radially orientated diattenuating macular structures convert orientation of linear polarization into a 
luminance contrast signal, which can then be processed in normal fashion without recourse to any specialised 
polarization-sensitive ocular or neural mechanisms.

Our sensitivity measures for resolving Landolt-C letters (Fig. 5) show that polarization-modulated stimuli can 
be adapted to standard optotypes as used in clinical practice. For the viewing conditions employed, sensitivity 
peaked at letter sizes corresponding to 1.4 logMAR and declined for both smaller and larger letters. The decline 
in sensitivity for smaller letters is consistent with the resolution properties of the eye27. The decline in sensitivity 
with the three largest Landolt C optotypes used here (diameter 150–200 arcminutes) may reflect the fact that 
their openings were imaged on paracentral regions of the macula where human polarization sensitivity is rapidly 
declining (see Fig. 3).

Comparison with polarization sensitivity in animals. Using the relationship shown in Supplementary 
Material Figure S1a, the polarization equivalent contrast sensitivity measures were replotted in terms of the min-
imum polarization angle difference that was detectable between the foreground and background of our grating 

Figure 3. Distribution of polarization pattern perception in visual space. (a) Two-dimensional grey-scale map 
of the grand average of normalized log contrast sensitivity of six observers (from Fig. 2). (b) Two-dimensional 
grey-scale map of normalized typical human macular pigment density, as calculated from the model of 
Berendschot and van Norren24, where the origin indicates the fovea and darker shades indicate higher pigment 
density. Axes are in degrees eccentricity from central fixation, where positive values indicate temporal (T)/
superior (S) visual field and negative values indicate nasal (N)/inferior (I) visual field. See Supplementary 
Material for details of the calculation method.
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stimuli. The results, shown in Fig. 4b, indicate that humans are capable of detecting an edge between adjacent 
polarized areas that differ in linear polarization by as little as 4.4° (achieved with grating periodicities of 2 cpd). 
These findings, which are without precedent for terrestrial vertebrates, compliment those of Temple et al.13 who 
demonstrated that humans are sensitive to partially polarized light. The ability to discriminate angular differences 
in e-vector in the range of 10°-20° is reported in invertebrates and aquatic vertebrates32–34 and rises to 3.2° for 
fiddler crabs35. The most acute e-vector angle discrimination reported for any animal (Mourning Cuttlefish) is 
just over 1°, a resolution thought to be high enough to provide functional advantages in real-world visual tasks, 
including object recognition28.

The minimum polarization angle difference we report here (Fig. 4b) may underestimate the most acute 
e-vector angle discrimination possible in human vision. This is so because the polarization output from the 
dLCD for low contrasts was to some extent elliptically polarized (maximum χ = 11°) and depolarized (minimum 
DOP = 90%), which would give rise to lower luminous intensities at the photoreceptor level than if the stimulus 
was purely linearly polarized (see Supplementary Material).

Despite this high sensitivity to polarization orientation, however, it remains doubtful that such information 
yields any adaptive advantage for present-day humans. A key requirement to successfully navigate our natural 
world is the ability to detect lines and edge boundaries, and neural mechanisms highly sensitive to luminance 
and chromatic contrast have evolved within human vision for just this purpose (see e.g. Mullen et al.36). We show 
here that, across a wide range of spatial scales, contrast sensitivity for detecting luminance-modulated targets is 

Figure 4. Polarization contrast sensitivity function. (a) Binocular contrast sensitivity measures for 
discriminating the orientation of polarization-modulated (solid symbols) and luminance-modulated (open 
symbols) square-wave gratings as a function of grating periodicity (cpd). The results were averaged across six 
observers. All measures were obtained using the dLCD with a blue filter (peak wavelength 460 nm) in place. 
The error bars show ± 1 sem. The continuous line through each data set shows an exponential function, fitted 
to the data points associated with the decline in sensitivity using a least-squares minimisation procedure, 
extrapolated to the abscissa to estimate acuity (R2 was 0.96 and 0.99 for the fit to luminance and polarization 
data, respectively). (b) Contrast sensitivity measures for polarization-modulated patterns replotted in terms of 
the minimum detectable polarization angle difference (Δψ°).
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an order of magnitude greater than that for detecting polarization-modulated targets (Figs 4a and 6). Given this, 
it seems reasonable to suppose that edge boundaries and other significant visual features within our natural envi-
ronment would be more readily detected through luminance and/or chromatic signals than polarization signals. 
In the absence of any alternative evidence, we assume that human polarization sensitivity is an epiphenomenon 
resulting from the fortuitous coexistence of macular radial symmetry and a mechanism of diattenuation incor-
porating macular pigment.

Clinical significance of polarization pattern perception. Although polarization perception has doubt-
ful functional significance for humans in real-world settings, its dependence on macular pigment and normal 
macular spatial ordering suggests that measures of contrast sensitivity using polarization-modulated targets, 
including optotypes, may provide a unique means of quantifying any disruption in normal macular structure 
or function. While the clinical potential of Haidinger’s brushes has been extensively documented10,13,37–39, this 
approach does not enable the quantification of polarization sensitivity across a broad range of spatial scales and 
contrasts. The latter may be particular useful in early identification of macular dysfunction due to age-related 
macular degeneration, a disease which remains the commonest cause of blindness in the developed world but 
one that, if diagnosed early, is potentially receptive to treatments including dietary supplementation40 and direct 

Figure 5. Binocular polarization equivalent contrast sensitivity for resolving Landolt C optotypes. The results 
were averaged across six observers. The vertical errors bars show ± 1 sem.

Figure 6. Relationship between polarization contrast sensitivity (x-axis, pCS) and luminance contrast 
sensitivity (y-axis, LCS). The solid line is the geometric regression equation LCS = 9.56 x pCS1.19 (R = 0.98). 
Error bars show ± 1 sem.
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therapeutic interventions41. Finally, the close association between the absorption spectrum of macular pigment 
and wavelength dependence of polarization contrast sensitivity (Fig. 1) suggests a potential use of this metric in 
determining macular pigment density, a physiological parameter known to correlate with the susceptibility of 
developing macular disease42.
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