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Effects of different exercise 
intensities on prefrontal activity 
during a dual task
Daisuke Kimura1,2*, Takayuki Hosokawa3, Takuya Ujikawa2 & Tomotaka Ito1,2

The effects of physical exercise on cognitive tasks have been investigated. However, it is unclear 
how different exercise intensities affect the neural activity. In this study, we investigated the neural 
activity in the prefrontal cortex (PFC) by varying the exercise intensity while participants performed 
a dual task (DT). Twenty healthy young adults performed serial subtraction while driving a cycle 
ergometer. Exercise intensity was set to one of three levels: low, moderate, or high intensity. We did 
not find any significant change in PFC activity during DT under either the control (no exercise) or low-
intensity conditions. In contrast, we observed a significant increase in PFC activity during DT under 
moderate- and high-intensity conditions. In addition, we observed complex hemodynamics after DT. 
PFC activity decreased from baseline after DT under the control condition, while it increased under 
the low-intensity condition. PFC activity remained higher than the baseline level after DT under the 
moderate-intensity condition but returned to baseline under the high-intensity condition. The results 
suggest that moderate-intensity exercise with a cognitive load effectively increases PFC activity, and 
low-intensity exercise may increase PFC activity when combined with a cognitive load.

Abbreviations
fNIRS	� Functional near-infrared spectroscopy
PFC	� Prefrontal cortex
oxy-Hb	� Oxygenated hemoglobin

In daily life, physical and cognitive activities often occur simultaneously (e.g., we can think while walking) rather 
than singly. To understand the physiological states during simultaneous exercises, a dual-task paradigm has 
been used. Indeed, a dual task is widely used in clinical practice and research fields as an assessment method to 
predict the risk of falls and gain better understanding of frontal lobe functions, including executive functions1–7. 
Functional near-infrared spectroscopy (fNIRS) is often used to investigate brain activity during a dual task since 
it can quantify the hemodynamics in the brain while a participant performs a physical exercise8.

The activity in the prefrontal cortex (PFC) is modulated by the physical as well as the cognitive load9,10. It has 
been reported that as the intensity of physical exercise increases, the concentration of oxy-Hb in PFC increases 
to some extent and then decreases11–17. As a result, the relationship between the exercise intensity and oxy-Hb 
concentration in PFC shows an inverted-U function. High intensities of exercise are predicted to interfere with 
cognitive processes through the increase in neural noise, elevation of the arousal level, or down-regulation of 
PFC activity17. A similar phenomenon is observed for cognitive load, where a more significant load of cognitive 
tasks also produces the inverted-U function relationship between cognitive load and prefrontal activity18,19. In 
a dual task, where both physical and cognitive loads are charged simultaneously, the hemodynamics in PFC are 
assumed to become more complex due to the increase or decrease in the amount of mutual loads20–26.

In a dual task, factors such as fatigue, the intensity of the exercise, and the complexity of the task cause the 
inhibition and facilitation of brain functions, which is known as cognitive-motor interference27. The interfer-
ence induces a change in PFC activity. The simultaneous performance of cognitive and physical tasks requires 
greater recruitment of oxy-Hb to PFC22,24,28. Mandrick et al.22 have reported that in a dual task, where a compu-
tational task was introduced to an isometric grasping contraction task, a higher concentration of oxy-Hb was 
observed in PCF. Moreover, the performance of the computational task significantly deteriorated, whereas the 
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force variability significantly increased at 30% maximum voluntary contraction (MVC) compared with 15% 
MVC. Mirelman et al.24 reported that when a cognitive task (serial subtraction) was introduced in addition to 
a physical task (walking), the walking speed decreased compared with a single task (i.e., walking only). Other 
studies also showed that motor performance tends to deteriorate during dual tasks21,28–33.

On the other hand, it is also reported that the cognitive task performance can be improved by exercise34–37. A 
meta-analytic study showed that an acute, intermediate-intensity exercise improves the performance of working 
memory tasks probably because of the increased arousal level36. Additionally, it has been reported that even a 
low-intensity exercise and walking can improve cognitive functions during and after the exercise38,39.

It has been reported that different intensities of physical load modulate PFC activity during exercise, and the 
frontal lobe functions improve after the exercise, which indicates that the changes in frontal lobe activity caused 
by an exercise are sustained even in the postexercise period35,38. Therefore, it is likely that the dual task affects 
brain activity not only during but also after a physical exercise. However, it is unclear how different exercise inten-
sities affect PFC activity during a dual task. If the sustained effects of a dual task on PFC activity are confirmed, it 
may lead to the development of new exercise programs to improve PFC functions. In this study, we investigated 
the effects of exercise intensity during a dual task on the hemodynamics of oxy-Hb in the PFC. In rehabilitation, 
therapists occasionally use dual tasks for patients or the elderly to improve their cognitive functions such as 
attention and working memory, in which PFC plays an important role40–44. In this study, we aimed to determine 
the exercise intensity that effectively activated the PFC in a dual task. If a low-intensity exercise with a cognitive 
load activated the PFC, it would benefit patients or elderly people unable to perform high-intensity exercises.

Methods
Participants.  Twenty healthy young adults (mean ± SD: age, 20.7 ± 3.7 years; height, 169.0 ± 4.5 cm; weight, 
59.8 ± 4.5 kg) were studied. None of the participants were athletes. Only male participants were recruited to 
avoid gender differences with respect to cortical oxygenation responses45,46. They had no underlying orthopedic, 
neurological, and cardiovascular disorders. Each participant provided written informed consent before enrolling 
in this study. The study conformed to the principles of the Declaration of Helsinki and the protocol of Kawa-
saki University of Medical Welfare, and the Research Ethics Committee approved the study (approval number 
19-060).

Procedure.  All participants were required to visit the lab twice on different days. On their first visit, a cardio-
pulmonary exercise test was performed using an expiratory gas analyzer (POWER METS AT-1100A, ANIMA, 
Japan) to determine the intensity of exercise, and the maximum oxygen uptake (VO2peak) was calculated for 
each participant. A bicycle ergometer (Strength Ergo8, MITSUBISHI ELECTRIC, Japan) was used during the 
cardiopulmonary exercise test, and the participants kept the pedal rotation rate at 60 rpm under the incremental 
load condition of 20 w/min47–50. The endpoint of the incremental exercise was determined when either of the 
following three conditions occurred: (1) cyanosis or pallor, (2) a pedal rotation rate below 55 rpm for more than 
3 s, and (3) an appeal to end the exercise by the participant. Participants had a cool-down exercise after the end 
of the incremental exercise.

On their second visit, 2–7 days after the first visit, the participants performed a dual task where they serially 
subtracted three from 100 while carrying out pedal rotations on the ergometer. To make the dual task easier, we 
employed a serial subtraction of three rather than seven because, in the pretest, some participants complained 
of the difficulty of performing a serial subtraction of seven, which has been used in other studies51–53, under 
the high-intensity load condition. We had four different conditions in the dual task according to the exercise 
intensity: (a) pedaling exercise at a low-intensity (2) pedaling exercise at a moderate-intensity, (3) pedaling 
exercise at a high-intensity, and (4) sitting still on the ergometer (i.e., control condition). The order of these 
four conditions was randomized among the participants. Each condition consisted of the following four phases: 
resting (baseline), pedaling (single motor task before dual task), dual task (pedaling and serial subtraction), and 
pedaling (single motor task after dual task). While the participants performed these exercises, we measured 
PFC activity by fNIRS and oxygen uptake using an expiratory gas analyzer. The duration of the experiment was 
approximately 60 min, including breaks.

Assessment of oxygen uptake during pedaling exercise.  The oxygen uptake during pedaling exer-
cise was assessed using the expiratory gas analyzer. In the Guidelines for Rehabilitation in Patients with Cardio-
vascular Disease54, the low-intensity load is indicated as 20–40% for the VO2peak, the moderate-intensity load 
as 40–60%, and the high-intensity load as 60–70%. In this study, we used the following criteria: 23% VO2peak 
for the low-intensity load, 40% VO2peak for the medium-intensity load, and 60% VO2peak for the high-intensity 
load. The intensity of exercise was calculated for each participant according to the VO2peak of each participant. 
Intensity levels were controlled by changing the pedal load. When the pedaling exercise started, the participants 
were required to reach the designated pedaling speed (50 cycles/min) and maintain the speed. The pedaling 
speed was displayed on the ergometer during the task. The pedaling exercise consisted of 1 min of rest, 2 min of 
warm-up, 3 min of pedaling with a load (motor task 1: M1), 2 min of the dual task (DT: motor task + cognitive 
task), 1 min of the motor task (motor task 2: M2), and 1 min of cool-down exercise. The warm-up duration was 
determined so that the hemodynamics became stable. All participants performed each condition (low, moder-
ate, high intensity, and control) in a randomized order.

Assessment of frontal lobe activity.  We measured the PFC activity using an fNIRS system (Spectrat-
echOEG-17APD, Spectratech Inc., Japan) with 17 channels (3 × 4 probe arrangement). PFC was selected as the 
measurement location because it is related to attention and higher cognitive functions55,56. We measured the 
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oxy-Hb concentration in the right and left PFC regions by fixing the center-bottom channel (channel 10) at Fpz 
according to the international 10–10 method (Fig. 1). Both oxy-Hb and deoxy-Hb concentrations were meas-
ured as indicators of oxy-Hb concentration changes. Since it was previously reported that head tilts affect fNIRS 
measurement57, the participant was verbally instructed to minimize head movement during the dual task, and 
one of the experimenters held down a participant’s shoulders to prevent the participant’s trunk from swaying 
while the participant was driving the ergometer. We covered the probe set with an elastic band to prevent it from 
shifting on the head and prevent light from entering through gaps. Each participant was fitted with the probe set 
and instructed to rest for a while. The fNIRS measurement was initiated after the hemodynamics became stable.

Data analysis.  We analyzed the expiratory gas data in an epoch of 30 s before the end of each of the three 
periods M1, DT, and M2. Each participant completed the four different loads of pedaling exercise during the 
experiment. Since the fNIRS measurements and ergometer were manually synchronized with a hand button, 
there was a variance of 3–5 s in the data length. Therefore, the data available for the analyses were 170 s for M1, 
115 s for DT, and 49 s for M2. We used the data in these entire intervals to analyze the fNIRS data in DT and 
MT. For the analysis of M1, the hemodynamics in the initial period was not stable owing to the effect of body 
circulations in high-intensity load; thus, we used the data after an interval of 70 s after the start of the M1 period.

The expiratory gas was measured at a sampling rate of 100 Hz. We carried out breath-by-breath analysis 
to measure the respiratory gas exchange, thus analyzing the oxygen uptake at each breath. The mean oxygen 
uptake level in each task period was used as the index. We analyzed the oxygen uptake level by repeated two-way 
analysis of variance (with period and exercise intensity as the factors), followed by the Tukey test (Tukey–Kramer 
method) for multiple comparisons.

The fNIRS signals were measured at a sampling rate of 12.2 Hz. The raw data were processed with a 
0.01–0.3 Hz band-pass filter to remove physiologically irrelevant effects. The mean of the fNIRS signal intensi-
ties during the rest interval was subtracted from that during each task interval. Then, the signal intensities during 
each interval were converted to Z-scores by dividing them by the standard deviation of the signal intensity during 
the rest interval58–61. The channels whose mean signal intensities exceeded the mean ± two standard deviations 
(SD) of all channel data were excluded from the analysis. To observe the time-series changes of hemodynamics, 
each task period was divided into two parts, the first half and the second half of the period. (Fig. 1). We selected 
the channels with significant changes in oxy-Hb concentration in the task periods compared with the rest period 
and used the mean values of those channels as the index of oxy-Hb in each task period. For statistical process-
ing, we compared the values in DT, M1, and M2 with those in the rest period and the values in M1 and M2 with 
those in DT using paired t-test.

The significance level was set at 0.05 (two-tailed). All statistical analyses were performed using IBM SPSS 
Statistics 25 (IBM SPSS Statistics Inc., Tokyo, Japan).

Ethics approval and consent to participate.  All participants provided written informed consent and 
the study was approved by the Kawasaki University of Medical Welfare (No.19-060).

Consent for publication.  Written informed consent for publication was obtained from all the participants.

Figure 1.   NIRS channel layout. The red circles indicate the emitter probes, and the blue circles indicate the 
detector probes. Each number indicates the channel number.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13008  | https://doi.org/10.1038/s41598-022-17172-5

www.nature.com/scientificreports/

Results
Oxygen uptake during the tasks.  The mean oxygen uptake levels for 30 s before the end of M1, DT, and 
M2 for each exercise intensity are shown in Table 1. The mean maximal oxygen uptake level across all partici-
pants was 45.2 ± 8.0 ml/min/kg. Repeated two-way analysis of variance showed the significant main effects of 
both the task and exercise intensity factors [F2,38 = 9.131, p = .001; F3,57 = 364.075, p < .001]. A significant inter-
action was also observed [F6,114 = 12.286, p < .001]. The simple main effect of the exercise intensity factor was 
significant under all task periods [M1: F3,57 = 306.788, p < .001; DT: F3,57 = 371.450, p < .001; M2: F3,57 = 356.942, 
p < .001]. Furthermore, the simple main effect of the task factor was significant under the high-intensity exer-
cise condition [F2,38 = 30.369, p < .001]. The post-hoc test for the exercise intensity factor (Bonferroni corrected) 
showed that the oxygen uptake level significantly increased in the order of no-intensity (control condition), low-
intensity, moderate-intensity, and high-intensity conditions in all task periods (i.e., M1, DT, and M2). Moreover, 
the post-hoc test for the task factor showed that the oxygen uptake level was significantly lower in M1 than in 
DT and M2 under the high-intensity condition.

PFC activity in each channel during each task.  We compared the oxy-Hb concentration under each 
task condition with that in the resting period for each channel (t-test). We found a significant difference in chan-
nels 2, 4, 6, 8, and 14 under the control condition; channels 2, 4, 5, 10, 12, 15, 16, and 17 under the low-intensity 
condition; channels 4, 7, 11, 14, 15, and 17 under the moderate-intensity condition; and channels 1, 3, 6, and 9 
under the high-intensity condition (Fig. 2).

Effects of exercise intensity on PFC activity.  We show in Fig. 3 the mean oxy-Hb concentration in the 
channels where a significant difference was found. We pooled the data from those channels for each exercise 
intensity. We first analyzed whether the oxy-Hb concentrations in the task periods were significantly different 
from that in the resting period. In M1 and DT, we found significantly higher oxy-Hb concentrations under the 
moderate-intensity and high-intensity conditions, but not under either the control or low-intensity condition 
[moderate intensity: t109 = − 3. 227, p = .002, d = .46, power = .95, t109 = − 3.452, p = .001, d = .51, power = .97; high 
intensity: t67 = − 2.136, p = .036, d = .35, power = .76, t67 = − 4.293, p < .001, d = .72, power = .99; control: t91 = − .50, 
p = .62, d = .92, power = 1.0, t91 = .94, p = .35, d = .14, power = .67; low intensity: t126 = − 1.27, p = .21, d = .17, 
power = .74, t126 = .64, p = .53, d = .53, power = .70]. In M2, we found mixed results depending on the intensity 
of exercise. The mean oxy-Hb concentration in M2 was significantly lower than the baseline under the control 
condition [t91 = 2.746, p = .007, d = .42, power = .89] but was significantly higher under the low-intensity condi-
tion [t126 = − 4.625, p < .001, d = .49, power = .98]. Under the moderate-intensity condition, it was significantly 
higher than the baseline [t109 = − 2.897, p = .005, d = .36, power = .81] but comparable to that in DT. Under the 
high-intensity condition, it returned to the baseline and was significantly lower than that in DT.

We found a significant difference in PFC activity between M1 and DT both under the low-intensity condi-
tion [t126 = 2.718, p = .007, d = .19, power = .36] and the high-intensity condition [t67 = − 2.830, p = .006, d = .27, 
power = .28]. However, the effects of size and power were both small and not significantly different from the 
baseline under either condition. Moreover, because the whole-body oxygen uptake had not reached the stable 
state in M1 under the high-intensity condition, it was difficult to compare the oxy-Hb concentration between 
M1 and DT. Therefore, we did not consider that these results reflect a valid difference.

We then compared the mean oxy-Hb concentration in DT with that in M2. We found a significant increase 
in oxy-Hb concentration from DT to M2 under the low-intensity condition [t126 = − 6.458, p < .001 d = .55, 
power = .99]. On the other hand, we found a significant decrease in oxy-Hb concentration from DT to M2 in 
the control and high-intensity conditions (t91 = 2.538, p = .013, d = .42, power = .93; t61 = 3.195, p = .002, d = .47, 
power = .67).

Discussion
In this study, we aimed to clarify the effects of exercise intensity on PFC activity during the dual task. To find 
how PFC activity changes over time depending on different intensities of exercises during the dual task, we first 
determined the exercise intensities for each participant based on their maximal oxygen uptake. The mean value 
of the peak oxygen uptake (45.2 ± 8.0 ml/min/kg) was similar to that in a previous study62, which showed that the 
peak oxygen uptake in males between the ages of 20 and 29 was 47.2 ± 7.9 ml/min/kg. The oxygen uptake values 
were stable during the three periods (M1, DT, and M2) under the control, low-intensity, and moderate-intensity 
conditions. On the other hand, they were significantly higher in DT and M2 than in M1 under the high-intensity 

Table 1.   Mean oxygen uptake levels under different exercise intensity conditions. *Significant difference 
between M1 and DT under the high-intensity condition in post-hoc analysis. **Significant difference between 
M1 and M2 under the high-intensity condition in post-hoc analysis.

Motor task1
Mean (SD)

Dual task
Mean (SD)

Motor task2
Mean (SD) (ml/min/kg)

Control 4.7 (1.7) 4.6 (1.9) 4.6 (2.0)

Low-intensity 11.1 (1.8) 11.0 (1.9) 10.6 (1.8)

Moderate-intensity 20.4 (3.4) 20.6 (3.2) 20.5 (3.1)

High-intensity 28.2 (4.8)*,** 30.1 (5.3) 30.1 (5.1)
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condition. The high-intensity condition (60% of the VO2peak) was beyond the anaerobic threshold (AT), which 
is 46–56% of the VO2peak63–65. Since it may take more than 2 min for the oxygen uptake to reach the steady 
state at load intensities higher than AT66, it is possible that the oxygen uptake had not reached the steady state 
during the 2-min warm-up under the high-intensity condition. Nevertheless, there was no significant differ-
ence in the oxygen uptake values between DT and M2 under the high-intensity condition. From these facts, it 
is plausible that the participants’ body circulation of oxygen had reached a steady state except for M1 under the 
high-intensity condition.

We found different PFC activities depending on the task periods and the exercise intensities: PFC activity 
was significantly higher in M1 and DT under moderate-intensity and high-intensity conditions, but not under 
control or low-intensity conditions. This result indicates that a threshold of the exercise intensity that facilitates 

Figure 2.   Topographical maps of PFC activation under control, low-intensity, moderate-intensity, and high-
intensity conditions. The circles represent channels, the locations of which correspond to the channels shown 
in Fig. 1. The color bar indicates the t-value, which indicates the increase or decrease in oxy-Hb concentration 
from the resting period. The bluish color indicates the decrease in oxy-Hb concentration during the task (M1, 
DT, and M2) relative to the resting period, whereas the reddish color indicates the increase. The channel with a 
significant difference is outlined with a thicker black circle (p < .05). We separately analyzed the concentration of 
oxy-Hb during the first and second halves of M1, DT, and M2. The upper panels of each of the periods M1, DT, 
and M2 in the figure show the results of the first half and the lower panels show those of the second half.
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PFC activity may exist between low-intensity (20% of VO2peak) and moderate-intensity (40% of VO2peak) 
loads. This result is consistent with previous studies showing that PFC activity increases under moderate- and 
high-intensity-loading conditions35. The exercise under the low-intensity condition was comparable to 3 METS 
of exercise such as walking67. Since previous studies showed that PFC activity increased during walking24,39, we 
expected that PFC activity would increase under the low-intensity condition. However, PFC activity did not 
significantly increase in M1 or DT under the low-intensity condition. The reason for this discrepancy is unclear, 
but it may be due to the difference in the types of exercise (i.e., walking or driving an ergometer).

Interestingly, PFC activity after the dual task (M2) was differed depending on the exercise intensity. PFC activ-
ity remained high in M2 under the moderate-intensity condition, but it returned to the baseline level in M2 under 
the high-intensity condition. Since the interference often occurs when the task is difficult68, the interference may 
cause the decrease in PFC activity after the dual task under the high-intensity condition. Thus, the result of this 
study indicates that the interference in the dual task may occur between 40 and 60% motor intensities. Moreover, 
PFC activity decreased after the dual task (M2) under the control condition but increased under the low-intensity 
condition. These results suggest that there are delayed effects on PFC activity in the dual task depending on the 
exercise intensity. Many studies examined the effects of aerobic exercise on cognitive performance38,69–80. In those 
studies, cognitive functions were measured at least 1 to 15 min after the exercise, and most of them found the 
improvement of cognitive functions38,71,73,77–80. Considering that there is a positive relationship between cognitive 
function and PFC activity38,74,80, it is highly likely that PFC activity increases between 1 and 15 min after exercise, 
and that there are delayed effects of exercise on PFC activity, although the mechanism of the delayed effects is 
unclear. Thus, the increase in PFC activity after the dual task under the low-intensity condition may reflect such 
delayed effects. In summary, the results of this study suggest that PFC functions increase after a dual task with 
low-intensity exercise as well as during moderate- to high-intensity exercise.

As a limitation of this study, it is impossible for us to know the strategies the participants used because there 
were no performance measures for the cognitive task. Theoretical models for performance in dual tasks have 
been proposed80,81, and it has been suggested that participants may use different strategies according to the dif-
ficulty level of the task. Since the participants were required to maintain the designated pedaling speed (50 cycles/
min), they might have used a strategy to adjust the cognitive load (i.e., slowing down the subtraction) when the 
dual task was difficult for them. Thus, we cannot rule out the possibility that the participants might have used 
different strategies according to the exercise intensity.

0.2

0.2 0.2

0.2

Figure 3.   Normalized mean oxy-Hb concentration during the task for each exercise intensity. The oxy-Hb 
concentration was normalized by that in the resting period and averaged for each exercise intensity. 
Mean ± SEM. *A significant difference between the task conditions (p < .05). †A significant difference from under 
the rest condition (p < .05).
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Another limitation is that it was impossible to confirm whether the participants correctly performed a serial 
subtraction because they were asked to do the calculation mentally. Although in a study by Ohsugi et al.82, the 
participants were asked to orally answer the numbers in a serial subtraction task, we asked the participants not 
to answer orally because an utterance would affect fNIRS recordings. Despite this limitation, we think that the 
participants correctly performed the task because the serial subtraction was easy in this study (subtraction of 3, 
instead of 7, see Methods) and the cognitive load affected the PFC activity in the periods during and after the 
dual task (i.e., DT and M2).

There is also a limitation in generalizing the results of this study because we did not pre-calculate the ideal 
sample size to ensure an adequate power to detect statistical significance, and the sample size was small. In addi-
tion, because the study was conducted with only male participants, we cannot rule out sex differences.

Conclusions
The PFC activity was measured using fNIRS when the participants were driving the ergometer at different 
intensities of exercise and simultaneously performing a serial subtraction in their mind. We found different 
hemodynamics in PFC depending on the exercise intensity. Under the low-intensity condition, the PFC activity 
increased only after the dual task. Under the moderate-intensity condition, it increased during the first exercise 
task (M1) and remained high during and after the dual task (DT and M2). Under the high-intensity condition, 
it increased during the dual task but returned to the baseline after the dual task, probably due to the interference 
effects from the high-intensity exercise. From the practical point of view, it may be proposed that, based on the 
result that PFC activity increased after the dual task with the low-intensity exercise, the elderly and individu-
als who are unable to perform high-intensity exercises may benefit from performing a low-intensity exercise 
combined with a cognitive task.

Data availability
The datasets used or analyzed during the current study are available from the corresponding author upon rea-
sonable request.
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