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In drug development programs, proof-of-concept Phase II clinical trials typically
have a biomarker as a primary outcome, or an outcome that can be observed
with relatively short follow-up. Subsequently, the Phase III clinical trials aim to
demonstrate the treatment effect based on a clinical outcome that often needs
a longer follow-up to be assessed. Early-phase outcomes or biomarkers are typ-
ically associated with late-phase outcomes and they are often included in Phase
III trials. The decision to proceed to Phase III development is based on analy-
sis of the early-Phase II outcome data. In rare diseases, it is likely that only one
Phase II trial and one Phase III trial are available. In such cases and before drug
marketing authorization requests, positive results of the early-phase outcome
of Phase II trials are then likely seen as supporting (or even replicating) posi-
tive Phase III results on the late-phase outcome, without a formal retrospective
combined assessment and without accounting for between-study differences.
We used double-regression modeling applied to the Phase II and Phase III
results to numerically mimic this informal retrospective assessment. We pro-
vide an analytical solution for the bias and mean square error of the overall
effect that leads to a corrected double-regression. We further propose a flexi-
ble Bayesian double-regression approach that minimizes the bias by accounting
for between-study differences via discounting the Phase II early-phase outcome
when they are not in line with the Phase III biomarker outcome results. We
illustrate all methods with an orphan drug example for Fabry disease.

K E Y W O R D S
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1 INTRODUCTION

Drug development programs typically include exploratory (Phase II) and confirmatory (Phase III) randomized controlled
trials (RCTs) to assess the efficacy, safety and appropriate dosages of an experimental (new) treatment. For regular “large
disease” drug development programs decisions to conduct a Phase III trial are based on positive Phase II trials. If these
trials are only retrospectively evaluated in combination, that is, during the drug marketing authorization request, the ad
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T A B L E 1 Main randomized studies described in the European Public Assessment Report of Galafold

Study number Duration

Annualized rates
of change in eGFR
from baseline to
month 6

Annualized rates
of change in eGFR
from baseline
to month 18

Sample
size Start date

AT1001-011 6 months Collected Not collected 67 August 2009

AT1001-012 18 months Collected Collected 52 December 2010

hoc synthesis may induce a form of decision-induced bias (the succeeding trials are only conducted when the first trials
were positive). Such a bias is not an issue if the early and late Phase trials are prospectively considered in the design phase
(eg, a seamless approach).

However, it is not uncommon that in rare diseases, no more than two independent RCTs are conducted and avail-
able, one exploratory and one confirmatory.1 Phase II primary endpoints are typically biomarkers or surrogate outcomes.2
Phase III primary clinical outcomes are likely established endpoints and they may either require (1) larger sample sizes,
(2) more costly collection, (3) to be observed after a considerable time, or (4) be more variable outcomes than early-phase
outcomes, therefore, even if N =N2 +N3 number of patients participate in both trials, only N3 patients will be available to
provide responses for the primary clinical outcome of interest. Biomarkers (early-phase) and secondary clinical outcomes
are often observed earlier and, therefore, easily included in both trials and, hence, available for all N patients. After both
trials have been conducted, inference on the treatment efficacy is typically performed by evaluating the late-phase out-
come responses of N3 patients. In a rare disease setting, N3 may not be large enough to solidly confirm treatment efficacy.
In assessing the totality of evidence, the positive results from the Phase II trial could retrospectively be seen as support-
ive, even if the two clinical trials were designed/conducted independently, as typically the early-phase outcome would be
assumed to be associated with the late phase primary clinical outcome. Throughout the article the terms “retrospective
(ly)” denote the retrospective combination of the available Phase II and Phase III trial after both trials are completed and
their final results are available.

For example, Galafold (migalastat) acquired marketing authorization as an orphan drug for the treatment of Fabry
disease in 2016 within Europe. Fabry disease is a rare, progressive disorder with an estimated prevalence of 1:117 000 to
1:40 000.3 The condition affects major organs and may result in life-threatening events. Until then, standard treatment for
Fabry disease consisted of Enzyme Replacement Therapy.3 Two main studies were submitted during the marketing autho-
rization of migalastat; one randomized, placebo-controlled (AT1001-011, migalastat vs Placebo) superiority study and one
active comparison randomized trial (AT1001-012, migalastat vs Enzyme Replacement Therapy), with a noninferiority
design.

In trial 011 patients switched to migalastat 6 months postrandomization, while in trial 012 primary follow-up was
considerably longer, with switching taking place 18 months postrandomization. In the first trial, the change in average
globotriaosylceramide (GL-3) inclusions from baseline to 6 months was the primary outcome which produced noncon-
clusive evidence. The second trial utilized the annualized change in glomerular filtration rate (eGFR) at month 18 as
primary clinical outcome (Table 1). Both GL-3 and the annualized change in eGFR at month 6 were collected in both tri-
als (011 and 012). No strong correlation has been established in the literature between the GL-3 outcome and the change
in glomerular filtration rate (eGFR).4

In study 011 after 6 months of treatment with migalastat 150 mg, eGFR values increased, whereas in the placebo
treated group eGFR values declined.3 This outcome among other secondary results led to the conduct of study 012. In
trial 011, all patients treatment switched to migalastat at 6 months, an action that restricts the observation of a treatment
effect on the primary late-phase outcome. Given the limited available data, evidence from both trials were retrospectively
(ad hoc) assessed for the final approval decision.

Analysis methods that use the relation between early and late-phase outcomes may be applied to retrospectively,
but formally, synthesize the evidence on treatment efficacy across the two trials. Engel and Walstra5 formulated a
double-regression (DR) approach, which can aid in more precise treatment effect estimation, by accounting for unobserved
late-phase outcome responses via observed early-phase outcome responses. Their method utilizes the correlation to ulti-
mately inform the mean and variance estimates of the treatment effect on the late-phase outcomes. For large samples
their method has the potential to increase precision. However, for small sample sizes this is not necessarily true.6 Previ-
ously, in RCTs the DR approaches have been suggested mainly to inform treatment selection during interim analysis in
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seamless Phase II/III designs.7-9 Double-regression methods can be even generally applied wherever there is possibility
to include early outcome information in decision making during the course of a trial.10

A Bayesian double-regression (BDR) analogue can be readily constructed11 which maintains similar limitations to the
frequentist alternative but could flexibly model the two Phase III outcomes’ data. Such a model can include historical
trial data (ie, Phase II early-phase outcome data or external information on the early and late-phase outcome correlation)
as a elicited prior distributions.12 Furthermore, this Bayesian model accounts for the uncertainty around each parameter
during the borrowing of information.

In this article, we investigate how to model and estimate the efficacy of a new treatment on the late-phase clinical
outcome, using data on early-phase outcomes from both trials. Most literature on double-regression focuses on design
aspects such as interim analysis or seamless design of phase II/III trials, though, in the present article we propose methods
that would be applied retrospectively (ad hoc) only after the Phase III trial. We propose and investigate methods that
either account or do not account for the potential decision-induced bias when combining retrospectively the Phase II
and Phase III trials. We investigate the two proposed models, the bias corrected DR approach and the flexible Bayesian
approach regarding their performance to estimate the treatment effect on the late-phase outcome. We focus on two related
key problems: (1) the magnitude of the type 1 error inflation when retrospectively combining data from Phase II and III
and (2) how to estimate the treatment effect on the late-phase outcome, using results from both studies and we assess this
estimate in terms of bias and variance.

The article is organized as follows. First, we describe a bivariate linear model, we introduce its conditional form and
we formalize the (often visual) retrospective pooling by utilizing DR with nonavailable Phase II late-phase outcome data,
then briefly discuss specific model variations, for example, the single-regression (SR) approach. We introduce the problem
of decision-induced bias moving from Phase II to Phase III based on the Phase II early-phase outcome in Section 3 and
then provide an approximate analytical solution. In Section 4, we propose and formulate a Bayesian two-step solution to
the estimation problem, a model that down-weights the impact of the biomarker data via a historical power prior. This
prior dynamically accounts for the bias in estimating the same treatment effect across the two trials, by accounting for
additional between-trial differences (variability) around the biomarker outcome effect. The article ends with a discussion
and steps for further research.

2 MODELS FOR THE JOINT PHASE II AND III DATA

Consider a Phase II trial of total sample size N2 and a Phase III trial of total sample size N3. For both trials it is assumed
that a number of patients (Nk =nck +nek, nk =Nk/2, k= 2, 3) are randomized to the control and experimental treatment.
Let us denote Y ik the late-phase treatment response for patient i in trial k and Xik the early-phase treatment response for
patient i in trial k, k= 2, 3, i= 1, 2, … Nk.

2.1 Bivariate modeling for early-phase and late-phase outcomes between studies

When all late-phase Y i = (Y i2, Y i3) and early-phase Xi = (Xi2, Xi3) outcomes are available where i= 1, 2, … , N, they are
assumed to follow a bivariate normal distribution as(

Xi

Yi

)
∼ BVN

⎡⎢⎢⎣
(

ax + bxti

ay + byti

)
,

∑
=
⎛⎜⎜⎝

𝜎2
x 𝜌𝜎x𝜎y

𝜌𝜎x𝜎y 𝜎2
y

⎞⎟⎟⎠
⎤⎥⎥⎦ , (m1)

where 𝜎2
x and 𝜎2

y denote the true outcomes variances, 𝜌 the true correlation between the two outcomes and ti a vector
indicating whether the ith patient receives control or experimental treatment. For the remainder of the article we drop
index i to aid readability.

The above bivariate model can be conditionally expressed as

X|t ∼ N(ax + bxt, 𝜎2
x ) (m2)

Y|t, x ∼ N(a0 + b0t + 𝛾x, 𝜎2
0),

where 𝜎2
0 = 𝜎2

y − 𝛾2𝜎2
x , a0 = ay − 𝛾ax, bo = by − 𝛾bx, and 𝛾 = 𝜌𝜎y∕𝜎x
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2.2 Double regression to estimate the effect of primary late-phase outcome

At the end of both trials early-phase outcome data X for N =N2 +N3 patients and late-phase outcome data Y 3 for only N3
patients are observed. As Y 2 is not observed, Y =Y 3 and X = (X2, X3) now denote the observed late-phase and early-phase
outcome data which correspond to patients of Phase II and Phase III trials. Y corresponds to the outcome of interest
related to which estimation and hypothesis testing will be performed in N3 patients. The DR utilizes the relation between
early-phase and late-phase outcomes and allows estimation of the main parameter of interest, the treatment effect on the
late-phase clinical outcome, by (Figure 1).

Based on the DR method, parameters ax, bx, and 𝜎2
x are estimated via the regression of X |t on N patients, as âx, b̂x, s2

x and
parameters a0, b0, 𝛾 , and 𝜎2

0 are estimated via the regression of Y 3|X3, t on N3 patients, as â0, b̂0, 𝛾̂ , s2
0, while s2

y = s2
0 + 𝛾̂2s2

x ,
ây = â0 + 𝛾̂âx, 𝜌̂ = 𝛾̂sx∕sy.5,8 The primary effect of interest by is then estimated as:

b̂y = b̂o + 𝛾̂ b̂x. (eq1)

The variance of b̂y is shown in Reference 5 to be equal to

var(b̂0) + 𝛾̂2 var(b̂x) + b̂x var(𝛾̂) + 2b̂x cov(b̂0, 𝛾̂)

estimates of the above can be obtained by using the individual estimates acquired from the regression analyses (m2).
Under model (m2), hypothesis testing is performed as H0 : by ≤ 0 vs H1 : by > 0 via z1−𝛼3 > b̂y∕

√
̂var(by), where z1−𝛼3 is

the (1 − 𝛼3)th standard normal quantile and 𝛼3 is the alpha level of the late-phase primary outcome of phase III trial. A
direct Bayesian analogue to the conditional model (m2) has been discussed elsewhere.11 Under diffuse “non-informative”
priors, this Bayesian model has been shown to produce comparable posterior means for all parameters to the estimates
produced by model (m2).

2.3 Bayesian (double-) regression

We can model the Phase II biomarker data (X2) via a Bayesian SR, X2|t ∼ N(ax + bxt, 𝜎2
x ), ax, bx ∼ N(0, 102), 𝜎2

x ∼ IG(1, 1)
of N2 patients and we can utilize the posterior distribution Markov Chain Monte Carlo sample draws to construct a prior
on a BDR model on the Phase III early-phase outcome data as follows.

Let us assume a bivariate normal model for the biomarker and the primary late-phase clinical outcome data X3 and Y 3
corresponding to N3 patients with a covariance matrix Σ as in model (m1). In our two-dimensional scenario, a bivariate
normal likelihood could be specified on the early-phase and late-phase Phase III outcome data by conditional distributions
as follows

X3|t ∼ N(ax + bxt, 𝜎2
x ) (m3)

ax ∼ N(𝜇ah, 𝜎
2
ah), bx ∼ N(𝜇bh, 𝜎

2
bh)

𝜎2
x ∼ IG(𝛼h, 𝛽h)

Y3|t, x3 ∼ N
(

ay + byt + 𝜌
𝜎y

𝜎x
x3, (1 − 𝜌2)𝜎2

y

)
ay ∼ N(0, 102), by ∼ N(0, 102)
𝜎2

y ∼ IG(1, 1)
𝜌 ∼ U(−1, 1).

F I G U R E 1 Relation between treatment
vs early-phase outcome, treatment vs
late-phase outcome and early-phase vs
late-phase outcome in the example of Fabry
disease
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The prior on 𝜌 uniformly weights our prior considerations around the correlation parameter. In order to mimic
model (m2) we have set normal distribution priors based on Phase II posterior effect and variance mean estimates
of the early-phase outcome parameters (𝜇ah, 𝜇bh, 𝜎

2
ah, 𝜎

2
bh). To further mimic model (m2) we inform the 𝜎x prior

based on the posterior model variance samples from Phase II early-phase outcome data, that is, fitting them over an
optimized gamma prior distribution, 𝜎2

x ∼ G(𝛼h, 𝛽h). The above two-step procedure will allow for possible discount-
ing of the Phase II trial by down-weighing the early-phase historical outcome data, which is further discussed in
section 4.

In comparison to the direct Bayesian analogue of model (m2), where the strength of the relationship between early and
late-phase endpoints becomes clear only after combining the posterior mean estimates via the 𝛾 parameter, model (m3)
is more intuitive, as it directly models the correlation (𝜌) between the two outcomes, and it directly produces posterior
Markov Chain Monte Carlo draws from by. Therefore, under such a fully Bayesian approach there is no need for numerical
addition of treatment effect mean estimates.11 Posterior inference can be obtained via traditional Markov Chain Monte
Carlo application software (ie, JAGS13) or even analytically under convenient prior distributions.12 In this Bayesian model
we assume that hypothesis testing for H0 vs H1 will be performed by utilizing posterior probabilities as Pr(by > 0|Y) > 𝜔

where 𝜔 = 0.95.
If we set the correlation very close to zero; that is, 𝜌 ∼ U(−0.01, 0.01), then, the Phase III trial late-phase outcome data

are evaluated individually under a standard (Bayesian) linear SR model. In comparison to the SR models, the advantage
of models (m2), Bayesian (m2) and (m3) rest in their ability to numerically calculate/imitate the impact of accounting
for the Phase II early-phase outcome data in analyzing the late-phase outcome. Additional details of the (Bayesian) SR
models can be found in Appendix A.

3 TYPE 1 ERROR INFLATION AND BIAS DUE TO SELECTION BASED ON
EARLY-PHASE OUTCOME RESULTS

The potential issues with retrospective combination of early and late phase results stem mostly from the fact that they
are not independent. Usually, a Phase II decision leads to the initiation of a Phase III trial. This decision could be
based on a test statistic for the early-phase outcome and an imposed critical value; that is, z1−𝛼2 . This is clearly an over-
simplification of the actual Phase II to Phase III transition decision, but used here to illustrate the potential impact
on type 1 error and bias if the results are retrospectively combined. In this simplified model, the distribution of the
available Phase II trial early-phase outcome f (X2|ZX2 > z1−𝛼2), will be truncated, where ZX2 denotes the standardized dif-
ference of the early-phase Phase II trial outcome. If the analysis of Phase III data occurs independently from earlier
Phase trial data, we expect no increase of Type I error and bias, though the power might remain low due to the limited
trial sample size. In the retrospective assessment of the totality of evidence in this rare disease setting, however, posi-
tive results from both the Phase II trial and Phase III trial may well be seen as reinforcing. This informally combines
evidence between trials which often results in positively biased inferences in favor of the late-phase treatment effect
by, while an error inflation is observed in the double-regression late-phase outcome inference (models (m2) and (m3))
(Figure 2). In such situations, the bias on b̂y estimate, based on model (m2) is given by the following approximation
(Appendix B),

Bias(b̂y) = 𝜎′
y

w2𝜌𝜆𝜎x2

𝜎′
x
√

n2∕2
, (eq2)

where 𝜎′2
y = 𝜎2

y + 𝛾2D, 𝜎′2
x = 𝜎2

x + D, 𝜆 = 𝜙(𝜔)
1−Φ(𝜔)

, 𝜔 =
z1−𝛼2−𝜇x2

𝜎x2∕
√

n2∕2
, w2 =n2/n. 𝜙 and Φ are probability density and cumulative

functions of the standard normal distribution, respectively, D = w2
(
(2𝜎2

x2∕n2)𝜁 + A2(1 − w2
2 − w2

3) + 2A(𝜇x2 − 𝜇x)
)
, A =

(𝜎x2∕
√

n2∕2)𝜆, 𝜁 = 𝛼2𝜆 − (𝜆)2.
An approximate value for MSE(b̂y) of the double-regression is equal to (Appendix B)

MSE(b̂y) = 2𝜎′2
y

(
w2𝜌𝜆𝜎x2

𝜎′
x
√

n2

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Bias(b̂y)2

+ 2𝜎′2
y

(
1 − 𝜌2

n3
+ 𝜌2

n

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Var(b̂y)

. (eq3)
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F I G U R E 2 Conditional power curves comparing the performance of the single and double-regression for the following scenarios;
N2:N3 ∈ {1:1, 1:2}, 𝜎2

y = 𝜎2
x = 1, 𝜌r ∈ {0.1, 0.9}, N = 120, 𝛼2 = 0.1, and by, bx ∈ {0, 0.1, 0.2, … , 1}. No between-trial outcome variation was

introduced in this set up and each scenario was replicated 10 000 times. The inner figures serve as an explanation to the observed type I error
increase, as they present the joint strict null hypothesis (by = bx = 0) distribution of the early and late-phase treatment effect for the Phase III
trials (light gray dots) and the truncated, based on a positive decision criteria, Phase II trials (black and dark gray dots). When utilizing the
Phase II trials (darker dots in the inner Figures), larger critical levels result in an average overestimation of the treatment effect which
consistently produces an average increase in error rates and on average larger bias is incorporated in the final inference. This mean increase
can be observed in the expression of mean square error for the late-phase treatment effect estimate (eq3). As expected based on (eq3), all error
rates increase with higher 𝜌 and the power curve increases with lower 𝜎. A similar behavior was observed between the equivalent Bayesian
single-regression and Bayesian double-regression alternative

As we observe in (eq3), the inflation in MSE depends on (i) the decision threshold to initiate the Phase III trial through
𝜆 parameter, (ii) the Phase II early-phase outcome mean (𝜇x2) and variance (2𝜎2

x2∕n2), (iii) the number of patients in the
Phase II trial (n2) and (iv) and the magnitude of the correlation (𝜌). An increase in 𝜎x2 results in an increase of MSE,
while as n2 decreases, the MSE increases as well. A similar behavior is observed in terms of Type I error (Figure 2). More
specifically, Type I error rates increase considerably with higher 𝜌, while the power curves, in general, increase with more
patients being allocated to the Phase III trial (n3) (Figure 2).

Based on the aforementioned bias and mean square error expressions and by replacing parameters with their esti-
mates, the late-phase outcome effect and variance of a (bias) corrected double-regression (DRC) model are estimated as
(Appendix B),

b̂
′
y = b̂y − ̃Bias(b̂y) (m4)

̃var(b̂y)′ = 2(s2
y − 𝛾̂2D̂)

(
1 − 𝜌̂2

n2
+ 𝜌̂2

n

)
.

The above expressions hold when treatment arms within studies are equal. Nonetheless, similar analytical expres-
sions for unequal within study allocation ratios, can be acquired by appropriately changing the variances of b̂x3, b̂x2 in
Appendix B.1 based on the treatment arms sample sizes. For example, if the allocation ratio between arms in the Phase
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II trial equals to 1:2, then the Phase II early-phase endpoint variance increases, 9𝜎2
x∕2N2 and the introduced bias could

be reduced by half.

4 BIAS REDUCTION BY ACCOUNTING FOR BETWEEN-TRIAL
EARLY-PHASE OUTCOME VARIABILITY

All models above, including the bias corrected model, assume that the true overall treatment effect remains common
between trials, no between-study variability on the early and late-phase outcomes exist and therefore, all N observa-
tions are derived from the same population. Phase II vs Phase III trials typically do not have similar protocols, as the
Phase II trials are usually more restrictive in patient inclusions, therefore, exploring between-study variability becomes
relevant.

The decision-induced bias discussed in Section 3, would materialize as difference in treatment effects between the two
available trials as well. Therefore, accounting for between-study variability may act as a less rough approach to minimize
this decision-induced bias. A proper estimation of the between-trial early-phase outcome variance is not feasible with
just two available studies,14-17 therefore, in this article we choose not estimate but only account for this variance to aid
towards the reduction of the bias.

To achieve this, we utilize a mechanism based on power priors to account for the between-study differences within
a Bayesian framework.18 By estimating a power parameter 𝜂̂ that represents conflict between the early-phase outcome
data of the two available trials, model (m3) can be further extended to account for the early-phase outcome effect excess
between-trial variability, along with any other biases.18-20

4.1 Bayesian flexible double-regression

Let us assume that data X2 exist for the early-phase outcome from the Phase II study and 𝔅 are a set of linear regression
parameters. Given the definition of a power prior,21 the posterior distribution after observing the Phase II early-phase
outcome data would be

𝜋(𝔅|X2, 𝜂) ∝ L(𝔅|X2)𝜂𝜋0(𝔅).

Then, the posterior for 𝔅 after observing the Phase III study’s early-phase outcome data (X3) would be

𝜋(𝔅|X , 𝜂) ∝ L(𝔅|X3)L(𝔅|X2)𝜂𝜋2(𝔅).

The posterior distribution of 𝔅|X2 in the normal case22 is known to be equal to

𝔅|X2, 𝜂 ∼ N
(
(T′

2T2)−1T′
2Y2,

𝜎2
x

𝜂
(T′

2T2)−1
)
, (eq4)

where T2 is the design matrix with column vectors 1, t, and dimensions N2 ⋅ 2. We now consider the following conditional
model for the early and late-phase outcome data of N3 patients

X3|t ∼ N(ax + bxt, 𝜎2
x ) (m5)

ax ∼ N(𝜇ah, 𝜎
2
ah∕𝜂̂), bx ∼ N(𝜇bh, 𝜎

2
bh∕𝜂̂)

𝜎2
x ∼ IG(𝛼h, 𝛽h)

Y3|t, x3 ∼ N
(

ay + byt + 𝜌
𝜎y

𝜎x
x3, (1 − 𝜌2)𝜎2

y

)
ay ∼ N(0, 102), by ∼ N(0, 102)
𝜎2

y ∼ IG(1, 1)
𝜌 ∼ U(−1, 1).
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T A B L E 2 Summary of aforementioned statistical methods

Abbreviation Model
(F)requentist/
(B)ayesian Early/late-phase Phase (II/III)

(B)SR (Bayesian) single-regression F/B Late phase III

(B)DR (Bayesian) double-regression F/B Early and late phase II+III

DRC Double-regression corrected F Early and late phase II+III

BFDR Bayesian flexible double-regression B Early and late phase II+III

The conditional set-up of model (m5) remains similar to (m3). Now dynamic informative power priors parametrized
through 𝜂̂ are placed on the early-phase endpoint’s parameters ax and bx. Such priors control the borrowing of
the historical data and discount the early-phase prior in case of treatment effect’s disagreement. We chose to
model the parameters univariately to aid any formulation of elicited informative priors on ay, by, and 𝜌, though, a
wishart prior on the covariance matrix Σ (m1) could have jointly accounted for the association between the model
parameters.

4.1.1 Estimation of 𝜼

A number of power prior (guided-value) formulations has been suggested.18-20 Among the above alternatives, we chose
one that selects a guided-value that maximizes the marginal likelihood.20 The guide value of 𝜂 based on the marginal
likelihood criterion has an estimate of

𝜂̂ = arg min
0<𝜂≤1

[−2 log{m(𝜂)}], (eq5)

where m(𝜂) is the marginal likelihood. Ibrahim et al22 provided an analytical expression of −2 log{m(𝜂)} for the nor-
mal outcome case. Figure D1 (Appendix D) presents the empirically calculated relationship between 𝜂 and varying
levels of bx.

In model (m5), similarly to model (m3), we are interested in the late-phase overall primary outcome effect by and
we assume that hypothesis testing for H0 vs H1 will be performed by utilizing posterior probabilities as Pr(by > 0|Y ) > 𝜔

where 𝜔 = 0.95.

5 SIMULATION STUDY

The main four approaches discussed are summarized in Table 2. The corrected double-regression approach as
shown in Section 3 can be considered a rough (approximate) approach to minimize the decision-induced bias. The
Bayesian flexible double-regression approach minimizes this bias by accounting for between-trial differences with-
out ad hoc corrections. Their relative performance in the analysis of the Phase III late-phase outcome data, also in
comparison to the two more trivial approaches (single and double-regression) is the main focus of the simulation
study.

For illustrative purposes, we assume that the two available Phase II and Phase III trials had a similar control treatment,
therefore, the Phase III trial would have been designed as a placebo-controlled trial. In this section, we assume that the
decision to conduct the Phase III trial was taken on the basis of available evidence in the first Phase II trial on a single
early-phase outcome. At the end of the Phase II trial, individual data of N patients are available on the early-phase and
data of N3 are available on the late-phase outcomes. The simulation study results were derived from a bivariate normal
model simulation strategy as described in Appendix C.

The SR, DR, DRC methods ignore any between-study variability and therefore assume a different underlying data
generating model in comparison to the Bayesian flexible double-regression (BFDR) approach. Even though, they are not
directly comparable (Table 2), we empirically compared the four aforementioned statistical methods by generating at least
10 000 simulated combinations of the two available trials data. To do so, we simulated scenarios of the final trial analysis
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on the late-phase primary endpoint assuming a variety of combinations between the early-phase (bx) and late-phase
(by) outcome treatment effects. The latter were varied as (Scenario I) by = bx = 0, (Scenario II) by = bx = 0.6, (Scenario
III) bx2, by2 = 0, bx3, by3 = 0.2, and (Scenario IV) by = 0.6, bx = 0, we assumed that 𝜌 = 0.9, 𝛼2 ∈ {0.05, 0.1, 0.2} the alpha
level of the early-phase primary outcome of Phase II trial, while all within-study variances were set equal to 1. In the
simulation setup we introduce a simulative parameter that place additional between-trial variance on the early-phase (𝜏x)
and late-phase (𝜏y) outcomes (see Appendix C for details). Specific alternative versions of scenarios I and II were produced
by varying 𝜌 and 𝜏y, 𝜏x.

The first (I) scenario describes variations of the strict null (𝜏y = 𝜏x = 0) and null hypothesis with additional
between-trial variance (𝜏y = 𝜏x = 0.3), while the second (II) scenario describes a common alternative hypothesis on both
outcomes and trials. Scenario III can occur when heterogeneous populations are selected for the Phase II and Phase
III trial, while the fourth (IV) scenario describes a situation where the late-phase outcome true effect exists but the
early-phase outcome equals to 0. All remaining settings (ie. number of trials (k), total sample sizes N, sample size ratio
between trials N2 : N3, within-study allocation ratios nck : nek) were reflective of a typical rare disease setting and based on
the Galafold example (Table 1). All simulations were performed via R23 and JAGS.13

5.1 (Strict) null hypothesis scenario (I: by =bx = 0)

The BFDR results in treatment effects closer to the SR estimates than the DR approach under the null hypothesis simu-
lation (Scenario I—Table 3). The DRC approach presents a similar behavior producing late-phase effect estimates even
closer to the SR than the BFDR approach. In the three null hypothesis scenarios I(b-d) (by = bx = 0), DR results in the
largest estimated treatment effect and produces the largest type I error inflation while DRC generally inflates the Type
I error the least among the three investigated methods. An interesting exception that we further discuss in Section 7, is
observed in scenario Ia, where the BFDR approach produces stricter error rates than the DRC approach. In general, the
SR method controls type I error the most, while the DR method controls type I error the least. The DR and DRC meth-
ods consistently produce the smallest C(r)Is, while the BFDR method produces the largest C(r)Is among the investigated
methods.

5.2 Alternative hypothesis scenario (II: by =bx = 0.6)

In scenario II (by = bx = 0.6), all methods identified a treatment effect close to the true value (Table 4). The empiri-
cal power to identify a treatment effect is usually large for the BFDR, and considerably larger for the DRC than SR
approach. Among the DRC and BFDR methods, BFDR produces treatment effect means closest to the true value.
In scenario IIa (𝜏y = 𝜏x = 0), DRC performs better in terms of 95% coverage whereas in scenario IIb where 𝜏y = 𝜏x =
0.3, BFDR results in coverage closest to 95%. The C(r)Is widths retained a similar behavior to the null hypothesis
scenarios.

5.3 Scenarios III and IV

In scenario III (by2 = 0, by3 = 0.2, bx2 = 0, bx3 = 0.2), the BFDR produces similar findings to the DR approach, while
the DRC method discards most Phase II information and its results are close to the SR approach (Table 4). DRC
retains a comparable behavior in scenario IV (by = 0.6, bx = 0), where it discards most of the decision-induced bias
and it produces results closer to the analysis of the Phase III study alone. In scenarios III, IV, as well as I, the naive
pooling represented via the formal DR method, systematically and largely overstates our confidence in treatment
efficacy.

5.4 Summary of simulation results

Among the four methods, the single regression performed best in terms of type I error followed closely by the DRC. Sim-
ilarly, the approach that led to the least bias was the SR, again followed closely by the DRC. The DRC and DR methods
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T A B L E 3 Late-phase conditional average treatment effect estimates (means, posterior means, confidence intervals,
credible intervals) and average treatment efficacy P-values and probabilities of the four models (Table 2) given that 𝜌 = 0.9,
𝜏x = 𝜏y = 0.01, and 𝜎y = 𝜎x = 1, except where noted otherwise, based on at least 10.000 simulations

Scenario Model Mean/Posterior mean by Type I error C(r)I widths

𝛼2: (0.05 ⋅ 0.1 ⋅ 0.2) 𝛼2: (0.05 ⋅ 0.1 ⋅ 0.2) 𝛼2: (0.05 ⋅ 0.1 ⋅ 0.2)

Ia. by = bx = 0 SR 0.001 ⋅ 0.003 ⋅ 0.002 0.057 ⋅ 0.054 ⋅ 0.053 1.138 ⋅ 1.138 ⋅ 1.136

DR 0.256 ⋅ 0.220 ⋅ 0.178 0.318 ⋅ 0.247 ⋅ 0.183 0.808 ⋅ 0.810 ⋅ 0.811

DRC 0.087 ⋅ 0.075 ⋅ 0.063 0.079 ⋅ 0.066 ⋅ 0.060 0.810 ⋅ 0.812 ⋅ 0.813

BFDR 0.170 ⋅ 0.156 ⋅ 0.133 0.054 ⋅ 0.037 ⋅ 0.022 1.343 ⋅ 1.330 ⋅ 1.319

b. by = bx = 0 SR 0.000 ⋅ 0.003 ⋅ 0.002 0.055 ⋅ 0.053 ⋅ 0.054 1.138 ⋅ 1.138 ⋅ 1.138

𝜌 = 0.5 DR 0.141 ⋅ 0.123 ⋅ 0.100 0.148 ⋅ 0.130 ⋅ 0.114 1.010 ⋅ 1.010 ⋅ 1.011

DRC −0.028 ⋅ −0.022 ⋅ −0.015 0.045 ⋅ 0.047 ⋅ 0.048 1.012 ⋅ 1.012 ⋅ 1.012

BFDR 0.089 ⋅ 0.083 ⋅ 0.071 0.070 ⋅ 0.066 ⋅ 0.056 1.211 ⋅ 1.206 ⋅ 1.203

c. by = bx = 0 SR 0.002 ⋅ 0.004 ⋅ 0.002 0.058 ⋅ 0.054 ⋅ 0.054 1.188 ⋅ 1.187 ⋅ 1.187

𝜏x = 𝜏y = 0.3 DR 0.246 ⋅ 0.211 ⋅ 0.171 0.267 ⋅ 0.211 ⋅ 0.164 0.896 ⋅ 0.898 ⋅ 0.899

DRC 0.006 ⋅ 0.007 ⋅ 0.009 0.041 ⋅ 0.042 ⋅ 0.042 0.883 ⋅ 0.885 ⋅ 0.887

BFDR 0.136 ⋅ 0.126 ⋅ 0.109 0.069 ⋅ 0.052 ⋅ 0.037 1.330 ⋅ 1.318 ⋅ 1.309

d. by = bx = 0 SR 0.000 ⋅ 0.002 ⋅ 0.003 0.055 ⋅ 0.053 ⋅ 0.054 1.188 ⋅ 1.188 ⋅ 1.187

𝜏x = 𝜏y = 0.3 DR 0.135 ⋅ 0.117 ⋅ 0.097 0.139 ⋅ 0.122 ⋅ 0.110 1.067 ⋅ 1.068 ⋅ 1.068

𝜌 = 0.5 DRC 0.002 ⋅ 0.004 ⋅ 0.006 0.059 ⋅ 0.058 ⋅ 0.059 1.064 ⋅ 1.065 ⋅ 1.065

BFDR 0.073 ⋅ 0.069 ⋅ 0.060 0.076 ⋅ 0.072 ⋅ 0.065 1.209 ⋅ 1.205 ⋅ 1.201

Note: The first line SR of each scenario (I) presents a frequentist single-regression on the Phase III late-phase outcome data. DR correspond to the
frequentist double-regression. Last, the DRC lines present the result for the bias corrected double-regression approach and the BFDR lines present
the results for the Bayesian flexible double-regression approach. 𝛼3 = 0.05 and 𝛼2 denotes the alpha level of the early-phase primary outcome of
the phase II trial.

resulted in the narrowest intervals. The intervals of the BFDR were comparable or larger than these of the SR. In terms
of power, the DR method showed the highest gain, closely followed by the DRC. Finally, the SR and DRC both attained
coverage close to nominal levels.

Overall, the DRC resulted in similar operational characteristics to the SR but it demonstrated a large gain in empirical
power under the alternative hypothesis scenarios in comparison to the SR (Tables 3 and 4).

6 DISCUSSION

In a drug development procedure, it is not uncommon that positive Phase II results on early-phase (biomarker) outcomes
are not predictive of a Phase III success on late-phase clinical outcomes. If Phase II and Phase III results are then assessed
(perhaps informally) jointly to support efficacy, this retrospective (ad hoc)) assessment may be subject to decision-induced
bias and may increase uncertainty of the true primary late-phase treatment effect. Such an informal combination of
results may increase to a great extent (more than three times) the Type I error rate of null hypothesis, rendering the
retrospectively combined late-phase true treatment effect misleading. Especially in rare diseases, where the validation
of early-phase surrogate endpoints can become problematic, due to the small and often heterogeneous populations, the
small sample sizes and the insufficient number of available trials, only late-phase hard endpoints are usually appropriate
to prove treatment efficacy.

In this article, in addition to identifying and investigating the above issue, we explored methods that can be utilized
in order for early and late Phase trial data to be combined retrospectively (ie, right before drug marketing authorization
request), while accounting for the underlying decision-induced bias. The flexible BDR includes the borrowing of historical
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T A B L E 4 Late-phase conditional average treatment effect estimates (means, posterior means, confidence intervals, credible
intervals) and average treatment efficacy P-values and probabilities of the four models (Table 2) given that 𝜌 = 0.9, 𝜏x = 𝜏y = 0.01, and
𝜎y = 𝜎x = 1, except where noted otherwise, based on at least 10.000 simulations

Scenario Model
Mean/Posterior
mean by Power 95% coverage C(r)I widths

𝛼2: (0.05 ⋅ 0.1 ⋅ 0.2) 𝛼2: (0.05 ⋅ 0.1 ⋅ 0.2) 𝛼2: (0.05 ⋅ 0.1 ⋅ 0.2) 𝛼2: (0.05 ⋅ 0.1 ⋅ 0.2)

IIa. by = bx = 0.6 SR 0.598 ⋅ 0.596 ⋅ 0.598 0.659 ⋅ 0.655 ⋅ 0.658 0.940 ⋅ 0.940 ⋅ 0.942 1.138 ⋅ 1.137 ⋅ 1.138

DR 0.643 ⋅ 0.625 ⋅ 0.612 0.942 ⋅ 0.924 ⋅ 0.909 0.954 ⋅ 0.952 ⋅ 0.951 0.811 ⋅ 0.812 ⋅ 0.812

DRC 0.634 ⋅ 0.621 ⋅ 0.611 0.935 ⋅ 0.920 ⋅ 0.907 0.956 ⋅ 0.954 ⋅ 0.952 0.812 ⋅ 0.812 ⋅ 0.813

BFDR 0.632 ⋅ 0.617 ⋅ 0.607 0.663 ⋅ 0.634 ⋅ 0.612 0.997 ⋅ 0.997 ⋅ 0.997 1.304 ⋅ 1.304 ⋅ 1.305

b. by = bx = 0.6 SR 0.598 ⋅ 0.596 ⋅ 0.598 0.626 ⋅ 0.624 ⋅ 0.625 0.940 ⋅ 0.941 ⋅ 0.942 1.188 ⋅ 1.187 ⋅ 1.188

𝜏x = 𝜏y = 0.3 DR 0.647 ⋅ 0.628 ⋅ 0.614 0.888 ⋅ 0.866 ⋅ 0.848 0.948 ⋅ 0.949 ⋅ 0.940 0.898 ⋅ 0.899 ⋅ 0.900

DRC 0.634 ⋅ 0.621 ⋅ 0.612 0.876 ⋅ 0.859 ⋅ 0.845 0.950 ⋅ 0.949 ⋅ 0.946 0.896 ⋅ 0.898 ⋅ 0.899

BFDR 0.629 ⋅ 0.615 ⋅ 0.607 0.648 ⋅ 0.622 ⋅ 0.610 0.989 ⋅ 0.989 ⋅ 0.990 1.292 ⋅ 1.293 ⋅ 1.293

III. bx3, by3 = 0.2, SR 0.202 ⋅ 0.204 ⋅ 0.202 0.173 ⋅ 0.169 ⋅ 0.168 0.941 ⋅ 0.941 ⋅ 0.945 1.188 ⋅ 1.187 ⋅ 1.187

bx2, by2 = 0 DR 0.363 ⋅ 0.328 ⋅ 0.289 0.470 ⋅ 0.399 ⋅ 0.337 0.906 ⋅ 0.931 ⋅ 0.950 0.894 ⋅ 0.896 ⋅ 0.898

𝜏x = 𝜏y = 0.3 DRC 0.226 ⋅ 0.221 ⋅ 0.214 0.244 ⋅ 0.232 ⋅ 0.223 0.961 ⋅ 0.963 ⋅ 0.968 0.883 ⋅ 0.886 ⋅ 0.889

BFDR 0.315 ⋅ 0.296 ⋅ 0.271 0.194 ⋅ 0.158 ⋅ 0.125 0.985 ⋅ 0.987 ⋅ 0.991 1.307 ⋅ 1.299 ⋅ 1.296

IV. by = 0.6, bx = 0 SR 0.602 ⋅ 0.602 ⋅ 0.602 0.626 ⋅ 0.626 ⋅ 0.630 0.941 ⋅ 0.941 ⋅ 0.945 1.188 ⋅ 1.188 ⋅ 1.187

𝜏x = 𝜏y = 0.3 DR 0.846 ⋅ 0.846 ⋅ 0.771 0.988 ⋅ 0.988 ⋅ 0.971 0.828 ⋅ 0.828 ⋅ 0.906 0.896 ⋅ 0.896 ⋅ 0.899

DRC 0.606 ⋅ 0.606 ⋅ 0.609 0.870 ⋅ 0.870 ⋅ 0.869 0.960 ⋅ 0.960 ⋅ 0.967 0.883 ⋅ 0.883 ⋅ 0.887

BFDR 0.735 ⋅ 0.735 ⋅ 0.708 0.736 ⋅ 0.736 ⋅ 0.743 0.970 ⋅ 0.971 ⋅ 0.985 1.329 ⋅ 1.330 ⋅ 1.309

Note: The first line SR of each scenario (II,III,IV) presents a frequentist single-regression on the Phase III late-phase outcome data. DR correspond to the
frequentist double-regression. Last, the DRC lines present the result for the bias corrected double-regression approach and the BFDR lines present the results
for the Bayesian flexible double-regression approach. 𝛼2 denotes the alpha level of the early-phase primary outcome of the phase II trial. In Scenario III the
correction for the DRC method is calculated based on that the true late-phase outcome effect is equal to 0.2.

information, while this model downgrades the historical prior upon early-phase outcome data conflict. The DRC method
approximately corrects the biased late-phase mean effect and variance estimate.

In most scenarios, the DRC method better controls the Type I error and bias than the DR and BFDR methods. This is
not observed in scenario Ia, where the BFDR controls better the Type I error than the DRC. This possibly happens because
the BFDR approach completely downgrades the impact of Phase II trial when its early-phase treatment effect is different
than the Phase III trial early-phase treatment effect. Therefore, on average the Bayesian approach becomes less prone to
false-positive results based on possible very positive Phase II early-phase outcome trial effects when 𝜏x is low and/or 𝜌
is high (see, black dots of inner right panel of Figure 2). On the contrary, the DRC corrects the Phase II effect and then
utilizes both Phase II and Phase III effects without heavily downgrading the Phase II results data upon data conflict. The
DRC requires a known 𝛼2 but despite being approximate, it applies a more direct (decision-based) penalty to the Phase II
effect than the Bayesian approach; which could explain its overall better performance in the simulation.

Both the BFDR and the DRC methods would be an attractive solution to the increased Type I error of the informal
retrospective combination of two small available trials. The consideration of these methods was shown to be rather impor-
tant when, (i) the preceding Phase II trial conservatively (ie, alpha level was small) resulted to the Phase III trial and/or
(ii) the association of utilized early and late-phase outcomes is high. An informal combination of results across Phases
often happens when both of the above hold, though, when neither holds then the complexity of suggested methods may
outweigh the gains of their application.

Alternative versions of the BFDR model could be developed and they may perform more optimally in comparison
to the current (ie, in terms of controlling the overall type I error) when applied on the flexible BDR via the use of an
alternative guided value.18-20 The power parameter is imposed on the early-phase endpoint and only indirectly affects
the primary late-phase endpoint, therefore, inference on the late-phase endpoint via alternative guided values on the
early-phase endpoints could be expected to be more comparable to some extent.
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An alternative approach that controls type I error on the late-phase outcome, while borrowing historical informa-
tion, may also provide a more formal solution.19 Future research could compare these alternatives vis-á-vis each other or
with other methods. More covariates could be included, and then their performance could be tested with ease as all pre-
sented models are readily generalizable to full regressions. In this article, we set independent informative priors on the
model parameters, however, accounting for the correlation between these parameters could also be considered through
a well-defined informative Wishart prior on the whole covariance matrix. Finally, in this work, we accounted for but did
not estimate between-study variance. Due to the only two available studies, a proper estimation of the between-study
outcome variability is currently known to be almost nonfeasible.14-17

In the motivating example we assumed that both trials were superiority trials, while if we had kept the initial designs,
different strategies may have been more appropriate. Nonetheless, examples of two superiority trials, one Phase II and
one Phase III, exist in the literature. For example, the drug development program of thalidomide for the treatment of
multiple myeloma contained two randomized superiority clinical studies of similar design, a supportive (GISMM2001)
and a main study (IFM 99-06), that compared melphalan-prednisone (control treatment) to thalidomide (experimental
treatment).2 The supportive study was shorter and it reported clinical response rates and event free survival as primary
endpoints. The main study was longer in duration and it reported overall survival, as main endpoint and clinical response
rates and event free survival, as secondary endpoints. The suggested methodology could be tailored to account for the
possibility of decision-induced bias under survival and other types of outcomes and even to combine different study
designs.

Throughout the article normality was assumed, an assumption that could be challenged with rare diseases sample
sizes.1-3 We approximated a truncated normal with a normal distribution with mean and variance equal to that of the
former. This decision was made to aid calculations on the distribution mixture (Appendix B). Better approximations for the
truncated normal distribution may exist, such as the chi-square distribution and their performance could be explored as
well.24 We should note that for moderately sized N2 in comparison to N and small correlation between the two outcomes,
a SR might be more efficient than a DR, due to the noise introduced by the early-phase outcome.5 In the simulation study
we assumed that the Phase II trial had equal allocation between trial arms, while the Phase III trial had allocation equal
to 1:2 between the control vs treatment arm. We expect that our findings would be comparable under different allocations
between arm sample sizes, though further investigation could provide more insights between the relative performance of
BDR and DRC methods.

In this article, we performed a post hoc (retrospective) combination of available information after the conduct of
the Phase II and Phase III trial. However, it may be very relevant to (prospectively) plan to pool the data from both
studies and to use the early-phase outcomes of the Phase II study to increase the precision, with which the efficacy
on late-phase outcome is estimated overall.7-9 An alternative strategy could be to conduct one single trial with interim
analysis, then, based on the observed treatment effects on the early-phase endpoints decide whether to follow-up the
patients.8

To conclude, especially in a small population context, the often informal retrospective pooling of a single Phase II
early-phase outcome data to support the true late-phase outcome data inference at the end of a single confirmatory Phase
III trials could induce bias and it should be performed via formal numerical approaches. Such approaches should control
this decision-induced bias, in order to avoid inflating the Type I error under the null hypothesis and prevent overestimat-
ing our beliefs on the primary treatment effect. We hope that this article, except for introducing possible solutions, raises
awareness of potential mishaps with post hoc combinations of trial outcome results.
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APPENDIX A. DETAILS OF (BAYESIAN) UNIVARIATE MODEL

The standard linear SR reference model to demonstrate late-phase treatment efficacy assumes Y |t ∼ N(ay + byt, 𝜎2
y ),

where 𝜎y denotes the true outcome variance, t denotes a vector of length n3 indicating whether a patient receives control
or experimental treatment.

A conjugate Bayesian analogue (BSR) of the model above can be expressed also as above where ay, by, and 𝜎y are
random variables and need a prior distribution. This model offers the flexibility to directly impact inference via placing
informative priors on parameters ay, by, and 𝜎y. Model B(SR) corresponds exactly to the aforementioned model SR under
convenient noninformative priors on ay, by, and 𝜎y.12

In the above SR model, we are interested in b̂y and we assume that hypothesis testing for H0 : by = 0 vs H1 : by > 0 will be

evaluated as z1−𝛼3 < b̂y∕
√

var(b̂y) = Φ
(

b̂y∕
√

var(b̂y)
)

, where z1−𝛼3 is the 𝛼3th standard normal quantile. In the Bayesian

SR analogue, we are interested in by and we assume that hypothesis testing for H0 vs H1 will be performed by utilizing
posterior probabilities as Pr(by > 0|Y ) > 𝜔 where 𝜔 = 0.95.

APPENDIX B. DERIVATION OF MSE(b̂y)

The MSE(b̂y) of the late-phase outcome equals to

MSE(b̂y) = Bias(b̂y)2 + Var(b̂y).

B.1 Derivation of Bias(by)
Let assume that 𝜎x2, 𝜎x3 are known for the Phase II and Phase III trials, then the early-phase outcome treatment effect
estimates are distributed as b̂x3 ∼ N(𝜇x3,

2𝜎2
x3

n3
) and b̂x2 ∼ N(𝜇x2,

2𝜎2
x2

n2
). In practice the Phase II early-phase outcomes would

follow an one-sided truncated normal distribution. The adjusted mean (𝜇x2) and variance (𝜎2
x2) of this early-phase outcome

one-sided truncated normal distribution b̂x2 ∼ N𝛼2(𝜇
′
x2,

2𝜎′2
x2

n2
) equal to

𝜇′
x2 = 𝜇x2 +

𝜎x2√
n2∕2

𝜆 (eq3)

𝜎′2
x2 = 𝜎2

x2 [1 + 𝜁] , (eq4)

where 𝜆 = 𝜙(𝜔)
1−Φ(𝜔)

, 𝜁 = a𝜆 − (𝜆) 2 and 𝜔 = Zx
1−𝛼2

− 𝜇′
x2

𝜎′
x2∕

√
n2∕2

and 𝜙 and Φ are the probability density and the cumulative
function of the standard normal distribution.

We assume that we can approximate a truncated normal with a normal distribution with updated mean and variance
as follows b̂x2

approx∼ N(𝜇′
x2,

2𝜎′2
x2

n2
).25 The overall b̂x would be a mixture of the above density functions.

Given the set of two densities and weights (w1 and w2), such that wi ≤ 0 and
∑

wi = 1 the mixture can be represented
as

f (x) =
2∑

k=1
wkpk(x).

The mean and variance of the above normal mixture of two distributions equal to𝜇x =
∑2

k=1wk𝜇xk and 𝜎2
x =

∑2
k=1wk

(
𝜇2

xk +
2𝜎2

xk
ni

− 𝜇2
x
)

with wk =Nk/N.26 Therefore, b̂x ∼ N(𝜇x, 𝜎
2
x ).

Therefore, the updated mean and variance of b̂x, are equal to

𝜇′
x = w2𝜇

′
x2 + w3𝜇x3 (m6)

= w2𝜇x2 + w3𝜇x3 + w2𝜆
𝜎x2√
n2∕2

= 𝜇x + w2𝜆
𝜎x2√
n2∕2
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𝜎′2
x =

2∑
k=1

wk

(
𝜇2

xk +
2𝜎2

xk

nk
− 𝜇2

x

)
+ D

= 𝜎2
x + D,

where D = w1
(
(2𝜎2

x2∕n2)𝜁 + A2(1 − w2
2 − w2

3) + 2A(𝜇x2 − 𝜇x)
)
, A = (𝜎x2∕

√
n2∕2)𝜆 and 𝜁 = a𝜆 − (𝜆) 2.

A bias is introduced after combining the Phase II and III trial early-phase outcome effect estimates as 𝜎x2𝜆⋅w2√
n2∕2

.26 Then
based on (eq1) and assuming that 𝜎x = 𝜎y = 1, the bias of by equals to

Bias(B) = w2𝜆 𝜌𝜎x2√
n2∕2

. (m7)

B.2 Derivation of Var(b̂y)
The variance of late-phase outcome by is equal to Reference,5

Var(by) = var(b̂0) + 𝛾̂2var(b̂x) + b̂
2
xvar(𝛾̂) + 2b̂xcov(b̂0, 𝛾̂). (eqA1)

An estimate of Var(b̂y) can be obtain via estimates of the relevant parameters which can be obtained directly via the
regression of X |t and the regression of Y |X , t on N and N3 patients, respectively.

Assuming that t is an indicator variable and nk corresponds to the total sample size per treatment arm of the kth trial,
the q-dependent variance of (âx, b̂x) can be derived as 𝜎′2

x (T′T)−1, where T is the design matrix of X |t on N patients as
follows

(T′T)−1 =

(
2n n
n n

)−1

=

(
(1∕n) −(1∕n)
−(1∕n) (2∕n)

)
= 1

n

(
1 −1
−1 2

)
(eqA2)

and as a mixture of two distributions 𝜎′2
x = 𝜎2

x + D
From (eqA2), var(bx) =

2𝜎′2
x

n
, an estimate of which can be derived as ̂var(b̂x) =

2s′2x
n

, where s2
x follows from the regression

of X |t on N patients.
Subsequently, the variance of (â0, b̂0, 𝛾̂) can be derived as 𝜎2

o (1 − 𝜌2)(T3
′T3)−1, where T3 is the design matrix of Y |X , t

on N3 patients.

E(T′
3T3) = E

⎛⎜⎜⎜⎜⎜⎝

2n3 n3
∑
C,E

x3

n3 n3
∑
E

x3∑
C,E

x3
∑
E

x3
∑
C,T

x2
3

⎞⎟⎟⎟⎟⎟⎠
= N3

⎛⎜⎜⎜⎝
2 1 𝜇C + 𝜇E

1 1 𝜇E

𝜇C + 𝜇E 𝜇E 2𝜎2
y3
+ (𝜇2

C + 𝜇2
E)

⎞⎟⎟⎟⎠ . (eqA3)

The variance estimates are derived by inverting matrix (eqA3) and replacing 𝜎2
o with 𝜎′2

y = 𝜎2
0 + 𝛾2𝜎′2

x .8

var(𝛾̂) =
𝜎′2

y (1 − 𝜌2)
2n3𝜎

′2
x

, (eqA4)

var(b̂0) =
2𝜎′2

y (1 − 𝜌2)
n3

+
𝜎′2

y (1 − 𝜌2)
2n3𝜎

′2
x

b2
x , (eqA5)

cov(b̂0, 𝛾̂) = −
𝜎′2

y (1 − 𝜌2)
2n3𝜎

′2
x

bx. (eqA6)

Replacing (eqA4) to (eqA6) in (eqA1) we obtain var(b̂y)

Var(b̂y) = var(b̂0) + 𝛾̂2var(b̂x) + b̂
2
xvar(𝛾̂) + 2b̂xcov(b̂0, 𝛾̂)
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×
2𝜎′2

y (1 − 𝜌2)
n3

+
𝜎′2

y (1 − 𝜌2)
2n3𝜎

′2
x

b2
x +

2𝜎′2
y 𝜌2

n

+ b2
x
𝜎′2

y (1 − 𝜌2)
2n3𝜎

′2
x

+ 2b̂x

(
−
𝜎′2

y (1 − 𝜌2)
2n3𝜎

′2
x

bx

)
= 2𝜎′2

y

(
(1 − 𝜌2)

n3
+ 𝜌2

n

)
𝜎′2

y = 𝜎2
y + 𝛾2 D.

B.3 Derivation of MSE(b̂y)
Based on the calculated alternative variance of the overall late-phase effect Var(b̂y) and the method of moments, the
MSE(b̂y) is given by

MSE(b̂y) = Bias(b̂y)2 + Var(b̂y)

=

(
w2𝜆 𝜌𝜎′

y𝜎x2

𝜎′
x
√

n2∕2

)2

+ 2𝜎′2
y

(
1 − 𝜌2

n3
+ 𝜌2

n

)

= 2𝜎′2
y

(
w2𝜌𝜆𝜎x2

𝜎′
x
√

n2

)2

+ 2𝜎′2
y

(
1 − 𝜌2

n3
+ 𝜌2

n

)
𝜎′2

y = 𝜎2
y + 𝛾2D.

In Appendix D, Figure D2 presents a short simulation demonstrating the association between the approximate analytical
bias and the bias introduced by the use of the DR method. Equivalent simulations were performed for the updated variance
parameters, all scenarios resulted in less than 10% difference between the approximate and analytical derived variances.

APPENDIX C. BIVARIATE NORMAL SIMULATION

Regarding the bivariate normal simulation strategy, we generated a series of parallel-group design randomized trials
with two treatment groups (control (C) and treatment (E)). We assume that the outcome values for ith control individual
and kth trial, for the early-phase mCxik and late-phase mCyik outcome are generated by a bivariate normal distribution as
follows (

mCxik

mCyik

)
∼ BVN

[(
𝜇Cxk

𝜇Cyk

)
, ΣC =

(
𝜎2

Cxk 𝜌C𝜎Cxk𝜎Cxk

𝜌C𝜎Cyk𝜎Czk 𝜎2
Cyk

)]
,

where 𝜇Cik are the true treatment means for each endpoint in the control arm and ΣC is their covariance matrix, 𝜎2
Ck are

the variances of the early and late-phase endpoints and 𝜌C is the correlation between these endpoints.
In a similar fashion we generate data outcome values for the ith treatment individual in the kth trial as follows(

mExik

mEyik

)
∼ BVN

[(
𝜇Ezk = 𝜇Cxk + 𝜃x

𝜇Eyk = 𝜇Cyk + 𝜃y

)
, ΣT =

(
𝜎2

Exk 𝜌𝜎Exk𝜎Eyk

𝜌𝜎Exk𝜎Eyk 𝜎2
Eyk

)]
.

In order to incorporate between-study variability 𝜏2, we can further assume that mi ∼ N(Δ, 𝜏2).27

(
mExik

mEyik

)
∼ BVN

[(
𝜇Exk = 𝜇Cxk + Δx

𝜇Eyk = 𝜇Cyk + Δy

)
, ΣT =

(
𝜎2

Exk + 𝜏2
x 𝜌𝜎Exk𝜎Eyk + 𝜏x𝜏y𝜌B

𝜌𝜎Exk𝜎Eyk + 𝜏x𝜏y𝜌B 𝜎2
Eyk + 𝜏2

y

)]
.

𝜌B parameter indicates how the early-phase and late-phase outcome are related across all available studies. In our
framework we only have available summary value on both early and late-phase outcomes from only a single Phase III
trial. Therefore, for simplicity in the simulation study we assume that the between-study correlation equals to zero 𝜌B = 0.
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We applied an alternative model that generates data in two stages to check for results’ robustness with no observed
noticeable variations in relative performances.

APPENDIX D. FIGURES AND TABLES

F I G U R E D1 Relation between 𝜂opt and varying
true bx2 when bx3 = 1 and 𝜎x = 𝜎y = 1
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F I G U R E D2 Approximation of a truncated normal distribution with a normal distribution (𝛼2 = 0.1). The black lines represent the
approximate analytical solution to the bias, while the red lines represent the simulated values based on the double-regression model [Colour
figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com

