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Abstract: Melanoma and nonmelanoma skin cancers (NMSCs) are recognized as among the most
common neoplasms, mostly in white people, with an increasing incidence rate. Among the NMSCs,
squamous cell carcinoma (SCC) is the most prevalent malignancy known to affect people with a fair
complexion who are exposed to extreme ultraviolet radiation (UVR), have a hereditary predisposition,
or are immunosuppressed. There are several extrinsic and intrinsic determinants that contribute
to the pathophysiology of the SCC. The therapeutic modalities depend on the SCC stages, from
actinic keratosis to late-stage multiple metastases. Standard treatments include surgical excision,
radiotherapy, and chemotherapy. As SCC represents a favorable tumor microenvironment with
high tumor mutational burden, infiltration of immune cells, and expression of immune checkpoints,
the SCC tumors are highly responsive to immunotherapies. Until now, there are three checkpoint
inhibitors, cemiplimab, pembrolizumab, and nivolumab, that are approved for the treatment of
advanced, recurrent, or metastatic SCC patients in the United States. Immunotherapy possesses
significant therapeutic benefits for patients with metastatic or locally advanced tumors not eligible
for surgery or radiotherapy to avoid the potential toxicity caused by the chemotherapies. Despite
the high tolerability and efficiency, the existence of some challenges has been revealed such as,
resistance to immunotherapy, less availability of the biomarkers, and difficulty in appropriate patient
selection. This review aims to accumulate evidence regarding the genetic alterations related to SCC,
the factors that contribute to the potential benefits of immunotherapy, and the challenges to follow
this treatment regime.

Keywords: nonmelanoma skin cancers (NMSCs); squamous cell carcinoma (SCC); risk factors of
SCC; immunotherapy

1. Introduction

The most frequent cancers in white populations are melanoma and nonmelanoma
skin cancers (NMSCs), which account for almost 20 to 30% [1,2]. Although melanoma
causes the majority of skin cancer deaths, it is only responsible for 1% of all skin cancers
in the United States [3]. The incidence of NMSC cases is continuously increasing because
of better cancer screening processes, increases in the elderly population, and increased
exposure to ultraviolet radiation (UVR) as a consequence of ozone-layer depletion [4,5].
According to a report published in 2012, which estimates the NMSC incidence in US people,
approximately 5.4 million NMSC or keratinocyte carcinoma cases were diagnosed; however,
the exact epidemiology of NMSC is unknown because, in the USA, NMSC is not included
in the cancer registries [1,6]. The major types of NMSCs are basal cell carcinoma (BCC)
and the squamous cell carcinoma (SCC), which account for almost 99% of NMSC; the
other types of NMSC include Merkel cell carcinoma, sebaceous gland carcinoma, apocrine
adenocarcinoma, angiosarcoma, and dermatofibrosarcoma protuberans [7,8]. BCC is the
most prevalent type among all skin cancers in all ethnic groups, although the BCC-to-SCC
ratio varies between 1:1 and 10:1 depending on geography, age, and sex [9]. BCC is the most
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common skin cancer and is more frequently observed in white people compared to SCC,
but SCC has the second-highest incidence rates with high metastasis and mortality rates,
which is clinically more problematic than BCC [10,11]. The increasing incidence rate of
SCC causes a significant financial burden for the patients and one report demonstrated that
compared to non-SCC patients the average in-patient cost for the SCC patient is about USD
0.066 million [12]. In general, the prognosis of SCC is quite good with a 5-year survival rate
of over 90% [4]. According to a report published by the Australasian Journal of Dermatology
and the American Cancer Society, from 200 to 2000 deaths have been reported that were
due to the NMSC, mostly SCC, in Australia and the USA, respectively [13,14]. The most
significant risk factors for SCC include UVR exposure, radiotherapy, fair complexion, and
age [15,16]. Primarily, for light-toned people, it develops from DNA mutations caused by
prolonged exposure to UVR, mainly in the squamous cells, and it can metastasize through
blood and lymph vessels, and cause serious complications [17]. The major treatment
modalities for SCC include surgical excision, which can cure 95% of cases if diagnosed early.
In the advanced stages when resection is difficult, other treatment options are available,
such as, cryotherapy and curettage, radiotherapy, Mohs microscopic surgery, and topical
medication [18,19]. SCC is characterized by massive infiltration of inflammatory cells, high
expression of immune co-signaling molecules, immunosuppression, and high mutational
load, and in 2018, the U.S. Food and Drug Administration (FDA) approved cemiplimab-
rwlc (Libtayo), an anti-PD-1 (Programmed Death 1) antibody, as the first immunotherapy
to treat patients with metastatic cutaneous squamous cell carcinoma (CSCC) [20,21]. In
addition, pembrolizumab and nivolumab are approved for the treatment of advanced SCC,
which showed better survival in patients with esophageal SCC and head and neck SCC
in Japan, respectively [22]. The success of immunotherapy for treating SCC patients is
challenging because of the SCC patients’ advanced age, immune resistance, comorbidities,
and possible adverse side effects of immunotherapies. Our objective in this review is to
elucidate the possible benefits and challenges of immunotherapies to treat SCC patients.

2. The Etiology of SCC

SCCs are among the most frequent human malignancies and represent almost 20%
of all skin-cancer-related deaths characterized by accelerated and abnormal growth of
squamous cells. Squamous cells are one of the epithelial cells that can be found in the
skin epithelium and the mucous membrane [23]. SCCs can develop in different anatom-
ical sites, such as, skin, esophagus, oral and nasal cavity, salivary glands, lung, genitals,
and urinary tract, and, although rare, they are extremely fatal when they develop in the
thyroid, prostate, scalp, and breast [24–27]. In the white population, almost 80% of SCCs
mainly develop in chronic sun-exposed areas; specifically, almost half a percentage of SCC
cases in Caucasians occur in the hands, head, and neck, which implies that UVR is the
most important carcinogen for SCC [28,29]. The other non-sunlight-related extrinsic risk
factors that contribute to SCC include, exposure to radiotherapy and chemical substances,
habitual factors, 8-methoxypsoralen (P), and ultra-violet light (UVA) (PUVA) treatment,
and medications. The intrinsic risk factors involved in SCC development include older
age, skin pigmentation, history of immune suppression, history of actinic keratosis (AK),
chronic medical conditions, viral infections, chronic wounds, hereditary conditions, and
personal history of NMSC [17,30–42] (Table 1).

SCC is commonly known as one of the human cancers that result from the increased
accumulation of genetic mutations caused by various carcinogens. Recent studies have
demonstrated the commonly mutated genes from different pathways known as cell cycle
regulators, keratinocyte differentiation, NOTCH-signaling pathways, tumor suppressor
pathways, mitogenic/survival-signaling pathways, cyclooxygenase pathways, Hippo-
signaling pathways, etc. (Figure 1).
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Table 1. Major Risk factors for Squamous Cell Carcinoma.

Factor Type Major Factors Specific Factors

Extrinsic Factors

Ultraviolet radiation (UVR) Ultraviolet (UV)B, UVA

Radiotherapy

Chemical exposure
nickel, arsenic, chromium, hydrocarbon, pesticides,

herbicides, insecticides, fungicides, petroleum
products, (gasoline and oil), grease, and diesel fumes

Habitual factors
cigarette smoking, alcohol consumption, dietary

factors (iron deficiency, malnutrition, oral hygiene),
8-methoxypsoralen (P) and UVA (PUVA) treatment

Medications

BRAF inhibitors; vemurafenib, dabrafenib, sonic
hedgehog-inhibiting agents; vismodegib; JAK

inhibitors; ruxolitinib, PDE-5 inhibitors,
antihypertensive drugs; diuretics, antifungal

medication; voriconazole

Intrinsic factors

Age more than 60

Sex male

Skin type pale skin

Precancerous lesion actinic keratosis, Bowen’s disease

History of immune suppression post transplantation, cancer therapy

Chronic medical conditions organ transplant recipients, chronic wounds (chronic
osteomyelitis, chronic venous ulcers)

Viral infections HIV/AIDS, human papillomavirus, Epstein–Barr
virus, John Cunningham virus

Hereditary conditions

(xeroderma pigmentosum, oculocutaneous albinism,
epidermolysis bullosa, dyskeratosis congenita, Huriez

syndrome, epidermodysplasia verruciformis,
Rothmund–Thomson syndrome, Bloom syndrome,

Werner syndrome, GATA2 deficiency, DOCK8
deficiency, Fanconi anemia

Past history of NMSC

UVR, ultraviolet radiation; BRAF, B type rapidly accelerated fibrosarcoma kinase; JAK, Janus kinase; PDE-5,
phosphodiesterase type 5.
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oxoguanine, which results in GC→TA transversion mutations during replication 
[44,47,48]. The two major types of photoproducts are cyclobutane pyrimidine dimers and 
photoproducts produced by UVB and UVC irradiation and they are responsible for 
photolesions on DNA, DNA mutation, and skin cancer [49]. The most commonly mutated 
gene in SCC is TP53, which occurs in almost 50–90% of cases and is induced by UVR 
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as, UVR or radiation, the p53- p21Cip1 pathway gets activated, inhibiting cyclin-dependent 
kinase (CDK), which initiates cell cycle arrest in the G1-S phase to allow the DNA damage 
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pyrimidone causes C-T or CC-TT mutation in the p53 gene, about half of these mutated 
cells die by apoptosis and other mutated cells expand, increase in size, and develop 
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and finally develop into SCC in later life [50]. The cyclin-dependent kinase inhibitor 2A 
(CDKN2A) locus located on human chromosome 9 p21 can be found mutated in SCC 
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Figure 1. Commonly mutated genes associated with the risk factors of SCC. UVR, ultraviolet radiation;
OTRs, organ transplant recipients; TERT, telomerase reverse transcriptase; ROS, reactive oxygen
species; MAPK; mitogen-activated protein kinase; FOXM1; forkhead box M1; COX2, Cyclooxygenase
2; MMPs; matrix metalloproteinases, HPV, human papillomavirus; CDKN2A; cyclin-dependent
kinase inhibitor 2A; FAT1, FAT atypical cadherin 1.
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2.1. External-Factors-Associated Genetic Mutation

UV exposure is one of the most important environmental contributing factors to
NMSC, as almost 90% of NMSC cases are associated with UVR [43]. UV radiation causes
cellular DNA mutation resulting in accelerated cell growth, inactivating tumor-suppressor
genes, and formation of the tumor [43]. Based on the wavelength, UVR can be classified into
three types: UVA (320–400 nm), UVB (280–320 nm), and UVC (100–280 nm) [44]. Among
them, almost all UVC and about 90% UVB are absorbed by the ozone layer. UVC cannot
have any impact on our skin [45,46].

The rest of the UVB can reach the Earth’s surface, irradiate the skin epidermal
keratinocytes, and cause direct DNA damage; while UVA has the longest wavelength
and it causes indirect DNA damage through oxidative stress pathways and by forming
8-oxoguanine, which results in GC→TA transversion mutations during replication [44,47,48].
The two major types of photoproducts are cyclobutane pyrimidine dimers and photoprod-
ucts produced by UVB and UVC irradiation and they are responsible for photolesions on
DNA, DNA mutation, and skin cancer [49]. The most commonly mutated gene in SCC
is TP53, which occurs in almost 50–90% of cases and is induced by UVR [50,51]. One
report demonstrated that p53-deficient –/– mice are more likely to develop SCC after UV
irradiation [52]. TP53 encodes tumor-suppressor protein p53, plays important functions as a
transcription factor, and under stress conditions it regulates cell cycle, apoptosis, senescence,
and DNA repair [4]. In response to a DNA damage incident such as, UVR or radiation,
the p53- p21Cip1 pathway gets activated, inhibiting cyclin-dependent kinase (CDK), which
initiates cell cycle arrest in the G1-S phase to allow the DNA damage response [53]. Thus,
p53 is known as a guardian of the genome in some cases [54]. In other cases, when the DNA
damage response is not initiated, the damaged cells are eliminated by the p53-mediated
apoptosis [55]. In human sun-exposed skin areas, various photoproducts are activated
by cyclobutane pyrimidine dimers (CPDs), and pyrimidine-pyrimidone causes C-T or
CC-TT mutation in the p53 gene, about half of these mutated cells die by apoptosis and
other mutated cells expand, increase in size, and develop carcinogenesis [56]. Usually,
in most individuals, the event of sunlight exposure and p53 mutation can occur early in
life, which may lead to precancerous lesions, actinic keratosis, and finally develop into
SCC in later life [50]. The cyclin-dependent kinase inhibitor 2A (CDKN2A) locus located
on human chromosome 9 p21 can be found mutated in SCC because of point mutation,
promoter hypermethylation, and loss of heterozygosity [57]. CDKN2A encodes two tumor
suppressor genes, p16INK4a (p16) and p14ARF (p14), and both of them perform crucial
cell-cycle regulatory functions. The tumor suppressor gene p16 is a negative regulator
of cell proliferation that inhibits CDK4, prevents retinoblastoma phosphorylation (pRB),
blocks E2F-mediated transcription, and sequentially induces G1-S phase cell cycle arrest
and senescence [58]. Similarly, p14 also has tumor-suppressor effects that antagonize or
neutralize the MDM2, which is a negative regulator of p53, and by neutralizing MDM2,
p14 allows the p53 transcriptional activity. Therefore, the p14 and p16 gene mutations or
loss of function can lead to uncontrolled cell proliferation, a common feature observed in
carcinogenesis [58]. It has been reported that the p16 mutation is observed in almost 24%
of cases of SCC patients [59]. There is a positive correlation between p16 overexpression
and cancer progression from actinic keratosis to invasive SCC and p16 overexpression is
mostly located in UV-exposed skin tumors [60,61]. UVB irradiation plays an important
contributing factor for p16 mutation as proven by the previous reports where p16 mutation
is mostly observed in actinic keratosis, which is a common precancer lesion caused by
sun exposure [61]. However, there is no clear indication of how UV irradiation causes the
p16 mutation. One report speculated that the p16 mutation found in SCC can be caused
by CPD photoproduct from UVB [59]. Another report examined tumors from 40 SCC
patients and showed UVR-signature-type mutations in dipyrimidine sites of human skin,
which are positively correlated with the p16 and p14 mutations and that proves the asso-
ciation between the mutagenesis in these two tumor-suppressor genes and UV-induced
SCC [58]. Another report showed the reduced expression of tumor suppressor protein pRB
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by immunohistochemical analysis in about 8% of actinic keratosis patients and 16% of SCC
patients [62].

The telomerase reverse transcriptase (TERT) mutation is regarded as a comprehensive
feature observed in widespread malignancies and represents a UV-irradiation signature
type [63]. One report demonstrated frequent TERT mutation in SCC (50%) in which all
of them are C > T or CC > TT types observed in dipyrimidine sites characterizing the
UVR-related mutagenesis [64].

Arsenic is one of the most poisonous metalloids and also a well-known human car-
cinogenic factor found ubiquitously in nature. It is documented that arsenic might not
have a direct carcinogenic effect but it works as a co-carcinogen with UV and contributes to
melanoma and NMSC malignancies by enhancing the genotoxicity of UVR [65]. Bowen’s
disease is one of the precancerous lesions (SCC in situ) possibly caused by chronic arsenic
exposure and has a chance to transform into a more aggressive phenotype [66]. The precise
mechanism of arsenic-induced carcinogenesis is still unknown. One report compared
the production of reactive oxygen species (ROS) in arsenic-related and non-related skin
neoplasms and found that ROS, specifically 8-hydroxy-2′-deoxyguanosine, showed higher
expression in 78% of arsenic-related skin cancers [67]. Another report demonstrated the
presence of p53 and p16 hypermethylation in the blood samples from subjects who have a
history of arsenic-contaminated water ingestion and symptoms of skin cancer [68]. Another
possible mechanism may be involved in histone methylation dysregulations or cyclin D
promoter unmethylation caused by arsenic toxicity [69]. Hexavalent chromium is another
possible carcinogen found in the environment. One murine study showed that potas-
sium chromate in drinking water along with UV irradiation cause skin tumorigenesis in a
dose-dependent manner, which may be involved in ROS-dependent pathways [70].

One meta-analysis and systemic review showed a strong association between smoking
and increased risk of cutaneous SCC [71]. Among the habitual factors, cigarette smoking
and alcohol consumption are strongly associated with head and neck SCC (HNSCC) and
whole-exome sequencing analysis demonstrated that among 92 HNSCC patients, 89% have
a smoking history and 79% have an alcohol consumption history [72]. Another whole
genome sequencing analysis using 32 primary tumors confirmed smoking is associated
with more genetic mutations compared to non-smokers (21.6:9.5) [73]. Tobacco is associated
with many epigenetic alterations; for example, it causes overexpression or mutation of
TP53, p16, TP63, NOTCH1, and PI3K (the phosphatidylinositol 3-kinase), oxidative stress,
inhibiting immune functions, and is involved in the oral squamous cell carcinoma (OSCC)
pathogenesis [72,74]. PUVA, a widely used photochemotherapy for psoriasis, is also
associated with an increased incidence rate of cutaneous SCCs [75].

The widely known treatment for stage IV metastatic melanoma is BRAF (B type rapidly
accelerated fibrosarcoma kinase) inhibitors and with this monotherapy, NMSCs are the
most commonly observed skin tumors. There are two possible hypotheses available in the
literature to uncover the molecular mechanism. The first theory suggested that in the case
of BRAF-mutated skin cancers, BRAF inhibitors inhibit MAPK (mitogen-activated protein
kinase)-signaling pathways (pERK), causing cell cycle arrest, apoptosis, and inhibiting
tumor progression; however, in the case of wild-type BRAF cells, the ERK is activated and
causes abnormal cell proliferation, which may lead to SCC development [76,77]. According
to the second theory, the BRAF inhibitor causes keratinocyte hyperproliferation by inducing
CRAF, which leads to MAPK activation and results in SCC formation [78,79]. In advanced
BCC, inhibition of the hedgehog pathway by vismodegib has recently been approved by the
FDA [79]. Although SCC development has been observed during the hedgehog-pathway-
inhibitor treatment, which may include the activation of the RAS/MAPK pathway, there are
some controversial reports regarding hedgehog-pathway-inhibitor-induced SCC forma-
tion [80]. The FDA approved JAK (Janus kinase) inhibitor ruxolitinib for the treatment of
myelofibrosis and polycythemia vera, which can be associated with potential SCC devel-
opment. A 10-year clinical trial was conducted on 564 patients and showed an increased
risk of developing SCC after ruxolitinib treatment [81]. However, the mechanism of how
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ruxolitinib increases the risk of SCC development is as yet unclear. It is speculated that the
immune function gets inhibited by the JAK inhibitors, specifically, the production of IL-6,
IL-23, and Th17 activity, which may favor tumor formation during SCC development [82].
A meta-analysis showed a positive correlation between antihypertensive drugs, specifi-
cally thiazide diuretics, and the risk of SCC development. That report also suggested that
thiazide diuretics can increase UVR-induced photosensitivity by stimulating photoprod-
ucts [83]. Voriconazole is an approved antifungal medication for transplant patients that
modifies the forkhead box-1 (FOXM1) and cyclooxygenase-2 (COX-2) expression, which is
commonly found upregulated in SCC patients [84].

2.2. Internal-Factors-Associated Genetic Mutation

Due to the increased risk of recurrence and metastasis, patients with immunosup-
pression are at a high risk of SCC-associated deaths, and in the case of organ transplant
recipients (OTRs), SCC is the most frequently observed post-transplant cancer. The OTRs
have 65–250-fold higher SCC incidence rates compared to others and these recipients
are at 5–8% more risk of developing metastatic SCC [85]. Immunosuppressants are nor-
mally prescribed for OTRs to prevent organ rejection by targeting the immune system,
which thus provides a favorable environment for carcinomas. The molecular pathways
related to the immunosuppressive agents and SCC progression might include the classic,
p53, NOTCH1 pathway, or other inflammatory pathways. For example, azathioprine,
an immunosuppressive-agent-treated OTR, is susceptible to developing SCC and has a
mutation in TP53, CDKN2A, or NOTCH1/2/4 [57]. The inflammatory cytokines and the
immune cell infiltration are also associated with SCC development. It has been reported
that the calcineurin-inhibitor drugs, specifically ciclosporin, caused an upregulation of
interleukin-22 expression that has been reported to increase SCC proliferation and migra-
tion [86].

Sufficient evidence has proven the positive association between chronic wound and
cutaneous SCC formation. Matrix metalloproteinases (MMPs) play an important role in
extracellular metrics and basement membrane degradation and thus fuel tumor metastasis.
In a study, expression of MMP-7, MMP-12, and MMP-13 in venous leg ulcer patients have
a positive correlation with malignant progression of SCC [87].

Among genodermatosis, patients with the epidermolysis bullosa (EB), characterized
by blistering and fragile skin and mucosa, are 70 times more susceptible to being diagnosed
with SCC compared with the general population [88]. The EB-associated SCC is highly
aggressive and associated with high mortality. Immune deficiency, loss of collagens, and
mutations in TP53 and NOTCH family members in EB cause a favorable microenvironment
for SCC development [88,89].

3. Available Treatments for SCC

The SCC represents a multi-stage progression process from actinic keratosis (SCC in
situ) and precancerous lesions to locally advanced SCC, and in very rare cases (about 3–9%)
to metastatic SCC [90]. Because of this spectrum of conditions, the therapeutic approaches
also vary according to the severity of the stages of SCC. The treatment options for actinic
keratosis or precancerous lesion include two broad categories; lesion-directed therapy
and field-directed therapy. The lesion-directed therapies targeted to remove the specific
lesions include 1. cryosurgery (use of liquid nitrogen), 2. curettage, 3. dermabrasion,
4. photodynamic therapy using aminolaevulinic acid or methylaminolaevulinic acid, and
5. laser therapy. On the other hand, the field-based therapies target multiple lesions
to reduce the burden and this approach includes topical application of 5-fluorouracil
(5-FU), imiquimod, tirbanibulin, diclofenac sodium, and chemical peels [91]. The most
common treatment modalities available for locally advanced SCCs and metastatic SCCs are
excisional surgery, or Mohs surgery. To completely remove the SCC tumor with minimum
excision, the Mohs microscopic surgery is considered the gold standard because it showed
a lesser recurrence rate as it can remove 100% SCC cell margins and can be applied to
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tumors that are recurrent, large, or have distinctive edges [92]. In some cases, the patients’
specific conditions, for example, age or co-morbidities, or tumor locations do not allow
or make it difficult to perform surgical excision. On that occasion, physicians suggest
performing radiation therapy, sometimes after the surgery or in combination with other
treatment modalities, such as chemotherapy or EGFRis (epidermal growth factor receptor
inhibitors). There are a wide range of radiation therapies available, such as, superficial
or orthovoltage x-rays, use of electron beams, and high-dose-rate brachytherapy [93].
There are limited clinical data regarding the systemic treatment with chemotherapy in the
treatment regimen of SCC. Nowadays, the most commonly used inductive chemotherapy
includes a combination of 5-FU (fluorouracil), cisplatin, and docetaxel, which is associated
with better survival with less toxicity. The 5-FU can be used as a monotherapy and one
paper showed oral 5-FU treatment displayed 64.3% overall improvement in 14 elderly
patients [94]. However, the toxicity, cost, and short-duration nature are still major concerns
related to chemotherapy. In targeted therapy, a specific drug is used to target a molecule
or factor that is responsible for the cancer cell growth or development. In SCC, it has
been reported that 80% of SCC tumors and almost all of the metastatic tumors expressed
high EGFR, which is positively correlated with SCC progression and morbidity [95]. The
well-known and FDA-approved EGFR-targeted therapy includes cetuximab, gefitinib, and
osimertinib for HNSCC [96,97]. Patients with advanced SCC demonstrated 16% and 53%
overall response rate (ORR) after treating with gefitinib and cetuximab, respectively [98,99].

In immunotherapy, medicines are used to strengthen a patient’s immune system,
which can identify and recognize the cancer cells from the normal cells and can destroy
only the cancer cells more efficiently. Immunotherapies, specifically the immune checkpoint
therapies, are the novel drugs initially developed to treat melanoma, which mainly targets
the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death 1
(PD-1). Under normal physiological conditions, the immune systems, specifically the T cells,
protect our body from foreign invaders, leaving the normal healthy cells. The PD-1/PD-L1
pathway is recognized as an immune checkpoint to halt or turn off the T cell response,
resulting in protecting normal cells from T cell attack and also in minimizing inflammatory
response. In patients with cancer, the PD-1 receptor is expressed in activated T cells
and antigen-presenting cells, and tumor cells express PD-1 ligand and programmed cell
death-ligand 1 (PD-L1). The binding of PD-1 with its ligand decreases T cell functionality,
suppresses the immune system function, and accelerates cancer cell proliferation. The PD-1
antibody blocks the PD-1 interaction with its ligand PD-L1/PD-L2 and allows the immune
system to destroy the tumor cells by increasing cytotoxic cells [92]. Later in 2018, the FDA
approved cemiplimab-rwlc (Libtayo), a PD-1 inhibitor, as the first immunotherapy to treat
patients with metastatic cutaneous SCC. The Phase I and Phase II studies with cemiplimab
showed almost 65% and 61% durable disease control in advanced cutaneous SCC patients,
respectively [20]. The other PD-1 antibodies, pembrolizumab (Keytruda®, MSD (Merk
Sharp and Duhme) & Co., Inc., Rahway, NJ, USA), and nivolumab (OPDIVO, Bristol-Myers
Squibb Co., New York, NY, USA), were recommended in 2020 by the FDA to treat patients
with recurrent or metastatic HNSCCs and esophageal squamous cell carcinoma (ESCC)
after prior fluoropyrimidine- and platinum-based chemotherapy, respectively [100,101]
(Table 2). Other checkpoint inhibitors, such as, Erlotinib and Ipilimumab, that might have
beneficial effects with advanced SCC patients are under consideration [102–105].
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Table 2. FDA approved PD-1 antibody for the treatment of SCC.

Antibody Target Study Type
Total

Number of
Patients (n)

Disease/Tumor Type
Overall

Response
Rate (ORR)

Reference

Cemiplimab PD-1

Phase-I, open-label,
multicenter study 26

advanced cSCC
50%

[106]
Phase-II, nonrandomized,

global, 59 47%

Pembrolizumab PD-1 phase II, global, open-label,
nonrandomized, 159

locally advanced or
recurrent and/or
metastatic cSCC

50% [100]

Nivolumab PD-1

Phase III, multicenter,
randomized (1:1),
active-controlled,

open-label

419
unresectable advanced,
recurrent or metastatic

esophageal SCC (ESCC)
19.3% [101]

3.1. Factors That Determine the Potential Benefits of Immunotherapy in SCC Treatment

In some cases, tumors characterized as advanced, recurrent, located in cosmetically
essential areas, or metastatic are not eligible for surgical excision or radiotherapy. On those
occasions, systemic therapies, especially immunotherapies, are the most recommended
therapies among other treatments. Cemiplimab, a highly potent human monoclonal PD-1
antibody, is efficient and safe to treat advanced SCC, as shown by phase I and II clinical
trials. The objective response rate was about 50% and 47% in Phases I and II, respec-
tively [106,107]. The characteristics of the tumor microenvironment (TME) of SCC and
higher SCC prevalence among immunocompromised patients provide a strong rationale
for the efficacy of immunotherapy in SCC management (Figure 2).
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Figure 2. Immunogenic characteristics of SCC that favor the benefits observed in immunotherapy
treatment for SCC patients. The tumor microenvironment (TME) of the SCC patients is characterized
by high tumor mutational burden (TMB), increased infiltration with tumor associated macrophages
(TAMs) and lymphocytes, and increased PD-L1 expression, which work as a favorable prognostic
factor for immunotherapy in SCC patients.

Understanding of the TME landscape and the immune regulation is absolutely essen-
tial for the development and better outcome of therapies. The TME in SCC is composed of
a stromal component with cancer-associated epithelial, endothelial cells and fibroblasts,
melanocytes, vascular cells, infiltrating immune cells ((T cells, B cells, natural killer cells,
dendritic cells, tumor-associated macrophages (TAMs) myeloid-derived suppressor cells,
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and tumor-infiltrating lymphocytes (TILs); CD4, CD8, regulatory T cell), and non-cell
components of extracellular matrix composed of proteins; fibronectin, collagen, glycopro-
tein, MMPs, laminins, tenascin, gelatin and syndecan, vitronectin, growth factors (EGF,
fibroblast growth factor (FGF, hepatocyte growth factor, vascular endothelial growth factor
(VEGF)), cytokines (TNF- α; tumor necrosis factor-α, interleukins (ILs) and chemokines;
C-X-C motif chemokine ligands (CXCLs; CXCL,1,8,12,14 and C-C motif chemokine ligands
(CCLs; CCL2,5,7) [108–110].

Cumulative evidence suggests that several TME factors, for example, TILs (CD4,
CD8), growth factors, Tregs, and checkpoints (PD-1, CTLA-4), are correlated with the
efficacy of checkpoint inhibitors in SCC. The TIL represents the immune therapy response
to tumor cells and thus the density of TILs can predict immune checkpoint inhibitors’
efficiency and is recommended as a favorable prognostic biomarker. Among the TILs,
CD3, CD8 (effector/cytotoxic), and CD4 (helper) T cells are recognized to have an anti-
tumor immune response and found to positively correlate with SCC patients’ favorable
outcomes. One report showed that among 63 patients with HNSCC, all of the tumors have
TILs positive for CD3 and CD4 immunohistochemistry, and increased CD4-positive cell
infiltration was associated with improved survival compared with the poor CD4-positive
cell-infiltrating tumors [111]. In another report, 50 patients with OSCC were assessed for
CD8- and CD4-positive cells and they found that CD8-positive cells were more abundant
than CD4 in tumor specimens and there is a negative correlation between CD8 infiltration
and metastasis [112]. However, another study used multicolor flow-cytometry analysis in
SCC lesions and found comparatively lower CD8 T cell infiltration. They also showed that a
transforming growth factor β (TGF-β)-overexpressing SCC cell line decreased CD8-positive
cell infiltration, showing that TGF-β might be responsible for decreasing dendritic cell and
CD8-positive cell infiltration [113,114]. The efficacy of PD-1 inhibitor is associated with
CD8-positive T cell infiltration as suggested by a report that showed CD8-positive cytotoxic
T cell depletion caused a complete abolition of the PD-1 inhibitor’s efficiency and increased
tumor growth [115].

Another factor recognized as an independent prognostic factor in various cancers for
immunotherapy is tumor mutational burden (TMB). Cutaneous SCC is associated with
high TMB; more precisely, the whole exome analysis revealed almost 50 mutations/Mbp
DNA [57]. It has been shown that tumors with high TMB analyzed by hybrid capture-
based next-generation sequencing (NGS) showed a better outcome in patients treated with
PD-1/PD-L1 monotherapy [116]. However, in some cases, the predictive value of TMB is
less. In the case of recurrent and metastatic HNSCC, it has been recommended to use a
combination of several gene mutations (PIK3CA, TP53, or ROS1 mutation) and TMB value
(known as TP-PR prognostic index) for better prediction of the outcome of immunotherapy.
They also reported that patients with high TP-PR showed increased CD4+ and CD8+ cells
and better overall survival undergoing immunotherapy compared with those with low
TP-PR scores [117]. It has been reported by an NGS analysis that UVR is associated with
diverse genomic mutation related to high TMB, and that among these UVR signatures the
commonly mutated genes are TP53, NOTCH1/2/3, TERT, CDKN2A, and RB1, which are
also associated with SCC [118].

In most solid tumors, the tumor-associated macrophages (TAMs) are associated with
bad prognostic factors as they inhibit CD8+ cells, and secrete cytokines and growth factors
(FGF, VEGF, EGF, MMPs, and TGF-β) favorable for tumor growth and metastasis [119].
It has been reported by immunohistochemical analysis in oral SCC-tumor specimens
that TAMs are the major group of leukocytes in the SCC TME and CD163+/CD204+ M2
macrophages are the major TAMs recruited in the oral SCC TME [120]. Another report
showed that in the TME of the cutaneous SCC, CD163 macrophages are the most abundant
among other TAMs, which is associated with increased MMP (MMP9 and MMP11) expres-
sion. MMPs are thought to promote SCC aggressiveness and malignancy by degrading
extracellular matrix and promoting angiogenesis [121,122].
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Another factor that determines the efficiency of the checkpoint inhibitors is the ex-
pression of PD-L1 in the tumor cells. Generally, increased PD-L1 expression is associated
with better prognosis defined as a better response rate and overall survival. An immuno-
histochemical analysis demonstrated that PD-L1 expression was higher in tumor cells
of SCC (52%) compared to that in adenocarcinoma. Moreover, the PD-L1 expression in
the tumor-infiltrating immune cells was found to be associated with the tumor stage and
survival rate, showing that almost 40% of tumor-infiltrating immune cells of the advanced
esophageal SCC patients showed positive expression of PD-L1 [123]. However, the use of
PD-L1 as a predictive biomarker is still controversial. Expression of PD-L1 as a poor or
favorable prognostic marker depends on where it expressed, in the tumor cells or in the
tumor-infiltrating immune cells [123].

SCC is characterized by increased genetic mutations and chromosomal instability.
Generally, there is a positive correlation between genetic instability and immunotherapy
effectiveness as genomic instability causes better T cell recognition and tumor death. Accu-
mulation of gene mutations and increased genetic mutations in the SCC tumor microenvi-
ronment positively favor response to immunotherapy. It has been reported that activation
of Wnt- and TGF-β-signaling pathways attenuate the effectiveness of immunotherapies
and also causes resistance to immunotherapies [124]. One report showed that increased
TGF-β1 expression in human oral SCC (OSCC) cells is associated with reduced function of
cytotoxic T-lymphocytes and thereby produces an immunosuppressive tumor microenvi-
ronment [125]. Another report confirmed the TGF-β receptor II mutation in OSCC cells,
which is associated with tumor progression [126]. Previous reports have confirmed that
the aberrant expression of Wnt-signaling molecules is associated with the SCC tumor
invasiveness and metastasis and that several Wnt molecules, for example, Dickkopf 3
(DKK3), secreted frizzled-related protein (SFRP) and the Wnt inhibitory factor (WIF) can
be used as biomarkers [127]. Moreover, it is well-known that Wnt-signaling activation is
associated with immunotherapy resistance, although more research is needed to confirm
the association between Wnt signaling and immunotherapy resistance in SCC treatment.

Based on the characteristics described above, SCC is highly immunogenic, which
implies the possible reasons for positive outcomes of immunotherapy.

3.2. Potential Challenges of Immunotherapy in SCC Treatment

Although immunotherapies have appeared as a major treatment modality for cuta-
neous SCC patients, there are some challenges that medical professionals need to deal with
(Figure 3).

The first challenge is to select the appropriate patients best fit for the immunotherapy to
achieve the best clinical outcomes. It has been reported that patients with a high tumor mu-
tational burden and diagnosed with advanced cutaneous SCC have more clinical benefits
from immunotherapy [128]. This finding is in alignment with the clinical trials using cemi-
plimab, which showed a 65% and 61% durable disease control in patients with advanced
cutaneous SCC and metastasis in Phase I and Phase II, respectively [20]. There is mixed
information about using the PD-L1 status of the SCC tumor as a prognostic marker. In the
clinical study using nivolumab, it has been shown that the improvement of overall survival
observed in the nivolumab group was not associated with the PD-L1 expression [90]. Other
studies have also shown no association between PD-L1 expression and immunotherapy
efficiency [129,130]. In another study, the objective response rate was increased from 4%
to 22% when patients had PD-L1 expression in both tumor cells and tumor-infiltrating
immune cells. On the other hand, increased PD-L1 was associated with a reduced survival
rate in HNSCC [131]. In this regard, the FDA had approved a PD-L1 immunohistochemistry
kit (Dako PD-L1 IHC 22C3 pharmDx) to choose patients appropriate for pembrolizumab
monotherapy [132]. Another biomarker to choose responders for immunotherapy is the
immune gene expression profile scores, which analyze the T cell activation condition in the
TME. In one study, tumors from patients with different cancers including HNSCC were
analyzed before pembrolizumab or nivolumab treatment to identify the genes associated
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with a better outcome. They found that tumors with high mRNA expression of cytotoxic T
cells, natural killer cells, CD8+, CD4+, Treg, interferon-gamma (IFN-γ), PD-L1, and PD-1
had more non-progressive disease and progression-free survival [133,134]. Therefore, it can
be suggested that patients with an increased T cell adaptive immune system at the baseline
level have more susceptibility to benefit from immunotherapy.
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Figure 3. Challenges usually occur in the immunotherapy treatment in SCC patients. Patients with
high TMB and advanced or metastatic stage get more benefit from immunotherapy. Expression of
PD-L1, immune cells, and TAMs are useful as biomarkers. IFN-γ causes immunotherapy resistance
through PD-L1-dependent or -independent pathways and by producing adenosine deaminase acting
on RNA 1 and yes-associated protein. TMB, tumor mutational burden; PD-L1, programmed cell
death-ligand 1; TAMs, tumor-associated macrophages.

Another challenging factor for immunotherapy is the primary or acquired resistance
that occurred during the treatment and because of this reason the number of patients who
positively respond to this monotherapy is relatively low. The process of this resistance
is really complex and encompasses a broad spectrum of mechanisms with individual
differences. IFN-γ, a key cytokine in the innate and adaptive immune system in the TME
produced by the activated T cells or natural killer cells, and IFN-γ can cause resistance
toward immunotherapy through PL-L1-dependent or -independent pathways. IFN-γ was
found to increase the PD-L1 expression that blunts the inhibition of PD-L1/PD-1 interaction,
which is the mainstay of antitumor effects of checkpoint inhibitors, and contributes to the
resistance to immunotherapy [135]. Moreover, it has been reported that interferon-induced
RNA-editing enzyme, adenosine deaminase acting on RNA 1 (ADAR1), is associated with
PD-1 blockage resistance and reports showed deletion of ADAR-1 increased CD8+ cell, IFN-
related gene expression and thereby improved sensitivity toward the PD-1 antibody [136].
SCC tumors showed increased ADAR1 expression [137,138] and this might contribute to
the immune checkpoint inhibitor resistance observed in the SCC treatment. IFN-γ can also
contribute to the immunotherapy resistance by phase-separation of yes-associated protein
(YAP) in the tumor cells. TME in the HNSCC showed increased YAP expression compared
to the tumor-adjacent area, which is associated with PD-L1 transcription and promotes
resistance [139,140].
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The immune-related adverse events (irAEs) are another challenge that is sometimes
observed in the immunotherapy-treated patients and the occurrences of these irAEs are
often dependent on the extrinsic factors, for example, type and the dose of the therapy,
duration of treatment, or in the intrinsic factors such as prior auto-immune diseases, or other
hereditary conditions, patients’ immune system in the TME, etc. [141]. Diarrhea, fatigue,
nausea, pruritus, rash, reduced appetite, constipation, and asthenia are the most commonly
observed adverse effects seen in the patients treated with FDA approved PD-antibodies
cemiplimab, nivolumab, and pembrolizumab.

4. Conclusions

Because of the poor outcome and limited treatment options, SCC remains a challenging
disease for medical professionals. Among other standard therapies, for example, surgi-
cal excision, radiotherapy, and chemotherapy, immunotherapies have evolved as a most
promising treatment regime as they are highly tolerable and have fewer adverse effects
for the SCC, a highly immunogenic skin cancer. Although the number of patients getting
benefits out of immunotherapy is still less because of the increased risk of developing
resistance and less availability of reliable biomarkers to choose appropriate patients. Pre-
ventive strategies mainly focus on avoiding risk factors by adopting some environmental
and lifestyle changes, for example, using sunblock, performing regular skin screening
procedure, and intake of chemopreventive agents such as Ellagic acid, black tea, curcumin,
phenethyl isothiocyanate, etc. Additional advanced studies are needed to overcome the
challenges and to propose a combination of treatment modalities so that a higher number
of patients can be cured.
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NMSCs nonmelanoma skin cancers
SCC squamous cell carcinoma
UVR ultraviolet radiation
BCC basal cell carcinoma
FDA Food and Drug Administration
CSCC cutaneous squamous cell carcinoma
PUVA PSORALEN (P) and ultraviolet light UVA
AK actinic keratosis
BRAF B type rapidly accelerated fibrosarcoma kinase
JAK Janus kinase
PDE-5 phosphodiesterase type 5
OTRs organ transplant recipients
TERT telomerase reverse transcriptase
MAPK mitogen-activated protein kinase
ROS reactive oxygen species
FOXM1 forkhead box M1
COX2 cyclooxygenase 2
MMPs matrix metalloproteinases
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HPV human papillomavirus
CDKN2A cyclin-dependent kinase inhibitor 2A
FAT1 FAT atypical cadherin 1
CPDs cyclobutane pyrimidine dimers
pRB retinoblastoma phosphorylation
HNSCC head and neck SCC
OSCC oral SCC
5-FU 5-fluorouracil
EGFRis epidermal growth factor receptor inhibitors
CTLA-4 cytotoxic T-lymphocyte-associated antigen 4
PD-1 programmed cell death 1
PD-L1 programmed cell death-ligand 1
TME tumor microenvironment
TAMs tumor-associated macrophages
TMB Tumor mutational burden
NGS Next-generation sequencing
TILs tumor-infiltrating lymphocytes
FGF fibroblast growth factor
EGF epidermal growth factor
TGF-β Transforming growth factor β
VEGF vascular endothelial growth factor
CXCLs C-X-C motif chemokine ligands
IFN-γ interferon-gamma
ADAR1 adenosine deaminase acting on RNA 1
YAP yes-associated protein
irAEs immune-related adverse events
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