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Abstract
Purpose Surra is an economically important livestock disease in many low- and middle-income countries, including those 
of Northern Africa. The disease is caused by the biting fly-transmitted subspecies Trypanosoma brucei evansi, which is very 
closely related to the tsetse-transmitted subspecies T. b. brucei and the sexually transmitted subspecies T. b. equiperdum. At 
least two phylogenetically distinct groups of T. b. evansi can be distinguished, called type A and type B. These evolved from 
T. b. brucei independently. The close relationships between the T. brucei subspecies and the multiple evolutionary origins 
of T. b. evansi pose diagnostic challenges.
Methods Here we use previously established and newly developed PCR assays based on nuclear and mitochondrial genetic 
markers to type the causative agent of recent trypanosome infections of camels in Southern Algeria.
Results/conclusion We confirm that these infections have been caused by T. b. evansi type A. We also report a newly designed 
PCR assay specific for T. b. evansi type A that we expect will be of diagnostic use for the community.
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Introduction

The single cellular parasite Trypanosoma brucei evansi 
belongs to the subgenus Trypanozoon that also comprises 
T. b. brucei and T. b. equiperdum [1, 2] (the taxonomical 
status of T. b. evansi is controversial [1, 3, 4]; for this study, 
we will be referring to it as a subspecies of T. brucei). Trypa-
nosoma b. evansi is the most widely distributed of the patho-
genic animal trypanosomes, affecting a large number of wild 
and domesticated animal species in Asia, Africa and Latin 

America [5, 6]. In Europe, it is present in the Canary Islands, 
from where recent sporadic incursions into the French and 
Spanish mainland have occurred [5, 7, 8]. Trypanosoma b. 
evansi causes a trypanosomosis called “surra” in many coun-
tries [8–10]. It is an acute, chronic or subclinical disease that 
is very often fatal in camels, horses and dogs, but can also 
seriously affect cattle and buffaloes. Other animals, includ-
ing wildlife, are also susceptible.

In affected countries, surra is an economically impor-
tant disease, which causes high mortality, reduced milk and 
meat production, poor carcass quality, reduced reproductive 
performance, and decreased draft power and manure pro-
duction [9]. Haematophagous flies of the genera Tabanus 
and Stomoxys are particularly relevant for transmitting the 
infection from host to host, acting as mechanical vectors 
without parasite development in the insect [9]. This is a key 
difference to T. b. brucei, where transmission is dependent 
on cyclic development in the tsetse fly [11]. Indeed, it is 
this mechanical transmission that has allowed the parasite 
to move beyond the tsetse fly region and out of Africa [12]. 
In South and Central America, T. b. evansi can also be trans-
mitted by vampire bats (Desmodus rotundus), which act as 
both vectors and reservoirs [9].

Another key difference to T. b. brucei is that T. b. evansi 
strains are either ‘dyskinetoplastic’ or ‘akinetoplastic’, 
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i.e., they have either dysfunctional kinetoplast DNA (the 
mitochondrial DNA network in these organisms) or lack 
it entirely. Where kDNA is present, T. b. evansi strains 
typically lack maxicircles—the equivalent of mitochon-
drial DNA in other eukaryotes—and are characterized by 
minicircle sequence homogeneity [13, 14]. By contrast, T. 
b. brucei contains hundreds of different minicircle classes 
[15]. Trypanosoma b. evansi is therefore incapable of mito-
chondrial gene expression, and a compensatory mutation in 
the nuclearly encoded subunit γ of the  F1FO ATP synthase 
is necessary to enable viability [16]. Based on the minicir-
cle class that dominates the kDNA networks, T. b. evansi 
can be divided into types A and B [1, 13, 17]. Indeed, this 
difference can be exploited for polymerase chain reaction 
(PCR)-based diagnostics and molecular characterization 
of the parasite. PCR-based assays that target Trypanozoon-
specific satellite DNA or ribosomal DNA are regarded as 
the most sensitive for diagnosis or characterization of surra 
infections [18–20], while for genotyping T. b. evansi and/
or to distinguish between T. b. evansi types A and B, PCR 
assays targeting type-specific variant surface glycoprotein 
genes, mitochondrial minicircles and maxicircles, micros-
atellite markers and the  F1-ATP synthase γ subunit gene are 
being used [4, 17, 21–23].

In northern Africa, the first cases of trypanosomosis were 
officially reported from Algeria, Mauritania, Morocco and 
Tunisia at the beginning of the last century [24–27]. In-depth 
epidemiological studies began at the end of the 1980s and 
showed that camel trypanosomosis could be considered as a 
dominant disease, with variable prevalence rates depending 
on the year, the sampling period and the provinces or wilay-
ate (districts) surveyed [28–34]. A recent epidemiological 
study in southern Algeria carried out on 1056 dromedary 
camels revealed overall prevalence rates of 2.4% by Giemsa-
stained thin smear (GST), 32.4% by card agglutination test 

for trypanosomosis (CATT/T. evansi), 23.1% by enzyme-
linked immunosorbent assay (ELISA/VSG RoTat 1.2), 
21.0% by immune trypanolysis (TL) and 11.2% by PCR 
(RoTat 1.2 PCR) [35].

Here, we present a genotyping analysis for six of the cam-
els from the previous study [35], based on sequencing of 
minicircle DNA and of the  F1FO ATP synthase subunit γ 
gene, and confirm the pathogen as T. b. evansi type A. Fur-
thermore, we present a novel PCR assay based on primers 
with improved specificity for minicircle type A that will be 
useful for typing of surra infections.

Materials and Methods

All PCR primers are listed in Table 1. All trypanosome iso-
lates or strains are listed in Table 2. Trypanosoma b. evansi 
and T. b. equiperdum reference strains were kind gifts from 
Kirsten Gillingwater, Swiss Tropical Institute [36] and from 
Philippe Büscher and Nick Van Reet, ITM Antwerp.

Growth of T. b. evansi and T. b. equiperdum Reference 
Strains and DNA Isolation

Trypanosome reference strains were grown in MFI mice and 
purified from blood using DEAE cellulose as described [40]. 
DNA extraction was performed using the QIAamp 250 mini 
blood kit (Qiagen, Hilden, Germany) according to the manu-
facturer’s instructions.

Preparation of FTA Punches

The Harris Uni-Core punch tool (Merck, Darmstadt, Ger-
many) and cutting mat were prepared by soaking in 2% 
(w/v) sodium hypochlorite solution for 10 min, followed 

Table 1  PCR primers used in this study

The underlined nucleotides are not part of the targeted sequence

Primer ID Target Sequence References

1 ATP synthase γ subunit (Tb927.10.180), forward 5′-AAC TGC CGT GTC TTG TTG TAA-3′ This study
2 ATP synthase γ subunit (Tb927.10.180), reverse 5′-CGA GTA AGA TGG TAT TGA TGC-3′ This study
3 ATP synthase γ subunit (Tb927.10.180), forward 5′-GCG GAA TTC GAA GCA GAT GAC ACC TAA -3′ [1]
4 ATP synthase γ subunit (Tb927.10.180), reverse 5′-GGC GAC ATT CAA CTT CAT -3′ [1]
5 Minicircle type A, forward 5′-CCA ACA AAC AGA ATA ACT AATG-3′ This study
6 Minicircle type A, reverse 5′-CTC TCT CAC CCT AGT ATC TC-3′ This study
7 Maxicircle gene A6, forward 5′-ACG GCG GTT TTG AAA ACA C-3′ [37]
8 Maxicircle gene A6, reverse 5′-ATT AAC TTA TTT GAT CTT ATT CTA TAA CTC C-3′ [37]
9 Maxicircle gene ND4, forward 5′-TGT GTG ACT ACC AGA GAT -3′ [37]
10 Maxicircle gene ND4, reverse 5′-ATC CTA TAC CCG TGT GTA -3′ [37]
MiniA Undefined subset of minicircle population, forward 5′-GGG TTT TTT AGG TCC GAG -3′ [17]
MiniB Undefined subset of minicircle population, reverse 5′-CCG AAA ATA GCA CGTG-3′ [17]
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by three washes with  ddH2O, soaking in 70% (v/v) ethanol 
for 5 min and air drying. Punches from FTA cards were 
washed three times with 200 µl FTA Purification Reagent 
(GE Healthcare) for 5 min each and twice with 200 µl 
TE buffer (10 mM Tris–HCl, 0.1 mM EDTA, pH 8.0) for 
5 min each. Punches were dried at 50 °C for 15 min and 
added directly to PCR reaction tubes.

PCR Assays

All PCR assays were performed in 25 µl volumes and used 
FTA card punches or trypanosome genomic DNA (1–5 ng) 
as indicated (negative controls included additional  H2O 
instead). Assays for all targets, with exception of the full-
length  F1FO ATP synthase subunit γ (Tb927.10.180), used 
the following reagents:

Reagent Volume

5 × GoTaq PCR buffer (Promega) 5 µl
MgCl2 (25 mM) 2 µl
dNTPs (10 mM) 0.5 µl
GoTaq G2 Hot Start (Promega) 0.125 µl

Specific primers, their volumes, and PCR cycling con-
ditions were as follows:

Target Primers 
(10 µM)

Volume (µl) Cycling condi-
tions

F1FO ATP syn-
thase subunit γ 
(Tb927.10.180), 
511-bp fragment

#1, #2 1 95 °C 5 min
35x (95 °C 30 s, 

55 °C 30 s, 
72 °C 1 min)

72 °C 10 min
Duplex assay 

minicircle type 
A (novel)/F1FO 
ATP synthase 
subunit γ 511-bp 
fragment

#3, #4, #5, #6 1.25 95 °C 5 min
40 ×  (95 °C 30 s, 

51 °C 30 s, 
72 °C 1 min)

72 °C 10 min

Minicircle type A 
(novel)

#5, #6 2.5 95 °C 5 min
40 ×  (95 °C 30 s, 

51 °C 30 s, 
72 °C 1 min)

72 °C 10 min
Minicircle type A 

(ref [17])
MiniA, MiniB 2.5 95 °C 5 min

40 ×  (95 °C 30 s, 
51 °C 30 s, 
72 °C 1 min)

72 °C 10 min

Table 2  Isolates investigated or used in this study

1, DNA purified from blood put on FTA card; 2, grown in vitro; 3, grown in mice; 4, suspected to be T. (b.) evansi by Claes et al. [3]

Isolate/strain (notes) Year/host Country/region References

Case 1 (1) 2014/dromedary Algeria, El Bayadh, Bnoud [35]
Case 2 (1) 2015/dromedary Algeria, El Bayadh, Brézina [35]
Case 3 (1) 2016/dromedary Algeria, El Bayadh, Brézina [35]
Case 4 (1) 2015/dromedary Algeria, Béchar, Abadla [35]
Case 5 (1) 2015/dromedary Algeria, Béchar, Mechra HB [35]
Case 6 (1) 2015/dromedary Algeria, Béchar, Erg Ferradj [35]
T. b. brucei EATRO 1125 AnTat1.1 90:13 (2) Laboratory strain n/a [38]
T. b. evansi CAN86/Brazil (3) 1986/dog Brazil [36]
T. b. evansi Antat3/3 (2) 1969/capybara South America [43]
T. b. evansi KETRI 2479 (3) 1980/camel Kenya, Ngurunit [17]
T. b. equiperdum BoTat1.1 (3) 1924/horse Morocco [36]
T. b. equiperdum OVI (3) 1977/horse South Africa [36]
T. b. equiperdum Hamburg (3,4) unknown/unknown Unknown [36]
T. b. evansi RoTat1.2 (3) 1982/water buffalo Indonesia [36]
T. b. evansi Philippines (3) 1996/water buffalo Philippines [36]
T. b. brucei Lister 427 ' single marker' (2) Laboratory strain n/a [39]
T. b. equiperdum American (3,4) Unknown/horse USA [36]
T. b. equiperdum AnTat4.1 (3,4) Unknown/unknown Unknown [36]
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Target Primers 
(10 µM)

Volume (µl) Cycling condi-
tions

Maxicircle gene 
A6

#7, #8 1 95 °C 5 min
35 ×  (95 °C 30 s, 

55 °C 30 s, 
72 °C 1 min)

72 °C 10 min
Maxicircle gene 

ND4
#9, #10 1 95 °C 5 min

40 ×  (95 °C 30 s, 
54 °C 30 s, 
72 °C 1 min)

72 °C 10 min

PCR reagents for the full-length  F1FO ATP synthase subu-
nit γ (Tb927.10.180) gene, including flanking regions, were 
as follows (25 µl total):

Reagent Volume

5 × Phusion PCR buffer (New England Biolabs) 5 µl
Primers #3 and #4 (10 µM) 1.25 µl
dNTPs (10 mM) 0.5 µl
Hot Start Phusion (New England Biolabs) 0.25 µl

PCR cycling conditions for the full-length gene were as 
follows: 98 °C 30 s, 40 cycles (98 °C 10 s, 60 °C 30 s, 72 °C 
1 min), 72 °C 10 min.

Cloning and Sequencing

All PCR products were cleaned up using the PCR Clean-Up 
kit from Macherey–Nagel (Dueren, Germany). Sequencing 
was either direct, using the same primers that had been used 
for the PCR reaction, or after cloning into pCR-Blunt (Inv-
itrogen; for Phusion PCR products) or into pGEM-T easy 
(Promega; for GoTaq PCR products), following the manufac-
turer’s instructions. Cloned products were sequenced using 
Sanger technology (Edinburgh Genomics or MRC Sequenc-
ing Service, Dundee) and standard M13 forward and reverse 
primers.

Phylogenetic Analysis

A phylogenetic tree was constructed with IQ-TREE 
[41], using a maximum likelihood model with HKY + G 
substitution.

Results and Discussion

PCR assays for TbATPase subunit γ confirm infection 
with T. b. evansi type A

To confirm the diagnosis of a T. b. evansi infection in cam-
els from 5 different Algerian regions (Table 2) [35], we 

amplified by PCR a 511 bp fragment of subunit γ of the 
mitochondrial  F1FO ATP synthase (systematic TriTrypDB 
ID Tb927.10.180). In the T. b. evansi types identified so 
far, this gene contains adaptive mutations that are differen-
tially diagnostic for types A and B [1, 4, 21]. Punches from 
FTA cards containing DNA purified from blood samples 
from cases 1 to 6 were washed and placed in reaction tubes, 
together with PCR reagents and primers #1 and #2 (Table 1). 
Initial reactions were carried out with (non-proof-reading) 
Taq polymerase because of its robust performance. Total 
cellular DNA from a T. b. brucei strain served as positive 
control. Reactions for all six cases showed a single amplicon 
of the expected size, suggesting infection with a Trypano-
zoon (Fig. 1A). To identify the type of T. b. evansi, we next 
amplified the entire ATP synthase γ gene with primers #3 
and #4 and a proof-reading polymerase, followed by cloning 
and sequencing. Sequence analysis confirmed presence of a 
heterozygous A281del mutation in the ATP synthase γ pro-
tein for all cases (Fig. 1B), providing conclusive evidence for 
infection with T. b. evansi type A [1]. These results are con-
sistent with the previously reported RoTat1.2-positive PCR 
results for these isolates [35]. RoTat1.2 is a VSG gene that, 
when present, is generally considered as being diagnostic 
for T. b. evansi type A [5]. These results are also consistent 
with the fact that the only other type of T. b. evansi currently 
known, type B, has so far only been reported from countries 
in East Africa, namely Kenya and Ethiopia [5, 17, 21].

Development of a Novel PCR Assay Specific 
for Minicircle Type A

A defining characteristic of T. b. evansi type A is that (unless 
the strain is akinetoplastic [1]) its kDNA is dominated by, 
or consists entirely of, thousands of copies of a particular 
class of minicircle [13]. A PCR assay for this minicircle 
class developed by Njiru and colleagues [17] uses prim-
ers (‘MiniA’ and ‘MiniB’) derived from a region semi-
conserved among all minicircle classes (Supplementary 
Figure S1) and can therefore result in false positive reac-
tions [21]. We therefore aimed to develop a PCR assay 
that is highly specific for type A minicircles. Alignment of 
type A minicircles available in GenBank identified several 
regions of perfect conservation outside of the universally 
conserved region. Based on this information, we designed 
primer sequences that are predicted to amplify a fragment 
of ~ 570 bp in a PCR assay (Supplementary Figure S1, prim-
ers #5 and #6). Alignment of the minicircle type A consen-
sus to the closest match in the recently defined minicircle 
population of T. b. brucei EATRO 1125 [15], a minicircle 
that contains the same set of gRNA genes, suggests that 
primers #5 and #6 should be specific for T. b. evansi minicir-
cle type A (Supplementary Figure S2). Indeed, when tested 
against a panel of type A and non-type A strains or isolates, 
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the PCR assay was highly specific (Fig. 2A). Sequencing of 
the ~ 570 bp amplicons confirmed that they corresponded to 
the expected minicircle type A. The only unexpected result 
was absence of a ~ 570 bp amplicon for strain T. b. evansi 
CAN86/Brazil (Fig. 2A, lane 6). As a PCR reaction using 
the MiniA/MiniB primers also failed to produce an amplicon 
for this strain (data not shown), we suspect that this strain 
has spontaneously lost its kDNA. This phenomenon is not 
unusual in T. b. evansi and T. b. equiperdum [14, 42].

Next, we used the new PCR assay to analyze samples 
from cases 1 to 6. For cases 1, 2, 3 and 6, we obtained a 
specific band of ~ 570 bp (Fig. 2B, left panel), and direct 
sequencing confirmed that the amplicons were the type A 
fragment (Supplementary Figure S3). We did not obtain 
a product for cases 4 and 5. The same result was obtained 
with primers MiniA/MiniB: strong amplification products 

of the expected size for cases 1, 2, 3 and 6, but no products 
for cases 4 and 5 (Fig. 2B, right panel). We conclude that, 
in all six cases, camels had been infected with T. b. evansi 
type A. In cases 4 and 5, the parasites may have become 
akinetoplastic, and our typing relies exclusively on the 
presence of the A281del mutation of ATP synthase subu-
nit γ. A phylogenetic tree based on the ~ 570 bp minicir-
cle type A amplicon shows a separation into two main 
branches that is supported by strong bootstrap values (Sup-
plementary Fig. 4). The Algerian cases branch together 
with two other isolates from Africa, and also a single 
isolate from South America, whereas the other isolates, 
all from non-African countries, form a separate branch. 
It will be interesting to expand the phylogenetic analysis 
of type A T. b. evansi based on their minicircle sequence 

Fig. 1  Detection by PCR 
of ATP synthase subunit γ 
sequences diagnostic of T. b. 
evansi type A. A PCR assay for 
detection of a 511-bp frag-
ment of ATP synthase subunit 
γ (Tb927.10.180). Aliquots 
of completed PCR reactions 
(15 μl) were fractionated by 
electrophoresis on an aga-
rose gel containing ethidium 
bromide. Images were captured 
using a UV light box. Lanes 1, 
19: New England Biolabs 100-
bp ladder (kbp: kilobasepairs); 
lanes 3–8: Algerian camel cases 
1–6; lanes 9, 18: PCR reactions 
with water instead of samples; 
lanes 10–17: varying amounts 
of total cellular DNA from T. 
b. brucei strain EATRO 1125 
AnTat1.1 90:13. B Sequencing 
of ATP synthase γ sequences. 
Top, trace files of direct 
sequencing (from the 5′ end) 
of PCR amplicons from cases 
1, 3 and 4. Bottom, representa-
tive sequences obtained after 
cloning of PCR amplicons. 
Sequencing of cloned ampli-
cons confirmed that T. b. evansi 
strains responsible for infections 
1, 2, 5 and 6 are heterozygous 
for deletion of amino acid 
alanine 281 (A281del). All 
cloned sequences obtained for 
case 3 were wild-type, and no 
cloned sequences were obtained 
for case 4, but direct sequencing 
of PCR amplicons confirmed 
heterozygosity for A281del for 
those cases as well

case number

1

1   2  3   4   5  6   7   8  9  10  11  12  13  14  15  16  17  18  19

2 3 4 5 6kbp kbp

0.5/0.52
0.4
0.3

0.2

0.1

1.2

0.7

1.0

picogram control DNA

0.5/0.52
0.4
0.3

0.2

0.1

0.7

1.0
1.2

case 1 amplicon

case 3 amplicon

case 4 amplicon

A

B
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to include other isolates, perhaps using the entire ~ 1-kb 
sequence to further improve resolution and reliability.

PCR assays for maxicircle-encoded genes A6 and ND4 
(primer pairs #7/#8 and #9/#10, respectively; Table 2) were 
negative (data not shown), consistent with the expected 
absence of the maxicircle in T. b. evansi [13, 14].

Conclusion

Based on nuclear and mitochondrial genetic markers, we 
have confirmed that the recently reported trypanosome 
infections in southern Algerian camels were caused by T. 
b. evansi type A, adding to an accumulating body of recent 

reports of surra infections in that country [45–47]. We 
also report a novel PCR assay based on careful sequence 
analysis of type A minicircles that we expect will be a 
useful tool for the community to diagnose T. b. evansi 
type A infections in livestock. Our data reported here 
suggest good specificity and sensitivity for type A strains 
and compatibility with samples prepared on FTA cards. 
Further studies should compare specificity and sensitivity 
with other assays, such as the recently reported recombi-
nase polymerase amplification lateral flow assay for T. b. 
evansi [48].

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11686- 022- 00577-7.

1* 2 3 4 5 6*kbp kbp

0.5/0.52
0.4

0.3

1.5

0.7

1.0

trypanosome strain/isolate
(* = ~570-bp amplicon expected) 

1.5

1.0
0.8

0.6

0.4

2.0
3.0

A

1.2

0.6

0.8

7* 8* 9 10 11* 12*

subunit γ

mini A

0.5
0.4
0.3

0.7

1.0

0.6
0.8

0.2

case number
1 2 34 5 6

1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19

1   2   3   4   5   6   7   8   9  10  11 1   2   3   4   5   6   7   8   9  10
0.4

1.5

0.7

1.0
1.2

0.6

0.8

0.5

kbpkbp

case number
1 2 34 5 6

B

Fig. 2  A specific PCR assay for minicircle type A. A PCR assay for 
detection of a ~ 570  bp fragment of minicircle type A (‘mini A’) in 
samples. In the same reactions (duplex PCR), primers #3 and #4 for 
amplification of a ~ 1.4-kb ATP synthase subunit γ amplicon (‘subunit 
γ’) were included as positive internal controls. Per reaction, 1–5 ng 
total DNA were used as template. Lane 1: Bioline 1-kbp ladder; 
lanes 2, 19: New England Biolabs 100-bp ladder; lanes 3, 18: empty; 
lane 4: control PCR reaction with water instead of total DNA; lane 
5: control PCR reaction with mouse genomic DNA instead of total 
trypanosome DNA (several trypanosome strains/isolates were grown 
in mice); lanes 6–17: reactions with total trypanosome DNA. Trypa-
nosome strains/isolates were as follows. 1 = T. b. evansi CAN86/Bra-
zil; 2 = T. b. evansi Antat3/3 (akinetoplastic); 3 = T. b. evansi KETRI 
2479; 4 = T. b. equiperdum BoTat1.1; 5 = T. b. equiperdum OVI; 6 = T. 
b. equiperdum Hamburg; 7 = T. b. evansi RoTat1.2; 8 = T. b. evansi 
Philippines; 9 = T. b. brucei Lister 427; 10 = T. b. brucei EATRO 
1125 AnTat1.1; 11 = T. b. equiperdum American; 12 = T. b. equiper-

dum AnTat4.1. Strains/isolates previously identified as belonging to 
the type A group [1, 3] are indicated by an asterisk. Please note: (i) 
T. b. equiperdum in this group have been suggested to be misidenti-
fied or mislabelled T. b. evansi [3]; (ii) T. b. evansi AnTat3/3 (lane 
7) is a type A strain [43], but the strain in our lab had spontane-
ously lost its kDNA [44]; (iii) T. b. evansi CAN86/Brazil is a type 
A strain [1, 3], but, like AnTat3/3, may have spontaneously lost its 
kDNA; (iv) amplification of minicircle type A in the same reaction 
appears to diminish the signal for subunit γ, perhaps by competing for 
nucleotides, this is particularly evident in lane 11. B Analysis of cases 
1–6 using the PCR assay with primers #5/#6 (left panel) or primers 
MiniA/MiniB (right panel). Lane 1: New England Biolabs 100-bp 
ladder; lane 2: control PCR reaction with water instead of total DNA; 
lanes 3–8: FTA card punches from cases 1 to 6; lane 9: empty; lane 
10: empty (left panel); lane 11 (left panel) / lane 10 (right panel): T. 
b. evansi RoTat1.2 (positive control)

https://doi.org/10.1007/s11686-022-00577-7
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